
HAL Id: hal-02057840
https://hal.science/hal-02057840

Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A parallel non-invasive mixed domain decomposition -
Implementation and applications to mechanical

assemblies
Paul Oumaziz, Pierre Gosselet, Pierre-Alain Boucard, Stéphane Guinard

To cite this version:
Paul Oumaziz, Pierre Gosselet, Pierre-Alain Boucard, Stéphane Guinard. A parallel non-invasive
mixed domain decomposition - Implementation and applications to mechanical assemblies. Finite
Elements in Analysis and Design, 2019, 156, pp.24-33. �10.1016/j.finel.2019.01.004�. �hal-02057840�

https://hal.science/hal-02057840
https://hal.archives-ouvertes.fr

A parallel non-invasive mixed domain decomposition - Implementation and

applications to mechanical assemblies

Paul Oumaziz1,2, Pierre Gosselet2, Pierre-Alain Boucard2, Stéphane Guinard3

Abstract

This paper proposes to confront a mixed domain decomposition method with industrial computations, in particular
the simulation of quasi-static assemblies with frictional contact between the parts. The method is implemented in
a non-invasive manner around an industrial finite element software. The performance of the algorithm is studied on
industrial assemblies.

1 Introduction

It is a truism to say that industrialists are eager to conduct reliable simulations of their structures and therefore they
need robust computational methods capable of handling models constituted by large amounts of degrees of freedom and
involving complex nonlinear phenomena.

Domain decomposition methods (DDM) are a natural way to distribute the computational load on several cores.5

They also offer a framework where efficient iterative solvers can be implemented. In particular recent progress made it
possible to design solvers with controlled convergence rate for linear symmetric positive definite systems for many DDM:
see for instance [1] for overlapping methods, [2] for FETI and BDD methods, [3, 4, 5] for FETI-DP and BDDC; also
multipreconditioning proved to be an efficient alternative [6] with possible application in more general contexts [7].

This paper focuses on problems involving frictionous contact between parts in small strain. Such a situation corresponds10

in particular to assemblies modeled at the scale of the connector (bolt....). For the domain decomposition simulation, a
first possibility is to somehow decouple the contact from the domain decomposition by dealing with the contact inside
subdomains, this was done in the alternate Schwarz case [8] or with the Balancing Domain Decomposition [9]. In the
view of dealing with assemblies, it seems more natural to aim at non-overlapping DDM able to deal with contact at the
interfaces between subdomains. In this context, an important body of work is constituted by the contributions of Dostal15

and co-workers around the FETI(DP) method [10, 11, 12, 13], where the contact problem is rephrased as a constrained
minimization problem dealt with a projected Krylov solver enriched by an efficient subdomain-based preconditioner and
adapted coarse space. The alternative investigated in this paper is the Latin method [14], which in the DDM language
can be viewed as a non-overlapping optimized Schwarz method [15, 16], with dedicated treatment of the interface in order
to insert complex mechanical behaviors.20

Because they involve new practices and also because they require deep modification of the source code, DDM have not
been massively adopted in commercial finite element software. In order to alleviate the latter problem, non-invasive im-
plementations have been proposed, in particular since python driving of most software is possible. These implementations
permit to demonstrate the methods on industrial problems and to exploit computational clusters, at the cost of reduced
performance compared to true HPC implementations.25

As an example, the global/local coupling [17, 18, 19, 20] brings accuracy to the method of submodeling which is very
popular amongst industrialists. It was applied as a complete solver in [21]. In fact the global/local coupling can be

1Núcleo Cient́ıfico Multidisciplinario-DI, Universidad de Talca, Camino Los Niches km1, Curicó, Chile
2LMT / ENS Cachan / CNRS / Université Paris-Saclay, 61 avenue du président Wilson, 94235 Cachan Cedex, France
3Airbus SAS, CRT/XRXF,18 rue Marius Terce, 31300 Toulouse, FRANCE

1

viewed as a particular non-overlapping Schwarz method where the Robin condition is managed by a coarse representation
of the domain [22]. This idea was exploited in [23] for the non-invasive implementation of the Latin method, the Robin
conditions being simulated through the addition of elements on the interfaces of subdomains. In [24], the extensibility of30

the non-invasive Latin method was studied by using the framework of [25].
In this paper, we propose to demonstrate the efficiency of the non-invasive Latin method of [23, 24] with semi-industrial

applications. Here semi-industrial refers to the fact that extremely fine models that would require HPC are out of the
reach of our implementation. We restrict our study to infinitesimal strain and we make use of conforming meshes. Note
that the Latin method can naturally be coupled with the mortar approach [26, 27] in order to handle non-conforming35

interfaces, see [25] for instance.
The paper is organized as follows: Section 2 presents the non-invasive Latin method; Section 3 explains the parallel

implementation; finally Section 4 illustrates the implementation with several semi-industrial simulations involving many
frictionous contact surfaces.

