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Introduction

Time-delay systems describe a wide range of dynamic processes arising often in chemical, biological and economic applications. The observer design problem of linear system without delays has already been solved in [START_REF] Luenberger | Observer for multivariable systems[END_REF], [START_REF] Darouach | Full-order observers for linear systems with unknown inputs[END_REF], [START_REF] Hostetter | Observing systems with unmeasurable inputs[END_REF], [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF], [START_REF] Kudva | Observers for linear systems with unknown inputs[END_REF], [START_REF] Yang | Obervers for linear systems with unknown inputs[END_REF] and [START_REF] Wang | Observing the states of system with unmeasurable disturbances[END_REF]. However, for time-delay systems which are used sometimes to model practical applications [START_REF] Richard | Time-delay systems: an overview of some recent advances and open problems[END_REF], [START_REF] Sename | New trends in design of observers for time-delay systems[END_REF], [START_REF] Zheng | Secure data transmission based on multi-input multi-output delayed chaotic system[END_REF], the observer design problem becomes not trivial when the system states and the output contain commensurate delays.

Observability and identifiability are analyzed in [START_REF] Bejarano | Observability of linear systems with commensurate delays and unknown inputs[END_REF] for linear time-delay systems and in [START_REF] Zheng | On observation of time-delay systems with unknown inputs[END_REF] and [START_REF] Zheng | Identification of the delay parameter for nonlinear time-delay systems with unknown inputs[END_REF] for nonlinear one. Concerning the observer design for time-delay systems, different techniques have been proposed in the literature, such as infinite dimensional approach [START_REF] Salamon | Observers and duality between observation and state feedback for time delay systems[END_REF], polynomial approach based on the ring theory [START_REF] Sename | Unknown input robust observer for time delay system[END_REF]; [START_REF] Emre | Regulation of split linear systems over rings: Coecient-assignment and observers[END_REF]; [START_REF] Bejarano | Observability of singular systems with commensurate time-delays and neutral terms[END_REF]; [START_REF] Zheng | Observer design for linear singular time-delay systems[END_REF], Lyapunov function based on LMI [START_REF] Darouach | Linear functional observers for systems with delays in state variables[END_REF]; [START_REF] Seuret | A sliding mode observer for linear systems with unknown time varying delay[END_REF] and so on. Recently, some new inequality techniques have been addressed in Chen et al. (2017a) and Chen et al. (2017b) which can be also used to design observers.

All those mentioned observers in the literature provide only asymptotic (or exponential) estimation. However, in some applications it is desired to have a faster estimation, for example in a prescribed finite time [START_REF] Shi | Stochastic finite-time state estimation for discrete time-delay neural networks with markovian jumps[END_REF], which is named as non-asymptotic convergence. When designing state feedback control for nonlinear systems, the non-asymptotic estimation enables us to avoid the closed loop analysis for the observer and controller, even if the separation principle is generally not satisfied for nonlinear systems. Non-asymptotic estimation has a long history, and many different approaches have been proposed in the literature, such as algebraic method [START_REF] Sira-Ramrez | Algebraic Identification and Estimation Methods in Feedback Control Systems[END_REF] and sliding mode technique [START_REF] Utkin | Sliding Modes in Control Optimization[END_REF]. Usually the nonasymptotic convergence, when applying sliding mode method, depends on initial conditions [START_REF] Zheng | A simple finite-time observer for linear time-delay systems[END_REF]. Some extensions have been done to provide the uniform non-asymptotic convergence with respect to the initial conditions [START_REF] Cruz-Zavala | Uniform robust exact differentiator[END_REF], named as 'fixed-time'. Inspired by the works of [START_REF] Engel | A continuous-time observer which converges in finite time[END_REF]; [START_REF] Raff | An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time[END_REF] for linear systems, where the authors combined two simple Luenberger observers to construct a fixed-time observer, where the fixed time can be arbitrary assigned, this paper utilizes this idea to treat linear time-delay systems with known inputs. As an extension of [START_REF] Langueh | Finite-time observer for linear system with time delay[END_REF], the fixed-time convergence of the proposed observer is achieved by updating the observers with an impulsive manner.

