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Abstract

We introduce a model designed to account for the influence of a line with
fast diffusion – such as a road or another transport network – on the dynamics
of a population in an ecological niche. This model consists of a system of
coupled reaction-diffusion equations set on domains with different dimensions
(line / plane). We first show that, in a stationary climate, the presence of the
line is always deleterious and can even lead the population to extinction. Next,
we consider the case where the niche is subject to a displacement, representing
the effect of a climate change or of seasonal variation of resources. We find that
in such case the line with fast diffusion can help the population to persist. We
also study several qualitative properties of this system. The analysis is based
on a notion of generalized principal eigenvalue developed and studied by the
authors in [5].

1 Setting of the problem and main results

1.1 Introduction

It has long been known that the spreading of invasive species can be enhanced by
human transportations. This effect has become more pervasive because of the global-
ization of trade and transport. It has led to the introduction of some species very far
from their originating habitat. This was the case for instance for the “tiger mosquito”,
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Aedes Albopictus. Originating from south-east Asia, eggs of this mosquito were intro-
duced in several places around the world, mostly via shipments of used tires, see [17].
Though the tiger mosquito has rather low active dispersal capabilities, these long-
distance jumps are not the only dispersion mechanisms involved in its spreading.
Recently, there has been evidence of passive dispersal of adult tiger mosquitoes by
cars, at much smaller scales, leading to the colonizations of new territories along road
networks, see [14, 24].

Other kind of networks with fast transportation appear to help the dispersal of bi-
ological entities. For instance, rivers can accelerate the spreading of plant pathogens,
cf. [20]. It has also been observed that populations of wolves in the Western Cana-
dian Forest move and concentrate along seismic lines (paths traced in forests by oil
companies for testing of oil reservoirs), cf. [18, 19]. In a different register, we men-
tion that the road network is known to have a driving effect on the spreading of
epidemics. The “black death” plague, for instance, spread first along the silk road
and then spread along the main commercial roads in Europe, cf. [30].

All these facts suggest that networks with fast diffusion (roads, rivers, seismic
lines...) are important factors to take into account in the study of the spreading of
species. A mathematical formulation of a model accounting for this phenomenon was
introduced in [7] by the first and third author, in collaboration with J.-M. Roquejof-
fre. The width of the lines with fast diffusion being much smaller than the natural
scale of the problem, the model introduced in [7] consists in a system of coupled
reaction-diffusion equations set on domains of different dimensions, namely a line
and the plane or half-plane. An important feature is that it is homogeneous, in the
sense that the environment does not change from one place to another.

This “homogeneity” hypothesis does not hold in several situations. For instance,
many observations suggest that the spreading of invasive species can happen only
when the environment is “favorable enough”. Considering again the tiger mosquito,
the climate is known to limit its range of expansion. In America, the tiger mosquito
has reached its northernmost boundary in New Jersey, southern New York and Penn-
sylvania. It is believed that cold temperatures are responsible for stopping its north-
ward progression. This means that the ecological niche of the tiger mosquito is limited
by the climate conditions. In this paper, we call an ecological niche a portion of the
space where a population can reproduce, surrounded by an unfavorable domain, lethal
for the population. From a biological perspective, the niche can be characterized by
a suitable temperature range, or by a localization of resources, for instance.

An important feature of an ecological niche is that it can move as time goes by.
For instance, global warming raising the temperature to the north of the territory
occupied by the tiger mosquito, leads to a displacement of its ecological niche. This
should entail the further spreading of the mosquito into places that were unaccessible
before, see [28]. The displacement of the ecological niche could also result from sea-
sonal variation of resources. A.B. Potapov and M.A. Lewis [27], and the first author
of this paper together with O. Diekmann, P. A. Nagelkerke and C. J. Zegeling [4]
have introduced a model designed to describe the evolution of a population facing a
shifting climate. We review some of their results in the next section.
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In the present paper, we introduce and study a model of population dynamics
which takes into account both these phenomena: it combines a line with fast diffusion
and an ecological niche, possibly moving in time, as a consequence for instance of a
climate change. Consistently with the existing literature on the topic, we will refer
in the sequel to the line with fast diffusion as the “road” and to the rest of the
environment as “the field”. The two phenomena we consider are in some sense in
competition: the road enhances the diffusion of the species, while the ecological niche
confines its spreading. Two questions naturally arise.

Question 1. Does the presence of the road help or, on the contrary, inhibit the
persistence of the species living in an ecological niche?

Question 2. What is the effect of a moving niche?

1.2 The model

The goal of this paper is to investigate these questions. We consider a two dimensional
model, where the road is the one-dimensional line R× {0} and the field is the upper
half-plane R × R

+. Let us mention that we can consider as well a field given by
the whole plane. This does not change the results presented here, as we explain in
Section 2.2 below. However, the notations become somewhat cumbersome. We refer
to [5], where road-field systems on the whole plane are considered.

As in [7], we use two distinct functions to represent the densities of the population
on the road and in the field respectively: u(t, x) is the density on the road at time t
and point (x, 0), while v(t, x, y) is the density of population in the field at time t and
point (x, y) ∈ R× R

+.
In the field, we assume that the population is subject to diffusion, and also to

reaction, accounting for reproduction and mortality. The presence of the ecologi-
cal niche is reflected by an heterogeneous reaction term which is negative outside a
bounded set. For part of our study, we also allow the niche to move with constant
speed c ∈ R. On the road, the population is only subject to diffusion. The diffusions
in the field and on the road are constant but a priori different. Moreover, there are
exchanges between the road and the field: the population can leave the road to go
into the field and can enter the road from the field with some (a priori different)
probabilities.

Combining these definitions and effects, our system writes:










∂tu−D∂xxu = νv|y=0 − µu, t > 0, x ∈ R,

∂tv − d∆v = f(x− ct, y, v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ R.

(1.1)

The first equation accounts for the dynamic on the road, the second for the dynamic
in the field, and the third for the exchanges between the field and the road. Note
that the term νv|y=0 − µu represents the balance of the exchange between the road
and the field (gained by the road and lost by the field). Unless otherwise specified,
we consider classical solutions when dealing with the parabolic problem (1.1). In the
system (1.1), D, d, µ, ν are strictly positive constants and c is a real number. Without
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loss of generality, we consider only the case c ≥ 0, that is, the niche is moving to the
right. The nonlinear term f depends on the variable x − ct. This implies that the
spatial heterogeneities are shifted with speed c in the direction of the road. We will
first consider the case c = 0 that is, when there is no shift.