2 The substructured reference problem40

We consider a family of non-overlapping subdomains (ΩE)E∈[1,N] of R3 under quasi-static isotherm evolution and small
perturbation assumptions. The subdomains are assumed to be made out of isotropic linear elastic material. Classical
Lagrange conforming finite elements are used to approximate the subdomains’ displacement field. For subdomain ΩE , we
let KE be the stiffness matrix, uE be the vector of nodal displacement, fdE be the generalized forces associated to the given
loads. We suppose that the degrees of freedom submitted to Dirichlet boundary conditions are treated by elimination.45

ΩE

ΩE′

ΩE′′

fE′′E ,wE′′EfEE′′ ,wEE′′

fEE′ ,wEE′

fE′E ,wE′E fE′E′′ ,wE′E′′

fE′′E′ ,wE′′E′

ΓEE′ ΓE′E′′

ΓEE′′

∂
Ω
E
′′

E

∂
Ω
E E
′′

∂Ω
E
′

E
∂Ω E ′
E ′′

∂Ω
E
E
′ ∂Ω E ′′

E ′

Figure 1: Force and displacement fields defined on the edges of the subdomains

Subdomain ΩE interacts with its neighbor ΩE′ through the interface ΓEE′ = ∂ΩE ∩ ∂ΩE′ (Figure 1). The interface
ΓEE′ is granted its own finite element discretization, and displacements and force distributions associated with its parent
subdomains are defined: (wEE′ ,wE′E) and (fEE′ , fE′E). These fields are connected to the subdomains by trace relations
materialized by the operator NEE′ . We note E the set of all subdomains and G the set of all interfaces.

To describe complex load sequences and to handle the dependency of the solution with respect to history, a pseudo-50

time is used. Thus nodal velocities (ẇEE′ , u̇E) are introduced with dot notations. These velocities are simply linked with
displacement distributions through a backward Euler integration. If needed, the time step is indicated by a superscript.
Typically:

u̇t+∆t
E =

ut+∆t
E − utE

∆t
(1)

2

We use concatenated operators in order to easily manage many interfaces:

wE =


...

wEE′

...

 , fE =


...

fEE′
...

 , NE =


. . .

NEE′

. . .

 ,

where E′ spans all the neighbors of subdomain E

(2)

The mechanical problems to be solved on the subdomains can be written as:55

∀ΩE ∈ E , ∀t,

{
KEu

t
E = fd

t
E + NT

Ef
t
E

wt
E = NEu

t
E

(3)

The mechanical behavior of the interfaces is given by a relation of the form:

∀ΓEE′ ∈ G,


f tEE′ + f tE′E = 0, ∀t

f tEE′ ∈ bEE′
(
ẇt′

E′E − ẇt′

EE′ , t
′ 6 t;w0

E′E −w0
EE′

)
, ∀t

Initial conditions

(4)

where the first relation is the balance of forces and the second relation represents the constitutive law of the mechanical
behavior. The use of set notations for the behavior enables us to encompass most situations, among others perfect
interfaces, contact, friction [28], cohesion[29, 30].

Block notations are used to simplify the writing of all the relations. As said earlier xE represents the gathering of60

all the (xEE′)E′ . x will represent the gathering of all the (xE) defined on the subdomains, same procedure applies to
operators:

x =


...

xE
...

 , K =


. . . 0

KE

0
. . .

 , where E spans all subdomains. (5)

We introduce operators which permit to make neighboring subdomains communicate: the operator A makes sums of
interface vectors whereas the operator B makes differences:

(Af)|ΓEE′
= fEE′ + fE′E

(Bw)|ΓEE′
= wE′E −wEE′

(6)

These operators are orthogonal in the sense that ker(A) = range(BT).65

Thus, the discrete substructured problem can be written as:

∀t,


Kut = f td + NT f t Equilibrium of the subdomains

wt = Nut Trace of the subdomain displacement

f t ∈ BTb(Bẇt′ , t′ 6 t,Bw0) Interfaces’ behavior

(7)

3 The non-invasive Latin method

3.1 Principle of the Latin method

So as to solve the substructured problem we use the Latin method [14]. Two sets of interface distributions are defined :

A : (f t, ẇt)t solutions to ∀t


Kut = f td + NT f t

ẇt = Nu̇t

u̇t = (ut − ut−∆t)/∆t,+ initial condition

L : (f̂ t, ̂̇wt
)t solutions to ∀t f̂ t ∈ BTb(B ̂̇wt

, t′ 6 t,B ̂̇wt
)

(8)

3

A groups the solutions to the linear equations set on the subdomains, A is an affine space called admissible space. L is a70

manifold containing the solutions verifying the behavior of the interfaces. In general the relations defining L are point-wise
independent both in time and space.

From the initialization with s0 ∈ A, an iterative scheme is used to reach the solution at the intersection of A and L.
Partial solutions are alternatively searched in A and in L. This defines an iteration of the algorithm in two steps:

• the first step consists in searching an approximation ŝn =
(̂̇wn, f̂n

)
in L starting from an approximation sn = (wn, fn)75

in A. This stage is called local stage, it is computed by adding the relation of search direction:

fn − f̂n − k+
V

(
ẇn − ̂̇wn

)
= 0 (9)

• the second step is about finding an approximation sn+1 = (wn+1, fn+1) in A starting from an approximation

ŝn =
(̂̇wn, f̂n

)
in L. This stage is called linear stage and it is computed by adding the relation of search direction:

fn+1 − f̂n + k−V

(
ẇn+1 − ̂̇wn

)
= 0 (10)

k+
V and k−V are two operators chosen by the user. k+

V is chosen to be diagonal in order to benefit from the local properties
of the relations defining L.80

In order to ensure the convergence, a relaxation step is applied at the end of the linear stage:

sn+1 ← sn+1 + α(sn+1 − sn) (11)

with 0 < α 6 1. The iterative method is represented graphically on Figure 2, where s̃n+1 is the result of the linear stage
before relaxation.

