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Impulsive fixed-time observer for linear time-delay systems

K. Langueh1, G. Zheng1 and T. Floquet1

1 INRIA Lille-Nord Europe, 40, avenue Halley, 59650 Villeneuve d’Ascq, France

Abstract

This paper presents a fixed-time observer for a general class of linear time-delay sys-
tems. In contrast to many existing observers, which normally estimate system’s tra-
jectory in an asymptotic fashion, the proposed observer estimates system’s state in a
prescribed time. The proposed fixed-time observer is realized by updating the observer
in an impulsive manner. Simulation results are also presented to illustrate the conver-
gence behavior of the proposed fixed-time observer.

1. Introduction

Time-delay systems describe a wide range of dynamic processes arising often in
chemical, biological and economic applications. The observer design problem of linear
system without delays has already been solved in Luenberger (1966), Darouach et al.
(1994), Hostetter and Meditch (1973), Hou and Müller (1992), Kudva et al. (1980),
Yang and Wilde (1988) and Wang et al. (1975). However, for time-delay systems
which are used sometimes to model practical applications Richard (2003), Sename and
Briat (2001),Zheng et al. (2008), the observer design problem becomes not trivial when
the system states and the output contain commensurate delays.

Observability and identifiability are analyzed in Bejarano and Zheng (2014) for lin-
ear time-delay systems and in Zheng et al. (2011) and Zheng et al. (2013) for nonlinear
one. Concerning the observer design for time-delay systems, different techniques have
been proposed in the literature, such as infinite dimensional approach Salamon (1980),
polynomial approach based on the ring theory Sename (1997); Emre and Khargonekar
(1982); Bejarano and Zheng (2017); Zheng and Bejarano (2017), Lyapunov function
based on LMI Darouach (2001); Seuret et al. (2007) and so on. Recently, some new in-
equality techniques have been addressed in Chen et al. (2017a) and Chen et al. (2017b)
which can be also used to design observers.

All those mentioned observers in the literature provide only asymptotic (or ex-
ponential) estimation. However, in some applications it is desired to have a faster
estimation, for example in a prescribed finite time Shi et al. (2015), which is named
as non-asymptotic convergence. When designing state feedback control for nonlinear
systems, the non-asymptotic estimation enables us to avoid the closed loop analysis
for the observer and controller, even if the separation principle is generally not satis-
fied for nonlinear systems. Non-asymptotic estimation has a long history, and many
different approaches have been proposed in the literature, such as algebraic method
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Sira-Ramrez et al. (2014) and sliding mode technique Utkin (1992). Usually the non-
asymptotic convergence, when applying sliding mode method, depends on initial con-
ditions Zheng and Wang (2016). Some extensions have been done to provide the uni-
form non-asymptotic convergence with respect to the initial conditions Cruz-Zavala
et al. (2011), named as ’fixed-time’. Inspired by the works of Engel and Kreisselmeier
(2002); Raff and Allgower (2007) for linear systems, where the authors combined two
simple Luenberger observers to construct a fixed-time observer, where the fixed time
can be arbitrary assigned, this paper utilizes this idea to treat linear time-delay systems
with known inputs. As an extension of Langueh et al. (2016), the fixed-time conver-
gence of the proposed observer is achieved by updating the observers with an impulsive
manner.

This paper adopts the method based on ring theory since it enables us to use some
useful techniques developed for linear systems without delays Zheng et al. (2015). The
following notations will be used in this paper. R is the field of real numbers. The
set of positive integers is denoted by N. Ip means p× p identity matrix. R[δ ] is the
polynomial ring over the field R and Rn[δ ] is the R[δ ]-module whose elements are
vectors of dimension n and whose entries are polynomials. By Rq×s[δ ] we denote the
set of matrices of dimension q× s, whose entries are in R[δ ]. For a matrix M(δ ),
rankR[δ ]M(δ ) means the rank of the matrix M(δ ) over R[δ ]. The maximal order of δ

in all polynomials in the matrix M(δ ) is denote degδ M(δ ) We denote InvS[M(δ )] =
{Ψi(δ )}1≤i≤r as the set of invariant factors of the Smith form of M(δ ).