Throughout the paper, besides some regularity hypotheses (see Section 1.4) we
assume that f(x, y, v) vanishes at v = 0 (no reproduction occurs if there are no
individuals) and that the environment has a maximal carrying capacity:

∃S > 0 such that f(x, y, v) < 0 for all v ≥ S, (x, y) ∈ R× (0,+∞). (1.2)

We then assume that the per capita net growth rate is a decreasing function of the
size of the population, that is,

v 7→ f(x, y, v)

v
is strictly decreasing for v ≥ 0, (x, y) ∈ R× [0,+∞). (1.3)

In particular, f satisfies the Fisher-KPP hypothesis: f(x, y, v) ≤ fv(x, y, 0)v, for
v ≥ 0.

Last, we assume that the ecological niche is bounded :

lim sup
|(x,y)|→+∞

fv(x, y, 0) < 0. (1.4)

An example of a nonlinearity satisfying the above assumptions is f(x, y, v) =
ζ(x, y)v − v2, with lim sup|(x,y)|→+∞ ζ(x, y) < 0.

To address Questions 1 and 2, we will compare the situation “with the road” with
the situation “without the road”. When there is no road, the individuals in the field
who reach the boundary R × {0} bounce back in the field instead of entering the
road. In other terms, removing the road from system (1.1) leads to the Neumann
boundary problem

{

∂tv − d∆v = f(x− ct, y, v), t > 0, (x, y) ∈ R× R
+,

∂yv|y=0 = 0, t > 0, x ∈ R.
(1.5)

By a simple reflection argument, it is readily seen that the dynamical properties
of this system are the same as for the problem in the whole plane, as explained in
Section 2.2 below.

In the sequel, we call (1.1) the system “with the road”, while (1.5) is called the
system “without the road”. Problem (1.5) describes the evolution of a population
subject to a climate change only. In the next section, we recall the basic facts on this
model.

Questions 1 and 2 translate in terms of the comparative dynamics of (1.1)
and (1.5): we will see that, depending on the parameters, the solutions of these
systems either asymptotically stabilize to a positive steady state, in which case the
population persists, or vanish, meaning that the population goes extinct. Therefore,
we will compare here the conditions under which one or the other of these scenarios
occurs, for systems (1.1) and (1.5).
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1.3 Related models and previous results

We present in this section some background about reaction-diffusion equations as well
as the system from which (1.1) is originated. These results will be used in the sequel.

Consider first the classical reaction-diffusion equation introduced by R. A.
Fisher [15] and A. N. Kolmogorov, I. G. Petrovski and N. S. Piskunov [21]:

∂tv − d∆v = f(v), t > 0, x ∈ R
N , (1.6)

with d > 0, f(0) = f(1) = 0, f(v) > 0 for v ∈ (0, 1) and f(v) ≤ f ′(0)v for
v ∈ [0, 1]. The archetypical example is the logistic nonlinearity f(v) = v(1 − v).
Under these conditions, we refer to (1.6) as the Fisher-KPP equation. It is shown in
[1] that invasion occurs for any nonnegative and not identically equal to zero initial
datum. That is, any solution v arising from such an initial datum converges to 1 as t
goes to +∞, locally uniformly in space. Moreover, if the initial datum has compact
support, one can quantify this phenomenon by defining the speed of invasion as a
value cKPP > 0 such that:

∀ c > cKPP , sup
|x|≥ct

v(t, x) −→
t→+∞

0,

and
∀ c < cKPP , sup

|x|≤ct

|v(t, x)− 1| −→
t→+∞

0.

The speed of invasion can be explicitly computed in this case: cKPP = 2
√

df ′(0).

Building on equation (1.6), Potapov and Lewis [27] and H. Berestycki, O. Diek-
mann, C. J. Nagelkerke and P. A. Zegeling [4] proposed a model describing the effect
of a climate change on a population in dimension 1. H. Berestycki and L. Rossi
in [10] have further studied this model in higher dimensions and under more general
hypotheses . It consists in the following reaction-diffusion equation

∂tv − d∆v = f(x− ct, y, v), t > 0, (x, y) ∈ R
2, (1.7)

with f satisfying the same hypotheses (1.3) and (1.4) extended to the whole plane.
The favorable zone moves with constant speed c in the x-direction. Let us mention
that, if the nonlinearity f is even with respect to the vertical variable, i.e., if f(·, y, ·) =
f(·,−y, ·) for every y ∈ R, then equation (1.7) is equivalent to the problem (1.5)
“without the road”, at least for solutions which are even in the variable y. It turns
out that the results of [10] hold true for such problem, as we explain in details in
Section 2.2 below.

In the frame moving with the favorable zone, (1.7) rewrites

∂tv − d∆v − c∂xv = f(x, y, v), t > 0, (x, y) ∈ R
2. (1.8)

The dependance of the nonlinear term in t disappears and is replaced by a drift-term.
From a modeling point of view, a drift term can also describe a stream or a wind, or
any such transport. Intuitively, the faster the wind, the harder it would be for the
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population to stay in the favorable zone (that does not move in this frame). Hence,
the faster the favorable zone moves, the harder it should be for the population to
keep track with it. This intuition is made rigorous in [27, 4, 10], where the authors
prove the following (for x ∈ R, we write [x]+ := max{x, 0}).

Proposition 1.1 ([10]). There exists cN ≥ 0 such that

(i) If 0 ≤ c < cN , there is a unique bounded positive stationary solution of (1.8),
and any solution arising from a non-negative, not identically equal to zero,
bounded initial datum converges to this stationary solution as t goes to +∞.

(ii) If c ≥ cN , there is no bounded positive stationary solution of (1.8) and any
solution arising from a non-negative, not identically equal to zero initial datum
converges to zero uniformly as t goes to +∞.

Our system (1.1) is also inspired by the road-field model, introduced by two of the
authors with J.-M. Roquejoffre in [7]. They studied the influence of a line with fast
diffusion on a population in an environment governed by a homogeneous Fisher-KPP
equation. Their model reads











∂tu−D∂xxu = νv|y=0 − µu, t > 0, x ∈ R,

∂tv − d∆v = f(v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ R.

(1.9)

The novelty in our system (1.1) with respect to system (1.9) is that we allow the
nonlinearity to depend on space and time variables. The main result of [7] can be
summarized as follows.