A

L

k+
V

k−V

s0

s̃1

s1

s̃n
sn

s̃n+1

sn+1

sth

Figure 2: Latin method – (s̃ is the approximation before relaxation)

Proposition 1. The convergence of (sn+1 + sn)/2 is proved in [14] when k−V = k+
V are symmetric positive definite

operators and α < 1 for maximal monotonic behaviors b.85

Generally an indicator of error is used to quantify the energetic distance between A and L for two successive partial
solutions. This indicator is defined as follows:

η =
‖s̃n+1−ŝn‖2

k
−
V

‖s̃n+1+ŝn‖2
k
−
V

=

(
ẇn+1 − ̂̇w)T k−V

(
ẇn+1 − ̂̇w)+

(
fn+1 − f̂

)T
k−V
−1
(
fn+1 − f̂

)
(
ẇn+1 + ̂̇w)T k−V

(
ẇn+1 + ̂̇w)+

(
fn+1 + f̂

)T
k−V
−1
(
fn+1 + f̂

)
(12)

4

3.2 Non-invasive multi-scale linear stage

3.2.1 Non-invasive linear stage

When combining the linear equations (8) of A together with the linear search direction (10), it comes out that solving the90

linear stage consists in solving independent Robin problems on the subdomains:(
K + NT k

−
V

∆t
N

)
ut+∆t = f t+∆t

d + NT

(
f̂ t+∆t + k−V

̂̇wt+∆t
+

k−V
∆t

wt

)
(13)

Then compute

ẇt+∆t = Nu̇t+∆t = N(ut+∆t − ut)/∆t

f t+∆t = f̂ t+∆t + k−V

(̂̇wt+∆t
− ẇt

) (14)

The search direction leads to a modification of the stiffness operator K by NT k−V
∆tN which is a non-standard term

in industrial finite element software. In [23], we proposed a particular choice of the search direction to facilitate its
implementation. The idea is to build the Robin extra stiffness by adding a layer of elements on the interface. This layer95

of elements will be also called a sole, it is illustrated on Figure 3. The intensity of the Robin parameter is adjusted by
modifying the mechanical properties of the sole.

E1

E3

E2

Γ13

Γ12

F

(a) Example with 3 sudomains

E1

Γ13

Γ12

F

θ13

θ12

(b) Subdomain with soles

Figure 3: Example of a subdomain with its soles

3.2.2 Multi-scale approach

In order to make the method scalable, long range effects need to be propagated, this is done via a multiscale extension
[31, 32, 29]. We briefly recall the algorithm detailed in [24]. The idea is to verify a weak form of the equilibrium of interface100

forces during the linear stage. Because of Saint-Venant’s principle, a macro basis of displacements W containing rigid

5

body motions is chosen, completed with simple deformation modes as extension or shearing modes. This new condition
is written:

WTAf t+∆t = 0 (15)

and it is taken into account in the search direction through the Lagrange’s multiplier α:

f t+∆t − f̂ t+∆t + k−V

(
ẇt+∆t − ̂̇wt+∆t

)
+ k−VA

TWα = 0 (16)

Thus the problem to be solved at the linear stage consists in computing
(
ẇt+∆t, f t+∆t

)
knowing (ẇt, f t) and

(̂̇wt+∆t
, f̂ t+∆t

)
105

verifying the following system:

Kut+1 = fd + NT f t+∆t

WTAf t+∆t = 0

wt+∆t = Nut+1

f t+∆t − f̂ t+∆t + k−V

(
ẇt+∆t − ̂̇wt+∆t

)
+ k−VA

TWα = 0

ẇt+∆t =
(
wt+∆t −wt

)
/∆t

(17)

The algorithm to solve this system is fully detailed in [24], beside extra communications and matrix operations during
the initialization, it involves one extra global reduction per iteration.

3.3 Description of the local stage

Two types of interfaces are considered in our studies: perfect interfaces describing an interaction between subdomains of110

a same part, and contact interfaces describing physical interaction of subdomains of different parts. These two kinds of
interfaces lead to two specific solving.

3.3.1 Perfect interface

For the perfect interfaces the problem consists in finding
(̂̇wt+∆t

, f̂ t+∆t
)

knowing
(̂̇wt

, f̂ t
)

and
(
ẇt+∆t, f t+∆t

)
verifying

the system:115

Af̂ t+∆t = 0 Equilibrium of forces

Bŵt+∆t = 0 Continuity of displacement

f̂ t+∆t − f t+∆t − k+
V

(̂̇wt+∆t
− ẇt+∆t

)
= 0 Search direction

(18)

The solution is explicit and equal to:

̂̇wt+∆t
= AT

(
Ak+

VA
T
)−1 [

Ak+
V ẇ

t+∆t −Af t+∆t
]

f̂ t+∆t = BT
(
Bk+

V

−1
BT
)−1 [

Bk+
V

−1
f t+∆t −Bẇt+∆t

] (19)

The computation of the velocity consists in solving a problem on two assembled soles with a Neumann conditions on
the interface between them.

6

3.3.2 Contact interface

For the contact interface the problem consists in finding
(̂̇wt+∆t

, f̂ t+∆t
)

knowing
(̂̇wt

, f̂ t
)

and
(
ẇt+∆t, f t+∆t

)
verifying120

the system:
Bnŵ

t+∆t
n + jn > 0 Non interpenetration

Af̂ t+∆t = 0 Equilibirum of force

Bnf̂
t+∆t
n > 0 Positive reaction force

Bτ f̂
t+∆t
τ = 0 If frictionless contact(

Bnf̂
t+∆t
n

)T (
Bnŵ

t+∆t
n + jn

)
= 0 Signorini conditions

f̂ t+∆t − f t+∆t − k+
V

(̂̇wt+∆t
− ẇt+∆t

)
= 0 Search direction

ŵt+∆t = ŵt + ∆t ̂̇wt+∆t
, ŵ0 given Time integration

(20)

where jn is an initial gap. Choosing jn to be negative is one of the possibilities to simulate initial tension. We assume that
the displacements and forces are written in a normal/tangential basis at each node of the interface, the n and τ subscripts
refer to the normal and tangential components, respectively.