This paper adopts the method based on ring theory since it enables us to use some useful techniques developed for linear systems without delays [START_REF] Zheng | Unknown input observer for linear time-delay systems[END_REF]. The following notations will be used in this paper. R is the field of real numbers. The set of positive integers is denoted by N. I p means p × p identity matrix. R[δ ] is the polynomial ring over the field R and R n [δ ] is the R[δ ]-module whose elements are vectors of dimension n and whose entries are polynomials. By R q×s [δ ] we denote the set of matrices of dimension q × s, whose entries are in R

[δ ]. For a matrix M(δ ), rank R[δ ] M(δ ) means the rank of the matrix M(δ ) over R[δ ].
The maximal order of δ in all polynomials in the matrix M(δ ) is denote deg δ M(δ ) We denote Inv S [M(δ )] = {Ψ i (δ )} 1≤i≤r as the set of invariant factors of the Smith form of M(δ ).

Problem statement

In this paper, we consider the following class of linear systems with commensurate delays:

ẋ(t) = ∑ k a i=0 Āi x(t -ih) + ∑ k b i=0 Bi u(t -ih) y(t) = ∑ k c i=0 Ci x(t -ih) (1) 
where the vector x(t) ∈ R n , the input vector u(t) ∈ R m , and the output vector y(t) ∈ R p , the initial function ϕ(t) is a piece-wise continuous function ϕ(t) :

[-kh, 0] → R n (k = max{k a , k b , k c })
where h represents the basic commensurate delay; thereby x(t) = ϕ(t) on [-kh, 0]. Āi , Bi and Ci are matrices of appropriate dimension.

In order to simplify the analysis, let us introduce the delay operator δ such that x(tkh) = δ k x(t), k ≥ 0. Let R[δ ] be the polynomial ring of δ over the field R. After having introduced the delay operator δ , system (1) can be written as follows:

ẋ(t) = A(δ )x(t) + B(δ )u(t) y(t) = C(δ )x(t) (2) 
where

A(δ ) = ∑ k a i=0 Āi δ i , B(δ ) = ∑ k b i=0 Bi δ i and C(δ ) = ∑ k c
i=0 Ci δ i . As for x(t, ϕ, u), we mean the solution of system (2) with the initial functions equal to ϕ(t) and the inputs equal to u. In the same way, we define y(t, ϕ, u) = C(δ )x(t, ϕ, u), which is the output of system (1) when x(t) = x(t, ϕ, u).

When designing observers for time-delay system (2), we can only use y(t) and its delayed values to estimate the current x(t). Otherwise, the designed observer is not causal. In this sense, it is desired to use actual and past information of measurement. For this, let us firstly recall the definition of backward observability stated in [START_REF] Bejarano | Observability of linear systems with commensurate delays and unknown inputs[END_REF].

Definition 1. System (1) is said to be backward observable on [t 1 ,t 2 ] if and only if for each τ ∈ [t 1 ,t 2 ], there exist t 1 < t 2 ≤ τ such that for every initial condition ϕ, y(t, ϕ, 0) = 0 for all t ∈ [t 1 ,t 2 ] implies x(τ, ϕ, 0) = 0.
Concerning systems with time delays, we have also the following definition of asymptotic and non-asymptotic observers [START_REF] Zheng | Finite-time-observer design for nonlinear impulsive systems with impact perturbation[END_REF].

Definition 2. The dynamics

ξ = f (y, ξ , δ , u) x = g(y, ξ , δ , u)
with y being the output of (2), ξ ∈ R ñ, x ∈ R n where ñ ≥ n and some user-chosen functions f and g, is called as an asymptotic observer of (2) if

lim t→∞ || x(t) -x(t)|| = 0.
It is said to be a finite-time observer if there exists T s (e 0 ), depending on the initial observation error e 0 = x(t 0 )x(t 0 ), such that

|| x(t) -x(t)|| = 0, ∀t ≥ T s (e 0 ).
In addition, this dynamics is named as a fixed-time observer if

|| x(t) -x(t)|| = 0, ∀t ≥ T s
where T s is independent of any initial observation error.

For system (2), [START_REF] Hou | An observer design for linear time-delay systems[END_REF] proposed a simple Luenberger-like asymptotic observer and sufficient conditions were deduced to calculate the gains of the proposed observer. To the best of our knowledge, no results on fixed-time observer for system (2) have been studied in the literature. As an extension of [START_REF] Bejarano | Observability of linear systems with commensurate delays and unknown inputs[END_REF], the main contribution of this paper is to extend the methods proposed in [START_REF] Raff | An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time[END_REF] and [START_REF] Hou | An observer design for linear time-delay systems[END_REF] to treat system (2), and to deduce some sufficient conditions which enable us to present a constructive procedure to design a simple impulsive fixed-time observer.