Proposition 1.2 ([7, Theorem 1.1]). Invasion occurs in the direction of the road for
system (1.9) with a speed cH . That is, for any solution (u, v) of (1.9) arising from
a compactly supported non-negative not identically equal to zero initial datum, there
holds

∀h > 0, ∀c < cH , sup
|x|≤ct
|y|≤h

|v(t, x, y)− 1| −→
t→+∞

0, sup
|x|≤ct

∣

∣

∣

∣

u(t, x)− ν

µ

∣

∣

∣

∣

−→
t→+∞

0,

and
∀c > cH , sup

|(x,y)|≥ct

v(t, x, y) −→
t→+∞

0, sup
|x|≥ct

u(t, x) −→
t→+∞

0.

Moreover, cH ≥ cKPP and

cH > cKPP if and only if D > 2d.

Recall that cKPP = 2d
√

f ′(0) is the speed of invasion for (1.6), that is, in the
absence of a road. Hence, this result means that the speed of invasion in the direction
of the road is enhanced, provided the diffusion on the roadD is large enough compared
to the diffusion in the field d.
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Several works have subsequently extended model (1.9) in several ways. The ar-
ticle [8] studies the influence of drift terms and mortality on the road. In a further
paper [9], H. Berestycki, J.-M. Roquejoffre and L. Rossi [9] compute the spreading
speed in all directions of the field. The paper [16] treats the case where the exchanges
coefficients µ, ν are not constant but periodic in x. The articles [26, 25] study non-
local exchanges and [12] considers a combustion nonlinearity instead of the KPP one
together with other aspects of the problem. The articles [2, 3] study the effect of
non-local diffusion. Different geometric situations are considered in [29, 13]. The
first one treats the case where the field is a cylinder with its boundary playing the
role of the road, and the second one studies the case where the road is curved.

1.4 Main results

We assume in the whole paper that the nonlinearity f is globally Lipschitz-continuous
and that v 7→ f(x, y, v) is of class C1 in a neighborhood of 0, uniformly in (x, y). The
hypotheses (1.2), (1.3) and (1.4) will also be understood to hold throughout the whole
paper without further mention. For notational simplicity, we define

m(x, y) := fv(x, y, 0).

This is a bounded function on R× R
+.

As in the case of the climate change model (1.7), it is natural to work in the frame
moving along with the forced shift. There, the system “with the road” (1.1) rewrites







∂tu−D∂xxu− c∂xu = νv|y=0 − µu, t > 0, x ∈ R,

∂tv − d∆v − c∂xv = f(x, y, v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ R.

(1.10)

Likewise, in the moving frame the system “without the road” (1.5) takes the form:

{

∂tv − d∆v − c∂xv = f(x, y, v), t > 0, (x, y) ∈ R× R
+,

−∂yv|y=0 = 0, t > 0, x ∈ R.
(1.11)

In this paper we investigate the long-time behavior of solutions of (1.10) in comparison
with (1.11). We will derive a dichotomy concerning two opposite scenarios: extinction
and persistence.

Definition 1.3. For the systems (1.10) or (1.11), we say that

(i) extinction occurs if every solution arising from a non-negative compactly sup-
ported initial datum converges uniformly to zero as t goes to +∞;

(ii) persistence occurs if every solution arising from a non-negative not identically
equal to zero compactly supported initial datum converges locally uniformly to
a positive stationary solution as t goes to +∞.
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We will show that the stationary solution, when it exists, takes the form of a
traveling pulse. In the original frame, it decays at infinity, due to the assumption (1.4).

In the Fisher-KPP setting considered in this paper, it is natural to expect the
phenomena of extinction and persistence to be characterized by the stability of the
null state (0, 0), i.e., by the sign of the smallest eigenvalue λ of the linearization of
the system (1.10) around (u, v) = (0, 0):







−D∂xxφ− c∂xφ −[νψ|y=0 − µφ] = λφ, x ∈ R,

−d∆ψ − c∂xψ −m(x, y)ψ = λψ, (x, y) ∈ R× R
+,

−d∂yψ|y=0 = µφ− νψ|y=0, x ∈ R.

(1.12)

The smallest eigenvalue of an operator, when associated with a positive eigenfunction,
is called the principal eigenvalue. When dealing with operators that satisfy some
compactness and monotonicity properties, the existence of the principal eigenvalue
can be deduced from the Krein-Rutman theorem, see [22]. However, the system (1.12)
is set on an unbounded domain. Hence, the Krein-Rutman theorem does not directly
apply. Therefore, we make use in this paper of a notion of generalized principal
eigenvalue, in the spirit of the one introduced by H. Berestycki, L. Nirenberg and
S. Varadhan [6] to deal with elliptic operators on non-smooth bounded domains
under Dirichlet conditions. The properties of this notion have been later extended by
H. Berestycki and L. Rossi [11] to unbounded domains. The authors of the present
paper introduced a notion of generalized principal eigenvalue adapted for road-field
systems in [5], that we will use here.

In the sequel, λ1 ∈ R denotes the generalized principal eigenvalue of (1.12). Its
precise definition is given in (2.15) below and we also recall in Section 2 its relevant
properties. Our first result states that indeed the sign of λ1 characterizes the long-time
behavior of (1.10). Namely, there is a dichotomy between persistence and extinction
given in Definition 1.3, that is completely determined by the sign of λ1.

Theorem 1.4. Let λ1 be the generalized principal eigenvalue of system (1.12).

(i) If λ1 < 0, system (1.10) admits a unique positive bounded stationary solution
and there is persistence.

(ii) If λ1 ≥ 0, system (1.10) does not admit any positive stationary solution and
there is extinction.

A result analogous to Theorem 1.4 holds true for the system without the
road (1.11), with λ1 replaced by the corresponding generalized principal eigenvalue,
see Proposition 2.9 below. This is a consequence of the results of [10], owing to the
equivalence of behaviors in (1.11) and (1.8), that we explain in Section 2.2 below.

Questions 1 and 2 are then tantamount to understanding the relation between
the generalized principal eigenvalues associated with models (1.10) and (1.11), and
to analyze their dependance with respect to the parameters.

To this end, it will sometimes be useful to quantify the “size” of the favorable
zone by considering terms f given by

fL(x, y, u) := χ(|(x, y)| − L)u− u2. (1.13)
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Here, L ∈ R represents the scale of the favorable region and χ is a smooth, decreasing
function satisfying

χ(r) −→
r→−∞

1 and χ(r) −→
r→+∞

−1.