In the case of frictional contact the tangential condition Bτ f̂
t+∆t
τ = 0 is replaced by the Coulomb relations which125

separate the sticking (first line) and sliding (second line) cases:‖f̂
t+∆t
τ ‖ < µ|f̂ t+∆t

n | then Bτ ̂̇wt+∆t

τ = 0

‖f̂ t+∆t
τ ‖ = µ|f̂ t+∆t

n | then ∃λ > 0, Bτ ̂̇wt+∆t

τ = −λ
(
BτB

T
τ

)−1
Bτ f̂

t+∆t
τ

(21)

where the use of normal (non bold) type refers to node-wise quantities, and µ is Coulomb’s coefficient of friction.
It is possible to define two node-wise indicators Cn and Gτ which permit to determine the status of nodes at the

interfaces: Cn gives information about the normal status (contact); in case of contact, Gτ gives information about the
tangential status (sticking/sliding). They are computed with known quantities and once they are determined the solution130

is explicit. The details of the solutions can be found in [23].

4 Parallel implementation

4.1 General environment of the developed tools

The chosen paradigm is to develop only with tools used by our industrial partners EDF and Airbus. In particular, we
use code aster finite element software [33] and salome platform to generate and manage meshes within the MED format.135

These two piecses of software are driven by python scripts permitting to develop a generic process, for the management
of meshes, the mechanical computation and the post-processing.

In this part we describes the ideas of code-aster until the version 14. The further version may change the implemen-
tation of code-aster. The scripts are written in python with specific syntax to call the commands of code-aster. As the
source of code-aster is written in fortran mostly, it includes a so-called supervisor (Figure 4) whose goal is to make the140

communications between the python and the fortran. The memory is shared with python. However, contrary to python,
the aster objects are global in memory which lead to specific implementations that can be found in [34].

4.2 Ideas of the developed tools

The tool we developed is composed of two parts:

• Preparation: starting from a monolithic mesh given by our industrial partners, the script detects all the group145

of nodes and elements needed for the further computations and distribute the data into individual files for each
subdomain (data of the subdomain and its interfaces). If needed parts are subdivided into smaller subdomains.

7

Fortran

Supervisor

User

code-aster

Figure 4: Principle of the supervisor

• Computation: parallel implementation of the Latin method which uses as input the meshes and persistent python
objects previously created.

Remark. The recognition of the neighboring subdomains and the automatic construction of the interfaces and soles are150

crucial to have an automatic pre-processing phase. We have made the choice to detect the potential neighbors through
the common boundary nodes of the subdomains. This easily permits to construct the interfaces and the associated soles.
The automatic detection of neighbors for non-conforming interfaces is definitely not possible with that method and would
require more evolved strategies.

An XML input file permits to define options and parameters both for the method and the structure. It is used to drive155

these two parts of the tools. This implementation is summed up in Figure 5.

Global mesh
(MED format)

Substructured
or not

Preparation
of the mesh

Salome

Non-invasive
Latin

Python - code aster

Prepared mesh

connectivity between subdomain
interfaces groups
Distinct mesh for each subdomain

Results
(MED format)

by subdomain
by timestep

Data input in xml

Parameters of the structure
Parameters of the method

Figure 5: Description of the global implementation

4.3 Parallel processing

The non-invasive tool has been developed to launch parallel instances of python, each one driving a sequential version of
the finite element software code aster [33]. The parallel instances of python are synchronized by the MPI protocol through
the python package mpi4py [35]. Each MPI instance stands for a subdomain with its own interfaces. This principle is160

illustrated in Figure 6 with a simple four subdomain decomposition.
At the beginning of the computation, exchanges are required in order to assemble the coarse problem on each subdo-

main. Then each iteration of the Latin method is highly parallel and involves only one all-neighbors and one all-reduce
communications:

1. The local is decomposed in two steps:165

(a) An all-neighbor communication to exchange interface fields.

8

(b) A parallel computation to solve the local problems corresponding to its interfaces. Note that our implementation
does not fully exploit the point-wise nature of the local equations and a finer degree of parallelism could be
achieved (using one thread per interface node for instance).

2. The linear stage is decomposed in four steps:170

(a) A parallel computation on each subdomain with the Robin condition.

(b) A global reduction to determine the macro lack-of-balance.

(c) A parallel computation to solve a coarse problem and to get the macro correction to be added to the displacement
field.

Remark. In our case only sequential version of code-aster are used for each subdomain. One could think about calling175

parallel instance of code-aster for each subdomain, multi-threading or parallel solver included in code-aster would be a
next step to improve the performance.

mpi4py
sendrecv

mpi4py
sendrecv

mpi4py
sendrecv

mpi4py
sendrecv

mpi4py allreducempi4py allreduce

Figure 6: Principle of the implementation

Some results of scalability and computation time on academic test cases can be found in [24].