2. Problem statement

In this paper, we consider the following class of linear systems with commensurate
delays:

ẋ(t) = ∑
ka
i=0 Āix(t− ih)+∑

kb
i=0 B̄iu(t− ih)

y(t) = ∑
kc
i=0 C̄ix(t− ih)

(1)

where the vector x(t)∈Rn, the input vector u(t)∈Rm, and the output vector y(t)∈Rp,
the initial function ϕ(t) is a piece-wise continuous function ϕ(t) : [−kh,0]→ Rn (k =
max{ka,kb,kc}) where h represents the basic commensurate delay; thereby x(t) = ϕ(t)
on [−kh,0]. Āi, B̄i and C̄i are matrices of appropriate dimension.

In order to simplify the analysis, let us introduce the delay operator δ such that
x(t− kh) = δ kx(t), k ≥ 0. Let R[δ ] be the polynomial ring of δ over the field R. After
having introduced the delay operator δ , system (1) can be written as follows:

ẋ(t) = A(δ )x(t)+B(δ )u(t)

y(t) =C(δ )x(t) (2)

where A(δ ) = ∑
ka
i=0 Āiδ

i, B(δ ) = ∑
kb
i=0 B̄iδ

i and C(δ ) = ∑
kc
i=0 C̄iδ

i.
As for x(t,ϕ,u), we mean the solution of system (2) with the initial functions equal

to ϕ(t) and the inputs equal to u. In the same way, we define y(t,ϕ,u) =C(δ )x(t,ϕ,u),
which is the output of system (1) when x(t) = x(t,ϕ,u).
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When designing observers for time-delay system (2), we can only use y(t) and its
delayed values to estimate the current x(t). Otherwise, the designed observer is not
causal. In this sense, it is desired to use actual and past information of measurement.
For this, let us firstly recall the definition of backward observability stated in Bejarano
and Zheng (2014).

Definition 1. System (1) is said to be backward observable on [t1, t2] if and only if for
each τ ∈ [t1, t2], there exist t ′1 < t ′2≤ τ such that for every initial condition ϕ , y(t,ϕ,0)=
0 for all t ∈ [t ′1, t

′
2] implies x(τ,ϕ,0) = 0.

Concerning systems with time delays, we have also the following definition of asymp-
totic and non-asymptotic observers Zheng et al. (2014).

Definition 2. The dynamics {
ξ̇ = f (y,ξ ,δ ,u)
x̂ = g(y,ξ ,δ ,u)

with y being the output of (2), ξ ∈ Rñ, x̂ ∈ Rn where ñ ≥ n and some user-chosen
functions f and g, is called as an asymptotic observer of (2) if

lim
t→∞
||x̂(t)− x(t)||= 0.

It is said to be a finite-time observer if there exists Ts(e0), depending on the initial
observation error e0 = x̂(t0)− x(t0), such that

||x̂(t)− x(t)||= 0,∀t ≥ Ts(e0).

In addition, this dynamics is named as a fixed-time observer if

||x̂(t)− x(t)||= 0,∀t ≥ Ts

where Ts is independent of any initial observation error.

For system (2), Hou et al. (2002) proposed a simple Luenberger-like asymptotic ob-
server and sufficient conditions were deduced to calculate the gains of the proposed
observer. To the best of our knowledge, no results on fixed-time observer for system
(2) have been studied in the literature. As an extension of Bejarano and Zheng (2014),
the main contribution of this paper is to extend the methods proposed in Raff and All-
gower (2007) and Hou et al. (2002) to treat system (2), and to deduce some sufficient
conditions which enable us to present a constructive procedure to design a simple im-
pulsive fixed-time observer.

3. Definition and preliminary results

Consider system (2) which is described by the polynomial matrices over R[δ ], let
us firstly give some useful definitions of unimodularity and change of coordinates over
R[δ ].
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Definition 3. For a given polynomial matrix A(δ ) ∈ Rn×q[δ ], it is said to be left (or
right) unimodular over R[δ ] if there exists A−1

L (δ ) ∈ Rq×n[δ ] with n≥ q (or A−1
R (δ ) ∈

Rn×q[δ ] with n ≤ q), such that A−1
L (δ )A(δ ) = Iq (or A−1

R (δ )A(δ ) = In). A square
matrix A(δ ) ∈ Rn×n[δ ] is said to be unimodular over R[δ ] if A−1

L (δ ) = A−1
R (δ ).