The nonlinearity fL satisfies both the Fisher-KPP condition (1.3) and the “bounded
favorable zone” hypothesis (1.4). Consistently with our previous notations, we define

mL(x, y) := fLv (x, y, 0) = χ(|(x, y)| − L).

In this case, the favorable zone is the ball of radius L+ χ−1(0) (intersected with the
upper half-plane), which is empty for L ≤ −χ−1(0). The fact that the favorable zone
is a half-ball does not play any role in the sequel, and one could envision more general
conditions.

We will first consider the case where c = 0, that is, when the niche is not moving
(there is no climate change).

Theorem 1.5. Assume that c = 0.

(i) Whatever the values of the parameters D, µ, ν are, if extinction occurs for the
system “without the road” (1.11), then extinction also occurs for the system
“with the road” (1.10).

(ii) When f = fL, there exist some values of the parameters d,D, L, µ, ν for which
persistence occurs for the system “without the road” (1.11) while extinction oc-
curs for the system “with the road” (1.10).

Theorem 1.5 answers Question 1. Indeed, statement (i) means that the presence
of the road can never entail the persistence of a population which would be doomed
to extinction without the road. In other words, the road never improves the chances
of survival of a population living in an ecological niche. Observe that this result was
not obvious a priori: first, there is no death term on the road, so the road is not a
lethal environment. Second, if the favorable niche were made of, say, two connected
components, one might have thought that a road “connecting” them might have
improved the chances of persistence. Statement (i) shows that this intuition is not
correct.

Statement (ii) asserts that the road can actually make things worse: there are
situations where the population would persist in an ecological niche, but the intro-
duction of a road drives it to extinction. This is due to an effect of “leakage”of the
population due to the road.

In the context of this result, we can discuss the roles of the diffusion parameters
d and D, that represent the amplitudes of the random motion of individuals in the
field and on the road.

Theorem 1.6. Consider the system “with the road” (1.10), with c = 0. Then,
there exists d⋆ ≥ 0 depending on D, µ, ν such that persistence occurs if and only if
0 < d < d⋆. In particular, extinction occurs for every d > 0 when d⋆ = 0.
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This result is analogous to the one discussed for the model without road in the
one dimensional case in [27, 4]. The interpretation is that the larger d, the farther
the population will scatter away from the favorable zone, with a negative effect for
persistence. Observe that when d⋆ = 0, then persistence never occurs (the set (0, d⋆)
is empty). This is the case if there is no favorable niche at all. However, d⋆ > 0 as
soon as f > 0 somewhere. It is natural to wonder if a result analogous to Theorem 1.6
holds true when, instead of the diffusion d in the field, one varies the diffusion on the
road D, keeping d > 0 fixed. We show that this is not the case because there are
situations where persistence occurs for all values of D > 0, see Proposition 3.4 below.

Next, we turn to Question 2, that is, we consider the case c > 0 corresponding
to a moving niche caused e.g. by a climate change. We start with analyzing the
influence of c on the survival of the species for the system “with the road” (1.10).
Owing to Theorem 1.4, this amounts to studying the generalized principal eigenvalue
λ1 as a function of c.

Theorem 1.7. There exist 0 ≤ c⋆ ≤ c⋆ ≤ 2
√

max{d,D}[supm]+, such that the
following holds for the system (1.10):

(i) Persistence occurs if 0 ≤ c < c⋆.

(ii) Extinction occurs if c ≥ c⋆.

Moreover, if persistence occurs for c = 0 then c⋆ > 0.

The quantities c⋆ and c
⋆ are called the lower and upper critical speeds respectively

for (1.10). Theorem 1.7 has a natural interpretation: on the one hand, if c is large, the
population cannot keep pace with the moving favorable zone, and extinction occurs.
On the other hand, if persistence occurs in the absence of climate change, it will also
be the case with a climate change with moderate speed.

We do not know if the lower and upper critical speeds actually always coincide,
that is, if c⋆ = c⋆. We prove that this is the case when d = D, but we leave the
general case as an open question.

Finally, we investigate the consequences of the presence of a road for a population
facing a climate change. To this end, we focus on the case where f = fL, given
by (1.13). Observe that formally, as L goes to +∞, (1.10) reduces to the system (1.9)
considered in [7], in the same moving frame. This suggests that the critical speeds
for (1.10) should converge to the spreading speed cH of Proposition 1.2. The next
result makes this intuition rigorous.

Theorem 1.8. Assume that f = fL in (1.10). Then, the lower and upper critical
speed c⋆, c

⋆ satisfy:
c⋆, c

⋆ ր cH as L ր +∞,

where cH is given by Proposition 1.2.

The above theorem has the following important consequence.

Corollary 1.9. Assume that D > 2d. There are L > 0 and 0 < c1 < c2 such that
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(i) If c ∈ [0, c1), persistence occurs for the model “with the road” (1.10) as well as
for the model “without the road” (1.11).

(ii) If c ∈ [c1, c2), persistence occurs for the model “with the road” (1.10) whereas
extinction occurs for the model “without the road” (1.11).

This result answers Question 2. Indeed, it means that, in some cases, the road
can help the population to survive faster climate change than it would if there were
no road. The threshold D > 2d in the theorem is the same threshold derived in [7]
for the road to induce an enhancement of the asymptotic speed of spreading.

The paper is organized as follows. In Section 2, we recall some results from [5],
concerning the generalized principal eigenvalue for system (1.12). We explain in
Section 2.2 why the systems on the half plane are equivalent to the systems on the
whole plane. We prove Theorem 1.4 in Section 2.3. In Section 3, we study the
effect of a road on an ecological niche, i.e., we consider (1.10) with c = 0. We prove
Theorems 1.5 and 1.6 in Sections 3.1 and 3.2 respectively. Section 4 deals with the
effect of a road on a population facing climate change, i.e., system (1.10) with c > 0.
We prove Theorem 1.7 in Section 4.1 and Theorem 1.8 in Section 4.2. Section 5
contains a brief discussion of the case where the favorable niche is not bounded, that
is, when (1.4) does not hold. This situation is still by and large open.

2 The generalized principal eigenvalue and the

long-time behavior

2.1 Definition and properties of the generalized principal
eigenvalue

In this section, we recall some technical results from [5] concerning λ1, the generalized
principal eigenvalue for system (1.12). To simplify notations, we define the following
linear operators:







L1(φ, ψ) := D∂xxφ+ c∂xφ+ νψ|y=0 − µφ,

L2(ψ) := d∆ψ + c∂xψ +m(x, y)ψ,
B(φ, ψ) := d∂yψ|y=0 + µφ− νψ|y=0.