4.4 Automatic choice of search direction

The search direction, or in other word the Robin condition, is a parameter which strongly influences the convergence of180

the algorithm. It should represent the stiffness of the complement of the subdomain in the whole structure.
We propose a simple and automatic procedure to set this parameter for each interface. For parallel efficiency reason, our

heuristic is only based on local data readily available to the processor and it does not require communication. Our method
aims at having the interfaces develop a stiffness comparable to the subdomain’s in their normal direction. Proposing more
elaborate strategy will be the subject of future work.185

Let us thus consider one interface of one subdomain. In our non-invasive implementation, the parameter of search
direction is constructed by weighting the Young modulus of the sole whereas the Poisson coefficient is chosen to be the

9

same as for the subdomain. During the preparation step, bounding boxes of soles and subdomains are determined (see
Figure 7). Let ∆SD = [∆X,∆Y,∆Z] denote the bounding box of the subdomain, and ∆s = [∆x,∆y,∆z] the sole’s. The
mean normal to the interface is determined and denoted by n. The Young modulus of the sole Es is chosen with respect190

to the Young modulus of the subdomain ESD as follows:

Es
|∆s · n|

=
ESD

|∆SD · n|
(22)

Figure 7: Example of bounding box with the subdomain in green and the sole in orange and the mean normal of the
interface

Remark. This automatic choice of weighting of the Young modulus does not work with all configurations and sometimes
a manual choice is required. For example if the interface is circular, the mean normal is null. Moreover for warped
subdomains, the bounding box may not represent the subdomain and the stiffness may not be approximated correctly.

5 Numerical examples195

In this section, two numerical examples from industrial structures are presented. The first one corresponds to a simplified
joint of a spatial launcher under two cycles of load in order to illustrate the accumulated sliding at the frictionous interfaces.
The second one is a joint which assembles the wings to the fuselage of an Airbus aircraft. With this example we illustrate
the issue of overloaded subdomains which slow down the computation and we propose a simple load balancing strategy
by re-decomposition.200

5.1 Simplified joint of spatial launcher

The objective of this example is to illustrate the behavior of a joint composed of three bolts under two cycles of loading-
unloading. It involves 30 subdomains linked through 53 interfaces (Figure 8). The three screws are decomposed in two
parts linked with preloaded interfaces. This permits to ensure an initial state of compression between flanges. Contact
interfaces are considered in the central part of the structure whereas perfect interfaces are chosen in the rest of the205

structure.
The structure is clamped on one side and a traction load is applied on the opposite side. The load follows two cycles

as presented in Figure 9. 17 time steps are considered. The structure is discretized into 3 million degrees of freedom. All
the parameters are given in Table 1.

The evolution of the error indicator is shown in Figure 10. Even though the multiscale approach speeds up the210

convergence at the first iteration, its effect decreases very quickly. The many non-linearities of frictional contact as well
as the many timesteps slow down the convergence: more than 120 iterations are required to reach a criterion of 10−5.

10

Figure 8: Description of the joint

t

Fd

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

Fmaxd

Figure 9: Load history

Parameters Values

Young modulus E 100 GPa
Poisson ratio ν 0.3
Fmaxd 10 MPa
preload (left - middle - right) 0.3 - 0.2 - 0.4 mm
∆t 1s
dofs 3 millions

Table 1: Parameters

In Figure 11, we observe the preload of bolts at the first timestep. The screws are solicited with tensile stress whereas
compression is observed in the surrounding plates.

Von Mises stress at the timesteps t4 and t12 (when the structure is the most loaded) is represented in Figure 12. Sliding215

happens between plates and it causes shear stress in the screws, resulting in the structure being more solicited at the 12th

timestep than at the 4th.
Figure 13 presents the evolution of the longitudinal displacement at the end of the structure as a function of the load,

we observe the accumulated sliding. During the loading phase, sliding appears and remains during the unloading phase.

11

0 20 40 60 80 100 120
10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
or

in
d
ic
at
or

Figure 10: Evolution of the error indicator

Figure 11: Preload of bolts - stress σzz (MPa)

12

Figure 12: Von Mises stress (MPa) at timesteps t4 (top) and t12 (bottom).

0 2 4 6 8 10
0

0.1

0.2

0.3

Sliding after 1 cycle

Sliding after 2 cycles

Fd (MPa)

U
(m

m
)

Figure 13: Mean longitudinal displacement at the end of the structure

5.2 Airbus flange220

5.2.1 Initial substructuring

This case permits to illustrate the feasibility of a resubstructuring in order to balance the size of subdomains. The structure
was provided by Airbus. It represents the joint between the wings and the fuselage of an aircraft. The whole structure is

13

composed of 47 subdomains and 89 interfaces, mostly frictionous. 10 bolts are considered. The structure is presented in
Figure 14. It is clamped at the bottom and at the right. A traction load is imposed on the left. The screws and nuts are225

in titanium, whereas the rest of the structure is in aluminum. The load consists in one loading-unloading cycle discretized
in 9 timesteps. All parameters are given in Table 2.

70 iterations are required to reach an error indicator around 10−6. We present in Figure 15 the stress of Von Mises for
some timesteps. Once more, an accumulated sliding can be observed.

Figure 14: Description of subdomains

5.2.2 Re-substructuring of subdomains230

Table 3 shows the number of nodes and the number of connected interfaces of the biggest subdomains. The biggest one
represents almost a third of the whole structure and a quarter of the interfaces are connected to it. Thus the computation
time is directly driven by this subdomain. For this computation, the total time is about 121.800 seconds. Therefore
the objective is to re-decompose the large subdomains to reduce the number of degrees of freedom in each subdomain
and also the number of interfaces per subdomain. The idea is to have new subdomains with as many dof as the smaller235

subdomains or to decompose the largest subdomains proportionally to their size in order to avoid the creation of too many
subdomains. Thus the re-substructuring is limited by a user parameter M : the biggest subdomain is decomposed in at
most M new ones, other subdomains are decomposed in proportion. This decomposition is realized through an existing
function in code aster based on SCOTCH [36] whose only parameter is the number of subdomains.