Let us recall that for any polynomial matrix D(δ ) ∈Rp×m[δ ] with rankR[δ ]D(δ ) = k≤
min{p,m}, it is known (see Hou et al. (2002)) that D(δ ) ∈ Rp×m[δ ] is left unimodular
over R[δ ] if and only if rankR[δ ]D(δ ) = m≤ p and InvS[D(δ )]⊂ R.

Definition 4. A change of coordinates z = T (δ )x with T (δ ) ∈ Rnz×n[δ ] is said to be
bicausal if T (δ ) is left unimodular over R[δ ].

Then, we can define the following polynomial matrix over R[δ ]:

Ol(δ ) =


C(δ )

C(δ )A(δ )
...

C(δ )Al−1(δ )

 ∈ Rpl×n (3)

where l ∈ N, and make the following assumption.

Assumption 1. It is supposed that there exists a least integer l∗ ∈ N such that Ol∗(δ )
defined in (3) is left unimodular over R[δ ], i.e., rankR[δ ]Ol∗(δ ) = n and InvSOl∗(δ )⊂
R.

It is clear to see that if Assumption 1 is satisfied, then system (2) is backward
observable Hou et al. (2002). In other words, the above assumption guarantees that the
studied system (2) is backward observable, then we can design a fixed-time observer
to estimate x(t), which will be presented in the next section.

4. Impulsive fixed-time observer

This section proposes an impulsive fixed-time observer based on two simple cou-
pled Luenberger-like observers. Before this, let us recall a useful result stated in Hou
et al. (2002).

Lemma 1. Hou et al. (2002) There exists a bicausal change of coordinates z = T (δ )x
which transforms system (2) into the following observable normal form:{

ż = A0z+F(δ )y+T (δ )B(δ )u
y =C0z (4)

where the matrices F(δ ) = [FT
1 (δ ), . . . ,FT

l∗ (δ )], and

A0 =


0 Ip 0 · · · 0
...

...
...

. . .
...

0 0 0 · · ·
...

0 0 0 · · · 0

 ∈ Rpl∗×pl∗

C0 = [ Ip 0 0 · · · 0 ] ∈ Rp×pl∗

(5)
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if and only if there exists a least integer l∗ ∈ N such that Ol∗(δ ) defined in (3) is left
unimodular over R[δ ]. Moreover, the bicausal change of coordinates z = T (δ )x with
T (δ ) = col{T1(δ ), . . . ,Tl∗(δ )} is defined as follows:{

T1(δ ) =C(δ )
Ti+1(δ ) = Ti(δ )A(δ )−Fi(δ )C(δ ), for 1≤ i≤ l∗−1 (6)

with Fi(δ ) being determined through the following equation:

[Fl∗(δ ), . . . ,F1(δ )] =C(δ )Al∗(δ )[Ol∗(δ )]
−1
L . (7)

The above lemma shows that if Assumption 1 is satisfied, then (2) can be trans-
formed into (4) via z = T (δ )x where T (δ ) is defined in (6). For the obtained observer
normal form (4), consider now the following dynamics:{ ˙̂z = Lẑ+P(δ )y+T (δ )B(δ )u

x̂ = T−1
L (δ )ẑ

(8)

where L ∈ Rpl∗×pl∗ and P(δ ) ∈ Rpl∗×p[δ ] will be determined hereafter. Then the esti-
mate error εz = z− ẑ is governed by:

ε̇z = ż− ˙̂z = A0z+F(δ )y+T (δ )B(δ )u− ˙̂z
= A0z+F(δ )C0z− [Lẑ+P(δ )C0z]

= [A0 +F(δ )C0−P(δ )C0]z−Lẑ

Since (A0,C0) is observable, thus there exists a constant matrix J such that [A0− JC0]
is Hurwitz. By choosing P(δ ) = J+F(δ ) and L = A0− JC0, then we obtain

ε̇z = [A0− JC0]εz (9)

which is asymptotically convergent to zero. We would like to emphasize that this con-
vergence is independent of delay. Note that εx = T−1

L (δ )εz, then εx converges to zero
as well asymptotically. According to Definition 2, the dynamics (8) is an asymptotic
observer of system (2).

The following will use two simple observers of type (8) to construct an impulsive
fixed-time observer for system (2). For this, let us choose two different constant matri-
ces Ji such that both [A0− JiC0] are Hurwitz for i = 1,2. Then we note

Li = A0− JiC0 (10)

and
Pi(δ ) = Ji +F(δ ) (11)

for i = 1,2.