(2.14)

These operators are understood to act on functions (φ, ψ) ∈ W
2,p
loc (R) × W

2,p
loc (R ×

[0,+∞)). We restrict to p > 2, in order to have the imbedding in C1
loc(R)×C1

loc(R×
[0,+∞)).

The generalized principal eigenvalue of (1.12) is defined by

λ1 := sup
{

λ ∈ R : ∃(φ, ψ) ≥ 0, (φ, ψ) 6≡ (0, 0) such thatL1(φ, ψ) + λφ ≤ 0 on R,

L2(ψ) + λψ ≤ 0 on R× R
+, B(φ, ψ) ≤ 0 on R

}

.

(2.15)
Above and in the sequel, unless otherwise stated, the differential equalities and in-
equalities are understood to hold almost everywhere.
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Owing to Theorem 1.4, proved below in this section, the sign of λ1 completely
characterizes the long-time behavior for system (1.10). Therefore, to answer Ques-
tions 1 and 2, and the other questions addressed in this paper, we will study the
dependence of λ1 with respect to the coefficients d,D, c as well as with respect to the
parameter L in (1.13). The formula (2.15) is not always easy to handle, but there
are two other characterizations of λ1 which turn out to be handy. First, λ1 is the
limit of principal eigenvalues of the same problem restricted to bounded domains that
converge to the half-plane. More precisely, calling BR the (open) ball of radius R and
of center (0, 0) in R

2, we consider the increasing sequences of (non-smooth) domains
(ΩR)R>0 and (IR)R>0 given by

ΩR := BR ∩ (R× R
+) and IR = (−R,R).

We introduce the following eigenproblem:






















−L1(φ, ψ) = λφ in IR,
−L2(ψ) = λψ in ΩR,
B(φ, ψ) = 0 in IR,

ψ = 0 on (∂ΩR)\(IR × {0}),
φ(−R) = φ(R) = 0.

(2.16)

Here, the unknowns are λ ∈ R, φ ∈ W 2,p(IR) and ψ ∈ W 2,p(ΩR). The existence of a
principal eigenvalue and its connection with the generalized principal eigenvalue are
given by the next result.

Proposition 2.1 ([5, Theorem 2.2]). For R > 0, there is a unique λR ∈ R and a
unique (up to multiplication by a positive scalar) positive pair (φR, ψR) ∈ W 2,p(IR)×
W 2,p(ΩR) that satisfy (2.16).

Moreover, the following limit holds true

λR1 ց
R→+∞

λ1.

Finally, there is a generalized principal eigenfunction associated with λ1, that is,
a pair (φ, ψ) ∈ W

2,p
loc (R)×W

2,p
loc (R× [0,+∞)), (φ, ψ) ≥ 0, (φ, ψ) 6≡ (0, 0) satisfying

L1(φ, ψ) = λ1φ, L2(ψ) = λ1ψ and B(φ, ψ) = 0.

We refer the reader to [5] for the details. The real number λR1 and the pair (φR, ψR)
are called respectively the principal eigenvalue and eigenfunction of (2.16).

The next characterization of λ1 is obtained in the case when c = 0. It is in
the spirit of the classical Rayleigh-Ritz formula. We introduce the following Sobolev
space:

H̃1
0 (ΩR) := {u ∈ H1(ΩR) : u = 0 on (∂BR) ∩ (R× R

+) in the sense of the trace}.

Proposition 2.2 ([5, Proposition 4.5]). Assume that c = 0. The principal eigenvalue
λR1 of (2.16) satisfies

λR1 = inf
(φ,ψ)∈HR

(φ,ψ)6≡(0,0)

µ
∫

IR
D|φ′|2 + ν

∫

ΩR
(d|∇ψ|2 −mψ2) +

∫

IR
(µφ− νψ|y=0)

2

µ
∫

IR
φ2 + ν

∫

ΩR
ψ2

, (2.17)
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where we recall that m = fv(·, ·, 0), and

HR := H1
0 (IR)× H̃1

0 (ΩR)

Let us also recall the following result concerning the continuity and monotonicity
of λ1. We use the notation λ1(c, L, d,D) to indicate the generalized principal eigen-
value of (1.12), with coefficients c, d,D and with nonlinearity fL given by (1.13).
Then, we treat λ1 as a function from (R)2× (R+)2 to R. Analogous notations will be
used several times in the sequel.

Proposition 2.3 ([5, Propositions 2.4 and 2.5]). Let λ1(c, L, d,D) be the generalized
principal eigenvalue of system (1.12) with nonlinearity fL defined by (1.13). Then,

• λ1(c, L, d,D) is a locally Lipschitz-continuous function on (R)2 × (R+)2.

• If c = 0, then λ1(c, L, d,D) is non-increasing with respect to L and non-
decreasing with respect to d and D.

• If c = 0 and λ1(c, L, d,D) ≤ 0, then λ1(c, L, d,D) is strictly decreasing with
respect to L and strictly increasing with respect to d and D.

Next, we consider the generalized principal eigenvalue for the model “without the
road” (1.11), that we require to answer Questions 1 and 2. The linearization around
v = 0 of the stationary system associated with (1.11) reads

{

−L2(ψ) = 0, (x, y) ∈ R× R
+,

−∂yψ|y=0 = 0, x ∈ R,
(2.18)

where L2 is defined in (2.14). The generalized principal eigenvalue of (2.18) is given by

λN := sup
{

λ ∈ R : ∃ψ ≥ 0, ψ 6≡ 0 such that

(L2(ψ) + λψ) ≤ 0 on R× R
+, ∂yψ|y=0 ≤ 0 on R

}

.

(2.19)
The subscript N refers to the Neumann boundary condition. Again, the test functions
ψ in (2.19) are assumed to be in W 2,p

loc (R× [0,+∞)). We also consider the principal
eigenvalue on the truncated domains ΩR, which is the unique quantity λRN such that
the problem







−L2(ψ) = λRNψ, (x, y) ∈ ΩR,
−∂yψ|y=0 = 0, x ∈ IR,

ψ(x, y) = 0, (x, y) ∈ (∂ΩR)\(IR × {0}),
(2.20)

admits a positive solution ψ ∈ W 2,p(ΩR). The results concerning λ1 hold true for λN .
We gather them in the following proposition.