In our case, we choose M = 10. The new structure is composed of 69 subdomains (Figure 16). With this new240

decomposition, we also ran 70 iterations and compared the CPU time. It permitted to reduce the CPU time to 18.450
seconds contrary to 121.800 seconds before, representing a gain of 6.6 from the initial substructuring. Figure 17 shows the

14

Parameters Values

Ealu 70 GPa
νalu 0.3
Etitane 110 GPa
νtitane 0.3
Fmaxd 5 MPa
Preload 0.005 mm
Initial gap 0.005 mm
∆t 1s
dofs 300,000

Table 2: Parameters

(a) Timestep t2 (b) Timestep t4

(c) Timestep t6 (d) Timestep t8

Figure 15: Stress of Von Mises (Pa) and deformed shape (×20)

comparison of the error indicator between the two substructuring. The convergence of the first iterations are relatively
similar. The multiscale approach grants scalability to the method. However the effect of the multiscale extension is
decreased by the numerous non-linearities, and differences appear in term of convergence. The new substructuring seems245

15

Biggest subdomains Number of nodes Connected interfaces

1st 29,107 23
2nd 17,789 7
3rd 14,530 6
4th 11,030 10
5th 10,322 12
6th 6,861 6
7th 2,072 4

Table 3: Size of the biggest subdomains

to reach a plateau after 20 iterations. This is simply explained by the particular substructuring provided automatically
by SCOTCH. For example in Figure 18, we show the new decomposition of the subdomain S0 into 10 new substructures.
One can remark that some subdomains are non-connected (composed of distinct parts).

The automatic weighting of the Young modulus cannot be efficient on such subdomains as the bounding box is not
representative of the subdomain.250

Therefore, we decompose these problematic subdomains into new subdomains. With this, we obtain a decomposition
of the whole structure into 72 subdomains. Such a decomposition is much more adapted to the automatic weighting of
the search direction and we expect a better convergence. Therefore, the error indicator no longer reaches a plateau and
the convergence follows the initial one but 6.6 times faster (Figure 17)

Figure 16: Re-decomposition of the structure

6 Conclusion255

In this paper we presented a multiscale non-invasive implementation of a mixed domain decomposition method. This
implementation has been confronted to industrial structures with quasi-static and small strain assumptions, with many
frictional contact interfaces.

16

0 10 20 30 40 50 60 70
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iterations

E
rr
or

in
d
ic
at
or

47 subdomains 69 subdomains 72 subdomains

Figure 17: Comparison of the error indicator

Figure 18: Decomposition of the subdomain S0

The non-invasive implementation of the mixed conditions is realized by adding of a layer of elements at the interface.
We briefly reminded the non-invasive multiscale approach detailed in [24] and the treatment of frictional contact [28, 23].260

Moreover we presented an automatic setting of the Robin parameter which is suited for non warped and homogeneous
subdomains. Although this permits to avoid a manual parametrization of all search directions, we exhibited some limita-

17

tions for certain shapes of subdomain. We also confronted the method to semi-industrial cases involving bolted assemblies
with many frictional contact interfaces.

The next step will be to investigate the weighting of search direction in the case of heterogeneous materials in subdo-265

mains. The choice of only one Young modulus may not be efficient enough to ensure robust convergence. This needs also
to be coupled with spectral coarse spaces such as proposed in GenEO approach [1].

Acknowledgments

We thank Airbus and EDF for their financial supports and technical help with code-aster. We also thank the project
ECOS-CONICYT C17E04 for their financial support.270

References

[1] N. Spillane, V. Dolean, P. Hauret, F. Nataf, C. Pechstein, R. Scheichl, Abstract robust coarse spaces for sys-
tems of PDEs via generalized eigenproblems in the overlaps, Numer. Math. 126 (4) (2014) 741–770. doi:

10.1007/s00211-013-0576-y.

[2] N. Spillane, D. J. Rixen, Automatic spectral coarse spaces for robust FETI and BDD algorithms, International275

Journal for Numerical Methods in Engineering 95 (11) (2013) 953–990. doi:10.1002/nme.4534.

[3] A. Klawonn, P. Radtke, O. Rheinbach, Adaptive Coarse Spaces for BDDC with a Transformation of Basis, in: Domain
Decomposition Methods in Science and Engineering XXII, Vol. 104 of Lecture Notes in Computational Science and
Engineering, Springer International Publishing, Cham, 2016, pp. 301–309. doi:10.1007/978-3-319-18827-0_29.

[4] A. Klawonn, M. Kühn, O. Rheinbach, Adaptive coarse spaces for FETI-DP in three dimensions, SIAM J. Sci. Comput.280

38 (5) (2016) A2880–A2911. doi:10.1137/15M1049610.
URL http://dx.doi.org/10.1137/15M1049610

[5] L. Beirão da Veiga, L. F. Pavarino, S. Scacchi, O. B. Widlund, S. Zampini, Isogeometric BDDC preconditioners with
deluxe scaling, SIAM J. Sci. Comput. 36 (3) (2014) A1118–A1139. doi:10.1137/130917399.
URL http://dx.doi.org/10.1137/130917399285

[6] C. Bovet, A. Parret-Fréaud, N. Spillane, P. Gosselet, Adaptive multipreconditioned FETI: scalability results and
robustness assessment, Computers & Structures 193 (2017) 1–20. doi:10.1016/j.compstruc.2017.07.010.

[7] C. Bovet, P. Gosselet, N. Spillane, Multipreconditioning for nonsymmetric problems: the case of orthomin and biCG,
Comptes rendus de l’académie des sciences (math.) 355 (3) (2017) 354–358. doi:10.1016/j.crma.2017.01.010.

[8] L. Badea, F. Lebon, Schwarz method for dual contact problems, Computational and Applied Mathematics 36 (1)290

(2017) 719–731. doi:10.1007/s40314-015-0255-y.