Definition and preliminary results

Consider system (2) which is described by the polynomial matrices over R[δ ], let us firstly give some useful definitions of unimodularity and change of coordinates over R[δ ].

Definition 3. For a given polynomial matrix A(δ

) ∈ R n×q [δ ], it is said to be left (or right) unimodular over R[δ ] if there exists A -1 L (δ ) ∈ R q×n [δ ] with n ≥ q (or A -1 R (δ ) ∈ R n×q [δ ] with n ≤ q), such that A -1 L (δ )A(δ ) = I q (or A -1 R (δ )A(δ ) = I n ). A square matrix A(δ ) ∈ R n×n [δ ] is said to be unimodular over R[δ ] if A -1 L (δ ) = A -1 R (δ ). Let us recall that for any polynomial matrix D(δ ) ∈ R p×m [δ ] with rank R[δ ] D(δ ) = k ≤ min{p, m}, it is known (see Hou et al. (2002)) that D(δ ) ∈ R p×m [δ ] is left unimodular over R[δ ] if and only if rank R[δ ] D(δ ) = m ≤ p and Inv S [D(δ )] ⊂ R. Definition 4. A change of coordinates z = T (δ )x with T (δ ) ∈ R n z ×n [δ ] is said to be bicausal if T (δ ) is left unimodular over R[δ ].
Then, we can define the following polynomial matrix over R[δ ]:

O l (δ ) =      C(δ ) C(δ )A(δ ) . . . C(δ )A l-1 (δ )      ∈ R pl×n (3) 
where l ∈ N, and make the following assumption.

Assumption 1. It is supposed that there exists a least integer l

* ∈ N such that O l * (δ ) defined in (3) is left unimodular over R[δ ], i.e., rank R[δ ] O l * (δ ) = n and Inv S O l * (δ ) ⊂ R.
It is clear to see that if Assumption 1 is satisfied, then system (2) is backward observable [START_REF] Hou | An observer design for linear time-delay systems[END_REF]. In other words, the above assumption guarantees that the studied system (2) is backward observable, then we can design a fixed-time observer to estimate x(t), which will be presented in the next section.

Impulsive fixed-time observer

This section proposes an impulsive fixed-time observer based on two simple coupled Luenberger-like observers. Before this, let us recall a useful result stated in [START_REF] Hou | An observer design for linear time-delay systems[END_REF].

Lemma 1. [START_REF] Hou | An observer design for linear time-delay systems[END_REF] There exists a bicausal change of coordinates z = T (δ )x which transforms system (2) into the following observable normal form:

ż = A 0 z + F(δ )y + T (δ )B(δ )u y = C 0 z (4)
where the matrices

F(δ ) = [F T 1 (δ ), . . . , F T l * (δ )],
and

A 0 =       0 I p 0 • • • 0 . . . . . . . . . . . . . . . 0 0 0 • • • . . . 0 0 0 • • • 0       ∈ R pl * ×pl * C 0 = [ I p 0 0 • • • 0 ] ∈ R p×pl * (5)
if and only if there exists a least integer l * ∈ N such that O l * (δ ) defined in (3) is left unimodular over R[δ ]. Moreover, the bicausal change of coordinates z = T (δ )x with T (δ ) = col{T 1 (δ ), . . . , T l * (δ )} is defined as follows:

T 1 (δ ) = C(δ ) T i+1 (δ ) = T i (δ )A(δ ) -F i (δ )C(δ ), for 1 ≤ i ≤ l * -1 (6)
with F i (δ ) being determined through the following equation:

[F l * (δ ), . . . , F 1 (δ )] = C(δ )A l * (δ )[O l * (δ )] -1 L . (7) 
The above lemma shows that if Assumption 1 is satisfied, then (2) can be transformed into (4) via z = T (δ )x where T (δ ) is defined in (6). For the obtained observer normal form (4), consider now the following dynamics:

ż = Lẑ + P(δ )y + T (δ )B(δ )u x = T -1 L (δ )ẑ (8) 
where L ∈ R pl * ×pl * and P(δ ) ∈ R pl * ×p [δ ] will be determined hereafter. Then the estimate error ε z = zẑ is governed by:

εz = ż -ż = A 0 z + F(δ )y + T (δ )B(δ )u - ż = A 0 z + F(δ )C 0 z -[Lẑ + P(δ )C 0 z] = [A 0 + F(δ )C 0 -P(δ )C 0 ]z -Lẑ
Since (A 0 ,C 0 ) is observable, thus there exists a constant matrix J such that [A 0 -JC 0 ] is Hurwitz. By choosing P(δ ) = J + F(δ ) and L = A 0 -JC 0 , then we obtain

εz = [A 0 -JC 0 ]ε z (9)
which is asymptotically convergent to zero. We would like to emphasize that this convergence is independent of delay. Note that ε x = T -1 L (δ )ε z , then ε x converges to zero as well asymptotically. According to Definition 2, the dynamics ( 8) is an asymptotic observer of system (2).