Proposition 2.4. Let λN be the generalized principal eigenvalue of the model “with-
out the road” (2.18), and let λRN be the principal eigenvalue of (2.20). Then
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• λN is the decreasing limit of λRN , i.e.,

λRN ց
R→+∞

λN . (2.21)

• If c = 0, then

λRN = inf
ψ∈H̃1

0
(ΩR)

∫

ΩR
(d|∇ψ|2 −mψ2)

∫

ΩR
ψ2

. (2.22)

• If the nonlinearity in (2.18) is given by fL, defined in (1.13), then L 7→ λN(L)
is a continuous and non-increasing function.

The two first points are readily derived from [10]: indeed, λN coincides with the
generalized principal eigenvalue of the problem in the whole space (1.8) with f ex-
tended by symmetry, as explained in the next Section 2.2. The third point concerning
the monotonicity and the continuity comes from [11].

2.2 The case of the whole plane

Systems (1.10) and (1.11) are set on half-planes. Let us explain here how these
models are actually equivalent to the same systems set on the whole plane under a
symmetry hypothesis on the nonlinearity. When writing a road-field system where
the road is not the boundary of an half-plane but a line in the middle of a plane, one
needs to consider 3 equations: one equation for each portion separated by the road
and an equation on the road, completed with two exchanges conditions between the
road and each side of the field. We assume that the exchanges are the same between
the road and the two sides of the field. Moreover, we assume that the environmental
conditions are symmetric with respect to the road, that is, the nonlinearity f on
the field is even with respect to the y variable, i.e, f(x, y, v) = f(x,−y, v) for every
(x, y) ∈ R

2 and v ≥ 0. The system then writes (in the moving frame that follows the
climate change):







∂tu−D∂xxu− c∂xu = ν(v|y=0+ + v|y=0−)− µu, t > 0, x ∈ R,

∂tv − d∆v − c∂xv = f(x, y, v), t > 0, (x, y)∈R×R
+,

∓d∂yv|y=0± = µ

2
u− νv|y=0±, t > 0, x ∈ R.

(2.23)
We point out that the set in the second equation has two connected components and
thus it can be treated as two distinct equations. The last line in (2.23) are also two
equations with the proportion µ of u leaving the road evenly split among the two sides.

Under these hypotheses of symmetry, the dynamical properties of the sys-
tem (2.23) are the same as those of the system on the half-plane (1.10). This is clear if
one restricts to a symmetric initial datum (u0, v0), i.e., such that v0(x, y) = v0(x,−y)
for every (x, y) ∈ R

2. Indeed, the corresponding solution (u, v) of (2.23) also satisfies
v(t, x, y) = v(t, x,−y) for every t > 0, (x, y) ∈ R

2, hence






∂tu−D∂xxu− c∂xu = 2νv|y=0+ − µu, t > 0, x ∈ R,

∂tv − d∆v − c∂xv = f(x, y, v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0± = µ

2
u− νv|y=0+ , t > 0, x ∈ R.
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It follows that (ũ, v) := (1
2
u, v) is a solution of the system with the road in the half-

plane (1.10). For non-symmetric solutions of (2.23), the long-time behavior also turns
out to be governed by (1.10). Indeed, any solution of (2.23) arising from a non zero
initial datum is strictly positive at time t = 1, and can then be nested between two
symmetric solutions, both converging to the same stationary solution.

Let us mention that, in the paper [5], where we define and study the notion of
generalized principal eigenvalues for road-field systems, we also consider the case of
non-symmetric fields.

By the same arguments as above, the problem without the road in the half-
plane (1.11) is also seen to share the same dynamical properties as the equation
in the whole plane (1.8). Actually, a stronger statement holds true concerning the
linearized stationary equations

− L2(ψ) = 0, (x, y) ∈ R
2, (2.24)

without any specific assumptions on m (besides regularity).

Lemma 2.5. Assume that the nonlinearity f(x, y, v) in (1.8) is even with respect to
the variable y. Then extinction (resp. persistence) occurs for (1.8) if and only if it
occurs for (1.11).

Moreover, (2.24) admits a positive supersolution (resp. subsolution) if and only
if (2.18) does.

Proof. We have explained before that the long-time behavior for (1.8) can be reduced
to the one for (1.11), that is, the first statement of the lemma holds.

For the second statement, consider a positive supersolution ω of (2.24). We
have L2(ω) ≤ 0 on R

2, and this inequality also holds true for ω̃(x, y) := ω(x,−y).
Hence, the function ψ := ω + ω̃ satisfies L2(ψ) ≤ 0 on R× R

+ and ∂yψ|y=0 = 0, i.e.,
ψ is a positive supersolution for (2.18).

Take now a positive supersolution ψ of (2.18), that is, L2(ψ) ≤ 0 on R×R
+ and

∂yψ|y=0 ≤ 0 on R. One would like to use the function ψ(x, |y|) as a supersolution
for (2.24), however this function is not inW 2,p(R2). To overcome this difficulty, define
ψ̃(t, x, y) to be the solution of the parabolic problem

∂tψ̃ = L2(ψ̃), t > 0, (x, y) ∈ R
2,

with initial datum ψ(x, |y|). The function ψ̃(1, x, y) is positive and is in W 2,p(R2).
Moreover the parabolic comparison principle yields ∂tψ̃ ≤ 0, hence the function
ω(x, y) := ψ̃(1, x, y) satisfies L2(ω) ≤ 0 on R

2, i.e., it is a positive supersolution to
(1.8).

The second part of Lemma 2.5 applied to L2+ λ implies that the operator L2 set
on R×R+ with Neumann boundary conditions and the operator L2 set on R

2 share
the same generalized principal eigenvalue, that is:

λN = sup
{

λ ∈ R : ∃ψ ≥ 0, ψ 6≡ 0 such that (L2(ψ) + λψ) ≤ 0 on R
2
}

.
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2.3 The long-time behavior for the system with the road

This section is dedicated to proving Theorem 1.4. We first derive in Section 2.3.1
a Liouville-type result, namely we show that there is at most one non-negative, not
identically equal to zero, bounded stationary solution of the semilinear system (1.10).
This will be used in Section 2.3.2 to characterize the asymptotic behavior of solutions
of the evolution problem (1.10) in terms of the generalized principal eigenvalue λ1.

For future convenience, let us state the parabolic strong comparison principle for
the road-field system (1.10). This is derived in [7, Proposition 3.2] with f independent
of x, y, but the proof does not change if one adds this dependence.

We say that a pair (u, v) is a supersolution (resp. subsolution) of (1.10) if it solves
(1.10) with all the signs = replaced by ≥ (resp. ≤).