[9] M. Barboteu, P. Alart, M. Vidrascu, A domain decomposition strategy for nonclassical frictional multi-contact prob-
lems, Computer Methods in Applied Mechanics and Engineering 190 (2001) 4785–4803.

[10] Z. Dostál, D. Horák, Scalability and FETI based algorithm for large discretized variational inequalities, Mathematics
and Computers in Simulation 61 (3) (2003) 347–357. doi:10.1016/S0378-4754(02)00088-5.295

[11] Z. Dostál, D. Horák, Scalable FETI with optimal dual penalty for a variational inequality, Numerical linear algebra
with applications 11 (56) (2004) 455–472.

[12] Z. Dostál, D. Horák, R. Kučera, V. Vondrák, J. Haslinger, J. Dobiáš, S. Pták, FETI based algorithms for contact
problems: scalability, large displacements and 3D Coulomb friction, Computer Methods in Applied Mechanics and
Engineering 194 (2-5) (2005) 395–409. doi:10.1016/j.cma.2004.05.015.300

18

http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1007/s00211-013-0576-y
http://dx.doi.org/10.1002/nme.4534
http://dx.doi.org/10.1007/978-3-319-18827-0_29
http://dx.doi.org/10.1137/15M1049610
http://dx.doi.org/10.1137/15M1049610
http://dx.doi.org/10.1137/15M1049610
http://dx.doi.org/10.1137/130917399
http://dx.doi.org/10.1137/130917399
http://dx.doi.org/10.1137/130917399
http://dx.doi.org/10.1137/130917399
http://dx.doi.org/10.1137/130917399
http://dx.doi.org/10.1016/j.compstruc.2017.07.010
http://dx.doi.org/10.1016/j.crma.2017.01.010
http://dx.doi.org/10.1007/s40314-015-0255-y
http://dx.doi.org/10.1016/S0378-4754(02)00088-5
http://dx.doi.org/10.1016/j.cma.2004.05.015

[13] Z. Dostál, T. Kozubek, T. Brzobohaty, A. Markopoulos, O. Vlach, Scalable TFETI with optional preconditioning by
conjugate projector for transient frictionless contact problems of elasticity, Computer Methods in Applied Mechanics
and Engineering 247-248 (2012) 37–50. doi:10.1016/j.cma.2012.08.003.

[14] P. Ladevèze, Nonlinear computational structural mechanics: new approaches and non-incremental methods of calcu-
lation, Springer-Verlag, New-York, 1999. doi:10.1007/978-1-4612-1432-8.305

[15] P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in: Third international
symposium on domain decomposition methods for partial differential equations, Vol. 6, SIAM Philadelphia, PA, 1990,
pp. 202–223.

[16] M. J. Gander, Optimized Schwarz Methods, SIAM Review 44 (2) (2006) 699–731.

[17] L. Gendre, O. Allix, P. Gosselet, Non-intrusive and exact global/local techniques for structural problems with local310

plasticity, Computational Mechanics 44 (2009) 233–245. doi:10.1007/s00466-009-0372-9.

[18] J.-C. Passieux, J. Réthoré, A. Gravouil, M.-C. Baietto, Local/global non-intrusive crack propagation simulation using
a multigrid x-fem solver, Computational Mechanics 52 (6) (2013) 1381–1393.

[19] G. Guguin, O. Allix, P. Gosselet, S. Guinard, Nonintrusive coupling of 3D and 2D laminated composite models based
on finite element 3D recovery, International Journal for Numerical Methods in Engineering 98 (5) (2014) 324–343.315

doi:10.1002/nme.

[20] G. Guguin, O. Allix, P. Gosselet, S. Guinard, On the computation of plate assemblies using realistic 3D joint model:
a non-intrusive approach, Advanced Modeling and Simulation in Engineering Sciences 3 (1) (2016) 16. doi:10.1186/
s40323-016-0069-5.

[21] M. Duval, J. C. Passieux, M. Salaün, S. Guinard, Non-intrusive Coupling: Recent Advances and Scalable Nonlinear320

Domain Decomposition, Archives of Computational Methods in Engineering 23 (1) (2016) 17–38. doi:10.1007/

s11831-014-9132-x.

[22] P. Gosselet, M. Blanchard, O. Allix, G. Guguin, Non-invasive global-local coupling as a Schwarz domain decomposition
method: acceleration and generalization, Advanced Modeling and Simulation in Engineering Sciences 5 (4). doi:

10.1186/s40323-018-0097-4.325

[23] P. Oumaziz, P. Gosselet, P.-A. Boucard, S. Guinard, A non-invasive implementation of a mixed domain de-
composition method for frictional contact problems, Computational Mechanics 60 (5) (2017) 797–812. doi:

10.1007/s00466-017-1444-x.

[24] P. Oumaziz, P. Gosselet, P. A. Boucard, M. Abbas, A parallel noninvasive multiscale strategy for a mixed domain
decomposition method with frictional contact, Int. J. Numer. Methods Eng. 115 (8) (2018) 893–912. doi:10.1002/330

nme.5830.

[25] P. Ladevèze, A. Nouy, On a multiscale computational strategy with time and space homogenization for structural
mechanics, Computer Methods in Applied Mechanics and Engineering 192 (28-30) (2003) 3061–3087. doi:10.1016/
S0045-7825(03)00341-4.