The following will use two simple observers of type (8) to construct an impulsive fixed-time observer for system (2). For this, let us choose two different constant matrices J i such that both [A 0 -J i C 0 ] are Hurwitz for i = 1, 2. Then we note

L i = A 0 -J i C 0 ( 10 
)
and

P i (δ ) = J i + F(δ ) (11) 
for i = 1, 2.

Define d max = deg δ P i (δ ) for 1 ≤ i ≤ 2 as the maximum degree of polynomials P i (δ ) with respect to δ . With those matrices, for a prescribed positive constant σ > h × d max where h represents the basic commensurate delay in (1), we can then design the following two coupled observers:

           żi = L i ξ + P i (δ )y + T (δ )B(δ )u, ẑ = Γ(δ ,t) ẑ1 ẑ2 ẑ1 (t) = ẑ2 (t), ∀t ∈ [-h × d max , 0] x = T -1 L (δ )ẑ (12) 
where

Γ(δ ,t) =      [ 1 2 I pl * , 1 2 I pl * ], if t = σ I pl * -e (L 2 -L 1 )t -1 [-e (L 2 -L 1 )t , I pl * ], if t = σ (13)
Theorem 1. Suppose that Assumption 1 is satisfied for system (2). For a given prescribed constant σ > h × d max , the dynamics ( 12) is an impulsive fixed-time observer of system (2) with the prescribed settling time σ , i.e. ||x(t)x(t)|| = 0 for all t ≥ σ .

Proof 1. It has been shown in the above that if Assumption 1 is satisfied for system (2), then one can always find two constant matrices J 1 and J 2 such that both

[A 0 -J 1 C 0 ] and [A 0 -J 2 C 0 ] are Hurwitz. Note ε z 1 = z -ẑ1 and ε z 2 = z -ẑ2 , then according to (9) we obtain εz 1 = [A 0 -J 1 C 0 ]ε z 1 = L 1 ε z 1 ( 14 
)
and

εz 2 = [A 0 -J 2 C 0 ]ε z 2 = L 2 ε z 2 (15)
By solving ( 14) and (15), we get

ε z 1 (t) = [z(t) -ẑ1 (t)] = e L 1 t ε z 1 (0) ε z 1 (t) = [z(t) -ẑ2 (t)] = e L 2 t ε z 2 (0) (16)
Due to the fact that the initial functions for ẑi (t) for all t ∈ [-h × d max , 0] are the same, thus ẑ1 (0) = ẑ2 (0) which implies ε z 1 (0) = ε z 2 (0). Therefore, by eliminating ε z 1 (0) and ε z 2 (0) in ( 16), we obtain

e L 2 t [z(t) -ẑ1 (t)] = e L 1 t [z(t) -ẑ2 (t)] which gives z(t) = [I pl * -e (L 2 -L 1 )t ] -1 [-e (L 2 -L 1 )t , I pl * ] ẑ1 (t) ẑ2 (t) 
When t = σ , the above equation is equal to

z(σ ) = Γ(δ , σ ) ẑ1 (σ ) ẑ2 (σ ) .
According to the impulsive behavior defined in (14), we have

ẑ1 (σ ) = ẑ2 (σ ) = z(σ ) thus x(σ ) = T -1 L (δ )z(σ ) = x(σ )
, which implies that the exact value of x(t) has been obtained at time σ . Finally, we always have ||x(t)x(t)|| = 0 when t ≥ σ .

Therefore, according to Definition 2, system (12) is an impulsive fixed-time observer for (2) with the prescribed settling time σ independent of any initial condition.

Remark 1. Clearly, the result presented in Theorem 1 is based on the results stated in [START_REF] Raff | An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time[END_REF] and [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF]. In [START_REF] Raff | An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time[END_REF], two simple Luenberger observers were coupled together to achieve the finite-time estimation for linear time-invariant systems, while [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF] proposed a Luenberger observer to achieve asymptotic estimation of linear time-delay systems. Compared to those results, Theorem 1 presented in this paper introduces a constructive way to achieve finite-time estimation for a class of time-delay systems.