Define dmax = degδ Pi(δ ) for 1 ≤ i ≤ 2 as the maximum degree of polynomials
Pi(δ ) with respect to δ . With those matrices, for a prescribed positive constant σ >
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h× dmax where h represents the basic commensurate delay in (1), we can then design
the following two coupled observers:

˙̂zi = Liξ +Pi(δ )y+T (δ )B(δ )u,

ẑ = Γ(δ , t)
[

ẑ1
ẑ2

]
ẑ1(t) = ẑ2(t), ∀t ∈ [−h×dmax,0]
x̂ = T−1

L (δ )ẑ

(12)

where

Γ(δ , t) =


[ 1

2 Ipl∗ ,
1
2 Ipl∗ ], if t 6= σ[

Ipl∗ − e(L2−L1)t
]−1

[−e(L2−L1)t , Ipl∗ ], if t = σ

(13)

Theorem 1. Suppose that Assumption 1 is satisfied for system (2). For a given pre-
scribed constant σ > h× dmax, the dynamics (12) is an impulsive fixed-time observer
of system (2) with the prescribed settling time σ , i.e. ||x(t)− x̂(t)||= 0 for all t ≥ σ .

Proof 1. It has been shown in the above that if Assumption 1 is satisfied for system (2),
then one can always find two constant matrices J1 and J2 such that both [A0− J1C0]
and [A0− J2C0] are Hurwitz. Note εz1 = z− ẑ1 and εz2 = z− ẑ2, then according to (9)
we obtain

ε̇z1 = [A0− J1C0]εz1 = L1εz1 (14)

and
ε̇z2 = [A0− J2C0]εz2 = L2εz2 (15)

By solving (14) and (15), we get

εz1(t) = [z(t)− ẑ1(t)] = eL1tεz1(0)
εz1(t) = [z(t)− ẑ2(t)] = eL2tεz2(0)

(16)

Due to the fact that the initial functions for ẑi(t) for all t ∈ [−h× dmax,0] are the
same, thus ẑ1(0) = ẑ2(0) which implies εz1(0) = εz2(0). Therefore, by eliminating
εz1(0) and εz2(0) in (16), we obtain

eL2t [z(t)− ẑ1(t)] = eL1t [z(t)− ẑ2(t)]

which gives

z(t) = [Ipl∗ − e(L2−L1)t ]−1[−e(L2−L1)t , Ipl∗ ]

[
ẑ1(t)
ẑ2(t)

]
When t = σ , the above equation is equal to

z(σ) = Γ(δ ,σ)

[
ẑ1(σ)
ẑ2(σ)

]
.

According to the impulsive behavior defined in (14), we have

ẑ1(σ) = ẑ2(σ) = z(σ)
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thus x̂(σ) = T−1
L (δ )z(σ) = x(σ), which implies that the exact value of x(t) has been

obtained at time σ . Finally, we always have ||x(t)− x̂(t)||= 0 when t ≥ σ .
Therefore, according to Definition 2, system (12) is an impulsive fixed-time ob-

server for (2) with the prescribed settling time σ independent of any initial condition.

Remark 1. Clearly, the result presented in Theorem 1 is based on the results stated in
Raff and Allgower (2007) and Hou and Müller (1992). In Raff and Allgower (2007),
two simple Luenberger observers were coupled together to achieve the finite-time es-
timation for linear time-invariant systems, while Hou and Müller (1992) proposed a
Luenberger observer to achieve asymptotic estimation of linear time-delay systems.
Compared to those results, Theorem 1 presented in this paper introduces a construc-
tive way to achieve finite-time estimation for a class of time-delay systems.

If Assumption 1 for a certain l∗ ∈ N is satisfied for system (2), then the following
procedure presents how to design the proposed fixed-time observer:

Step 1: Transform system (2) into (4) and deduce A0 and C0 defined in (5);
Step 2: Calculate Ol∗(δ ) defined in (3) and its left unimodularity [Ol∗(δ )]

−1
L ;

Step 3: Deduce T (δ ) and F(δ ) according to (6) and (7);
Step 4: Choose two different constant matrices J1 and J2 such that L1 and L2 defined in

(10) are Hurwitz, then calculate Pi(δ ) according to (11);
Step 5: Finally we obtain Γ(δ , t) according to (13) for a prescribed σ ≥ h× dmax, and

observer (12) can be then designed.