[26] C. Bernardi, Y. Maday, A. T. Patera, Domain Decomposition by the Mortar Element Method, Springer Netherlands,335

Dordrecht, 1993, pp. 269–286. doi:10.1007/978-94-011-1810-1_17.
URL https://doi.org/10.1007/978-94-011-1810-1_17

[27] C. Lacour, Y. Maday, Two different approaches for matching nonconforming grids : the mortar element method and
the FETI method, BIT Numer. Math. 37 (3) (1997) 720–738. doi:10.1007/BF02510249.
URL link.springer.com/article/10.1007/BF02510249https://doi.org/10.1007/BF02510249340

[28] C. Blanze, L. Champaney, J.-Y. Cognard, P. Ladevèze, A modular approach to structure assembly computations:
application to contact problems, Engineering Computations 13 (1) (1996) 15–32. doi:10.1108/02644409610110976.

19

http://dx.doi.org/10.1016/j.cma.2012.08.003
http://dx.doi.org/10.1007/978-1-4612-1432-8
http://dx.doi.org/10.1007/s00466-009-0372-9
http://dx.doi.org/10.1002/nme
http://dx.doi.org/10.1186/s40323-016-0069-5
http://dx.doi.org/10.1186/s40323-016-0069-5
http://dx.doi.org/10.1186/s40323-016-0069-5
http://dx.doi.org/10.1007/s11831-014-9132-x
http://dx.doi.org/10.1007/s11831-014-9132-x
http://dx.doi.org/10.1007/s11831-014-9132-x
http://dx.doi.org/10.1186/s40323-018-0097-4
http://dx.doi.org/10.1186/s40323-018-0097-4
http://dx.doi.org/10.1186/s40323-018-0097-4
http://dx.doi.org/10.1007/s00466-017-1444-x
http://dx.doi.org/10.1007/s00466-017-1444-x
http://dx.doi.org/10.1007/s00466-017-1444-x
http://dx.doi.org/10.1002/nme.5830
http://dx.doi.org/10.1002/nme.5830
http://dx.doi.org/10.1002/nme.5830
http://dx.doi.org/10.1016/S0045-7825(03)00341-4
http://dx.doi.org/10.1016/S0045-7825(03)00341-4
http://dx.doi.org/10.1016/S0045-7825(03)00341-4
https://doi.org/10.1007/978-94-011-1810-1_17
http://dx.doi.org/10.1007/978-94-011-1810-1_17
https://doi.org/10.1007/978-94-011-1810-1_17
link.springer.com/article/10.1007/BF02510249 https://doi.org/10.1007/BF02510249
link.springer.com/article/10.1007/BF02510249 https://doi.org/10.1007/BF02510249
link.springer.com/article/10.1007/BF02510249 https://doi.org/10.1007/BF02510249
http://dx.doi.org/10.1007/BF02510249
link.springer.com/article/10.1007/BF02510249 https://doi.org/10.1007/BF02510249
http://dx.doi.org/10.1108/02644409610110976

[29] P. Kerfriden, O. Allix, P. Gosselet, A three-scale domain decomposition method for the 3D analysis of debonding in
laminates, Computational Mechanics 44 (2009) 343–362.

[30] K. Saavedra, O. Allix, P. Gosselet, On a multiscale strategy and its optimization for the simulation of combined345

delamination and buckling, Int. J. Numer. Methods Eng. 91 (7) (2012) 772–798. doi:10.1002/nme.4305.
URL http://doi.wiley.com/10.1002/nme.4305

[31] D. Dureisseix, Une Approche Multi-échelles pour des Calculs de Structures sur Ordinateurs à Architecture Parallèle,
Ph.D. thesis, Ecole Normale Supérieure de Cachan (1997).

[32] P. Ladevèze, O. Loiseau, D. Dureisseix, A micro–macro and parallel computational strategy for highly heterogeneous350

structures, International Journal for Numerical Methods in Engineering 52 (12) (2001) 121–138.

[33] EDF R&D, Code-aster, www.code-aster.org.

[34] P. Oumaziz, Une méthode de décomposition de domaine mixte non-intrusive pour le calcul parallèle d’assemblages,
Ph.D. thesis, Université Paris-Saclay - ENS Paris-Saclay (2017).
URL https://www.theses.fr/2017SACLN030355

[35] L. Dalćın, R. Paz, M. Storti, J. D’Eĺıa, MPI for Python: Performance improvements and MPI-2 extensions, J. Parallel
Distrib. Comput. 68 (5) (2008) 655–662. doi:10.1016/j.jpdc.2007.09.005.

[36] F. Pellegrini, J. Roman, Scotch: A software package for static mapping by dual recursive bipartitioning of process
and architecture graphs, in: H. Liddell, A. Colbrook, B. Hertzberger, P. Sloot (Eds.), High-Performance Computing
and Networking, Springer Berlin Heidelberg, Berlin, Heidelberg, 1996, pp. 493–498.360

20

http://doi.wiley.com/10.1002/nme.4305
http://doi.wiley.com/10.1002/nme.4305
http://doi.wiley.com/10.1002/nme.4305
http://dx.doi.org/10.1002/nme.4305
http://doi.wiley.com/10.1002/nme.4305
www.code-aster.org
https://www.theses.fr/2017SACLN030
https://www.theses.fr/2017SACLN030
http://dx.doi.org/10.1016/j.jpdc.2007.09.005

	Introduction
	The substructured reference problem
	The non-invasive Latin method
	Principle of the Latin method
	Non-invasive multi-scale linear stage
	Non-invasive linear stage
	Multi-scale approach

	Description of the local stage
	Perfect interface
	Contact interface

	Parallel implementation
	General environment of the developed tools
	Ideas of the developed tools
	Parallel processing
	Automatic choice of search direction

	Numerical examples
	Simplified joint of spatial launcher
	Airbus flange
	Initial substructuring
	Re-substructuring of subdomains

	Conclusion