Proposition 2.6. Let (u1, v1) and (u2, v2) be respectively a bounded sub and super-
solution of (1.10) such that (u1, v1) ≤ (u2, v2) at time t = 0. Then (u1, v1) ≤ (u2, v2)
for all t > 0, and the inequality is strict unless they coincide until some t > 0.

Remark 1. The previous comparison principle applies in particular to stationary
sub and supersolutions, providing the strong comparison principle for the elliptic
system associated to (1.10). Namely, if a stationary subsolution touches from below
a stationary supersolution then they must coincide everywhere.

2.3.1 A Liouville-type result

We derive here the uniqueness of stationary solutions for (1.10).

Proposition 2.7. There is at most one non-null bounded positive stationary solution
of (1.10).

Before turning to the proof of Proposition 2.7, we state a technical lemma.

Lemma 2.8. Let (u, v) be a solution of the evolution problem (1.10) arising from a
bounded non-negative initial datum. Then

sup
|x|≥R
t≥R

u(t, x) −→
R→+∞

0 and sup
|(x,y)|≥R
t≥R

v(t, x, y) −→
R→+∞

0.

Proof. We first show that the conclusion of the lemma holds for the component v.
Assume by contradiction that there are ε > 0 and two diverging sequences, (tn)n∈N
in (0,+∞) and ((xn, yn))∈N in R× (0,+∞), such that

lim inf
n→+∞

v(tn, xn, yn) ≥ ε.

The idea is to consider the equations satisfied by some translations of u, v. We divide
the discussion into two different cases.

First case: (yn)n∈N is unbounded.
Up to extraction of a subsequence, we assume that yn goes to +∞ as n goes to +∞.
We define the translated functions

un := u(·+ tn, ·+ xn) and vn := v(·+ tn, ·+ xn, ·+ yn).
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Because ((xn, yn))n∈N diverges, the zone where f is positive disappears in the limit.
More precisely, (1.4) and (1.3) yield that there is K > 0 such that

lim sup
n→+∞

f(x+ xn, y + yn, z) ≤ −Kz for (x, y) ∈ R
2, z ≥ 0. (2.25)

The parabolic estimates (see, for instance, [23, Theorems 5.2 and 5.3]) and (2.25)
yield that, up to another extraction, vn converges locally uniformly to some v∞,
entire (i.e., defined for all t ∈ R) subsolution of

∂tv − d∆v − c∂xv +Kv = 0, t ∈ R, (x, y) ∈ R
2. (2.26)

Moreover,
v∞(0, 0, 0) ≥ ε.

Observe that, for any A > 0, the space-independent function w(t) := Ae−Kt is a
solution of (2.26). Because v∞ is bounded, we can choose A large enough so that, for
every τ ≥ 0,

v∞(−τ, ·, ·) ≤ w(0).

The parabolic comparison principle for (2.26) yields

v∞(t− τ, ·, ·) ≤ Ae−Kt for t ≥ 0, τ ∈ R.

Choosing t = τ , we get
ε ≤ v∞(0, 0, 0) ≤ Ae−Kτ .

Taking the limit τ → +∞ yields a contradiction.

Second case: (yn)n∈N is bounded.
Up to a subsequence, we assume that yn converges to some y∞ ≥ 0 as n goes to +∞.
We now define the translated functions with respect to (tn)n∈N, (xn)n∈N only:

un := u(·+ tn, ·+ xn) and vn := v(·+ tn, ·+ xn, ·).

Arguing as in the first case, we find that ((un, vn))n∈N converges locally uniformly
(up to a subsequence) as n goes to +∞ to (u∞, v∞), entire subsolution of







∂tu−D∂xxu− c∂xu = νv|y=0 − µu, t ∈ R, x ∈ R,

∂tv − d∆v − c∂xv +Mv = 0, t ∈ R, (x, y) ∈ R× R
+,

−d∂yv|y=0 = µu− νv|y=0, t ∈ R, x ∈ R.

(2.27)

Moreover, we have
v∞(0, 0, y∞) ≥ ε.

Unlike the previous case, one does not have suitable space-independent solutions of
(2.27). Instead, we look for a supersolution of the form

A(e−ηt, γe−ηt(e−βy + 1)).
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An easy computation shows that for this to be a supersolution of (2.27) for any A > 0,
it is sufficient to choose the parameters η, γ, β > 0 so that







−η ≥ 2νγ − µ,

−η(e−βy + 1)− dβ2e−βy +M(e−βy + 1) ≥ 0, for all y ≥ 0,
dβγ ≥ µ− 2νγ.

For η < µ, we take γ = µ−η
2ν

> 0, β = η

dγ
, so that the first and third inequalities

are automatically satisfied. For the second inequality to hold true for y ≥ 0, it is
sufficient to have −η − dβ2 +M ≥ 0. We can take η sufficiently small so that the
latter is fulfilled.

We now choose A large enough so that A ≥ sup u∞, γA ≥ sup v∞. A contradiction
is reached by arguing as in the first case, with the difference that now we need to use
the parabolic comparison principle for the full road-field system, Proposition 2.6.

We have shown that
sup

|(x,y)|≥R
t≥R

v(t, x, y) −→
R→+∞

0. (2.28)

Let us now derive the result for u. Assume by contradiction that there are ε > 0 and
two diverging sequences (tn)n∈N and (xn)n∈N such that

lim inf
n→+∞

u(tn, xn) > ε.

Then, because of (2.28), for n large enough the third equation in (1.10) gives us that

∂yv(tn, xn, 0) ≤ − µ

2d
ε.

The parabolic estimates then provides a constant C > 0 such that for, say, y ∈ (0, 1),
there holds that

v(tn, xn, y) ≤ vn(tn, xn, 0)−
µ

2d
εy + Cy2.

From this, taking y > 0 small enough and then n large enough, and using again (2.28),
we deduce that v(tn, xn, y) < 0, which is impossible, hence the contradiction.

We now turn to the proof of Proposition 2.7.

Proof of Proposition 2.7. Let (u, v) and (ũ, ṽ) be two non-null non-negative bounded
stationary solutions of the system (1.10). We will prove that they coincide. We
define, for ε > 0,

(uε, vε) := (u+ ε
ν

µ
, v + ε),

and
θε := max{θ > 0 : (uε, vε) ≥ θ(ũ, ṽ)},

which is positive. Let us show that one of the following occurs:

Either ∃x′ε ∈ R, uε(x
′
ε) = θεũ(xε) or ∃(xε, yε) ∈ R×[0,+∞), vε(xε, yε) = θεṽ(xε, yε).