5. Illustrative example

Let us consider the following example of the form (2) with

A(δ ) =

 δ 2 1 δ

δ δ 1+δ

1 δ δ 2

 , B(δ ) =

 1 δ

0 1
1+δ 2 1


and

C(δ ) =

[
1 0 0
δ 0 1

]
.

It can be checked that there exists l∗ = 2 such that Assumption 1 is satisfied. Therefore,
the studied system is backward observable. In order to design the proposed impulsive
fixed-time observer, we can follow the proposed procedure.

Step 1: According to Lemma 1, we obtained

A0 =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


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and

C0 =

[
1 0 0 0
0 1 0 0

]
Step 2: According to (3), we compute :

Ol∗(δ ) =

[
C(δ )

C(δ )A(δ )

]
=


1 0 0
δ 0 1
δ 2 1 δ

δ 3 +1 2δ 2δ 2


and its left unimodular matrix over R[δ ] is equal to:

[Ol∗(δ )]
−1
L =

 1 0 0 0
0 −δ 1 0
−δ 1 0 0

 .
Step 3: According to (7), we can deduce F(δ ) as follows:

F(δ ) =


2δ 2 +δ 0

3δ 3 +2δ 2 +1 0
−δ 4−δ 2 +δ −δ 2 +δ +1
−2δ 2(δ 3 +δ −1) 2δ (−δ 2 +δ +1)


which gives us, based on (6), the following T (δ ):

T (δ ) =


1 0 0
δ 0 1

−δ 2−δ 1 δ

−2δ 3−2δ 2 2δ δ 2


whose left unimodular matrix over R[δ ] is:

T−1
L (δ ) =

 1 0 0 0
2δ 2 +δ −δ 1 0
−δ 1 0 0

 .
Step 4: Then, we can freely choose J1 and J2 such that L1 and L2 defined in (10) are

stable. In this example, we take J1 =


6 0
0 12.5
8 0
0 37.5

 and J2 =


2.4 0
0 5

1.28 0
0 6

 which set

the eigenvalues of L1 as [−7.5,−5,−4,−2] and those of L2 as [−3,−2,−1.6,−0.8].
Finally we have:

P1(δ ) =


2δ 2 +δ +6 0

3δ 3 +2δ 2 +1 12.5
−δ 4−δ 2 +δ +8 −δ 2 +δ +1
−2δ 2(δ 3 +δ −1) 2δ (−δ 2 +δ +1)+37.5


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and

P2(δ ) =


2δ 2 +δ +2.4 0
3δ 3 +2δ 2 +1 5

−δ 4−δ 2 +δ +1.28 −δ 2 +δ +1
−2δ 2(δ 3 +δ −1) 2δ (−δ 2 +δ +1)+6


which yields dmax = degmaxPi = 4.

Step 5: With a prescribed positive constant σ > 4h, we can easily design an im-
pulsive fixed-time observer of type (12) to achieve a fixed-time estimation of x(t). For
the simulation, the sampling time is set as 0.0005s and the basic delay h = 0.001s. The
estimated x(t) of system (2) is depicted in Figs. 1−3 when σ = 0.3s and in Figs. 4−6
when σ = 0.5s.
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Fig. 1: x1 and its estimation x̂1 when σ = 0.3s. Fig. 2: x2 and its estimation x̂2 when σ = 0.3s.
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Fig. 3: x3 and its estimation x̂3 when σ = 0.3s. Fig. 4: x1 and its estimation x̂1 when σ = 0.5s.
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Fig. 5: x2 and its estimation x̂2 when σ = 0.5s. Fig. 6: x3 and its estimation x̂3 when σ = 0.5s.

From Figs. 1−3, we can see that trajectories of the proposed observer converge exactly
at the prescribed time σ = 0.3s to those of system (2). From Figs. 4− 6, the same
conclusion can be made for the case σ = 0.5s.

6. Conclusion

In this paper, an impulsive observer with prescribed fixed-time convergence for
linear systems with commensurate delay has been presented, which can involve the
delays both in the state and in the output. It has been shown that the proposed observer
converges in fixed time and the convergence time σ can be chosen almost arbitrary pro-
vided that σ > h×dmax. Numerical simulations are provided for an academic example
for different choices of σ in order to highlight the feasibility of the proposed method.
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