If Assumption 1 for a certain l * ∈ N is satisfied for system (2), then the following procedure presents how to design the proposed fixed-time observer:

Step 1: Transform system (2) into (4) and deduce A 0 and C 0 defined in (5);

Step 2: Calculate O l * (δ ) defined in (3) and its left unimodularity

[O l * (δ )] -1 L ;
Step 3: Deduce T (δ ) and F(δ ) according to ( 6) and ( 7);

Step 4: Choose two different constant matrices J 1 and J 2 such that L 1 and L 2 defined in (10) are Hurwitz, then calculate P i (δ ) according to (11);

Step 5: Finally we obtain Γ(δ ,t) according to (13) for a prescribed σ ≥ h × d max , and observer ( 12) can be then designed.

Illustrative example

Let us consider the following example of the form (2) with

A(δ ) =   δ 2 1 δ δ δ 1 + δ 1 δ δ 2   , B(δ ) =   1 δ 0 1 1 + δ 2 1   and C(δ ) = 1 0 0 δ 0 1 .
It can be checked that there exists l * = 2 such that Assumption 1 is satisfied. Therefore, the studied system is backward observable. In order to design the proposed impulsive fixed-time observer, we can follow the proposed procedure.

Step 1: According to Lemma 1, we obtained

A 0 =     0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0     and C 0 = 1 0 0 0 0 1 0 0
Step 2: According to (3), we compute :

O l * (δ ) = C(δ ) C(δ )A(δ ) =     1 0 0 δ 0 1 δ 2 1 δ δ 3 + 1 2δ 2δ 2    
and its left unimodular matrix over R[δ ] is equal to:

[O l * (δ )] -1 L =   1 0 0 0 0 -δ 1 0 -δ 1 0 0   .
Step 3: According to (7), we can deduce F(δ ) as follows:

F(δ ) =     2δ 2 + δ 0 3δ 3 + 2δ 2 + 1 0 -δ 4 -δ 2 + δ -δ 2 + δ + 1 -2δ 2 (δ 3 + δ -1) 2δ (-δ 2 + δ + 1)    
which gives us, based on (6), the following T (δ ):

T (δ ) =     1 0 0 δ 0 1 -δ 2 -δ 1 δ -2δ 3 -2δ 2 2δ δ 2     whose left unimodular matrix over R[δ ] is: T -1 L (δ ) =   1 0 0 0 2δ 2 + δ -δ 1 0 -δ 1 0 0   .
Step 4: Then, we can freely choose J 1 and J 2 such that L 1 and L 2 defined in (10) are stable. In this example, we take

J 1 =     6 0 0 12.5 8 0 0 37.5     and J 2 =     2.4 0 0 5 1.28 0 0 6     which set
the eigenvalues of L 1 as [-7.5, -5, -4, -2] and those of L 2 as [-3, -2, -1.6, -0.8].

Finally we have:

P 1 (δ ) =     2δ 2 + δ + 6 0 3δ 3 + 2δ 2 + 1 12.5 -δ 4 -δ 2 + δ + 8 -δ 2 + δ + 1 -2δ 2 (δ 3 + δ -1) 2δ (-δ 2 + δ + 1) + 37.5     and P 2 (δ ) =     2δ 2 + δ + 2.4 0 3δ 3 + 2δ 2 + 1 5 -δ 4 -δ 2 + δ + 1.28 -δ 2 + δ + 1 -2δ 2 (δ 3 + δ -1) 2δ (-δ 2 + δ + 1) + 6     which yields d max = deg max P i = 4.
Step 5: With a prescribed positive constant σ > 4h, we can easily design an impulsive fixed-time observer of type ( 12) to achieve a fixed-time estimation of x(t). For the simulation, the sampling time is set as 0.0005s and the basic delay h = 0.001s. The estimated x(t) of system ( 2 From Figs. 1-3, we can see that trajectories of the proposed observer converge exactly at the prescribed time σ = 0.3s to those of system (2). From Figs. 4 -6, the same conclusion can be made for the case σ = 0.5s.

Conclusion

In this paper, an impulsive observer with prescribed fixed-time convergence for linear systems with commensurate delay has been presented, which can involve the delays both in the state and in the output. It has been shown that the proposed observer converges in fixed time and the convergence time σ can be chosen almost arbitrary provided that σ > h × d max . Numerical simulations are provided for an academic example for different choices of σ in order to highlight the feasibility of the proposed method.
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