By definition of θε, for every n ∈ N, we can find either x′n such that uε(x
′
n) <

(θε +
1
n
)ũ(x′n), or (xn, yn) such that vε(xn, yn) < (θε +

1
n
)ṽ(xn, yn). For every ε > 0,
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the norm of these points is bounded independently of n ∈ N, because ũ and ṽ converge
to zero at infinity, by Lemma 2.8. Therefore, because either (x′n)n or ((xn, yn))n has an
infinite number of elements, we can define (x′ε) or (xε, yε) as the limit of a subsequence
of either (x′n)n or ((xn, yn))n respectively.

By definition, the positive reals (θε)ε>0 are increasing with respect to ε. We define

θ0 := lim
εց0+

↓ θε.

The rest of the proof is dedicated to show that θ0 ≥ 1. This will yield that u ≥ ũ

and v ≥ ṽ. Exchanging the roles of (u, v) and (ũ, ṽ) in what precedes, we then get
u = ũ and v = ṽ, hence uniqueness.

We argue by contradiction, assuming that θ0 < 1. From now on, we assume that
ε is small enough so that θε < 1. We proceed in two steps: we first derive some
estimates for the contact points x′ε or (xε, yε), then we use them to get a contraction.

Step 1. Boundedness of the contact points.
This step is dedicated to show that there is R > 0 such that

∀ε > 0, |x′ε| ≤ R or |(xε, yε)| ≤ R, (2.29)

i.e., |x′ε| or |(xε, yε)| are bounded independently of ε. From the uniform regularity
of f together with (1.4), we infer that there is η > 0 so that v 7→ f(x, y, v) is non-
increasing in [0, η] if |(x, y)| ≥ R. Because (u, v) is a stationary solution of (1.10),
Lemma 2.8 implies that v(x, y) goes to zero as |(x, y)| goes to +∞. Hence, up to
decreasing ε so that ε < η and up to increasing R, we assume that

v(x, y) ≤ η − ε for |(x, y)| ≥ R.

Hence, if |(x, y)| ≥ R, we see that

−d∆vε − c∂xvε − f(x, y, vε) ≥ f(x, y, v)− f(x, y, vε) ≥ 0.

Therefore,






−D∂xxuε − c∂xuε = νvε|y=0 − µuε, for |x| > R,

−d∆vε − c∂xvε ≥ f(x, y, vε), for |(x, y)| > R,

−d∂yvε|y=0 = µuε − νvε|y=0, for |x| > R.

Moreover, because we assumed that θε < 1, we have θεf(x, y, ṽ) ≤ f(x, y, θεṽ). Hence,
(θεũ, θεṽ) is a stationary subsolution of (1.10). Because (uε, vε) ≥ (θεũ, θεṽ), the
elliptic strong comparison principle (see Remark 1) yields that, if the point at which
we have either uε(x

′
ε) = θεũ(x

′
ε) or vε(xε, yε) = θεṽ(xε, yε) satisfied

|x′ε| > R or |(xε, yε)| > R,

then we would have
(uε, vε) ≡ θε(ũ, ṽ).

This is impossible because u(x) → ε ν
µ
and ũ(x) → 0 as |x| goes to +∞. We have

reached a contradiction, showing that (2.29) holds true.
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Step 2. Taking the limit ε → 0.
The estimate (2.29) implies that, up to extraction of a suitable subsequence, either x′ε
or (xε, yε) converge as ε goes to zero to some limit x0 ∈ R or (x0, y0) ∈ R× [0,+∞).
Hence

u ≥ θ0ũ, v ≥ θ0ṽ,

and either u(x0) = θ0ũ(x0) or v(x0, y0) = θ0ṽ(x0, y0). Because (u, v) > (0, 0), owing
to the elliptic strong comparison principle (cf. Remark 1), this yields θ0 > 0. As
before, we can use the elliptic strong comparison principle for (1.10) (see Remark 1)
with the solution (u, v) and the subsolution θ0(ũ, ṽ) to find that these couples coincide
everywhere, namely

u ≡ θ0ũ and v ≡ θ0ṽ.

Plotting the latter in (1.10) we obtain

θ0f(x, y, ṽ) = f(x, y, θ0ṽ) for (x, y) ∈ R× R
+.

Recalling that we assumed that θ0 < 1, we find a contradiction with the hypothe-
sis (1.3). This shows that θ0 ≥ 1, which concludes the proof.

2.3.2 The persistence/extinction dichotomy

We proved in the previous section that there is at most one non-trivial bounded
positive stationary solution of the semilinear problem (1.10). Building on that, we
prove now Theorem 1.4.

Proof of Theorem 1.4. In the whole proof, (u, v) denotes the solution of the parabolic
problem (1.10) arising from a non-negative not identically equal to zero compactly
supported initial datum (u0, v0). We prove separately the two statements of the
Theorem.

Statement (i).
Assume that λ1 < 0. Owing to Proposition 2.1, we can take R > 0 large enough so
that λR1 < 0. Let (φR, ψR) be the corresponding principal eigenfunction provided by
Proposition 2.1. Using the fact the u(1, ·) > 0 and v(1, ·, ·) > 0, as a consequence of
the parabolic comparison principle Proposition 2.6, and that (φR, ψR), extended by
(0, 0) outside of its support, is compactly supported, we can find ε > 0 such that

ε(φR, ψR) ≤ (u(1, ·), v(1, ·, ·)).

Up to decreasing ε, the regularity hypotheses on f combined with the fact that
λR1 < 0 implies that ε(φR, ψR) (extended by (0, 0) outside its support) is a generalized
stationary subsolution of (1.10). On the other hand, for M > 0 sufficiently large, the
pair ( ν

µ
M,M) is a stationary supersolution of (1.10), due to hypothesis (1.2). Up to

increasing M , we can assume that ( ν
µ
M,M) > (u(1, ·), v(1, ·, ·)).

As a standard application of the parabolic comparison principle, Proposition 2.6,
one sees that the solution of (1.10) arising from ε(φR, ψR) (respectively from
( ν
µ
M,M)) is time-increasing (respectively time-decreasing), and converges locally

uniformly to a stationary solution, thanks to the parabolic estimates. Owing to
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the elliptic strong comparison principle (see Remark 1), this solution is positive.
Proposition 2.7 implies that these limiting solutions are actually equal, and by com-
parison (u, v) also converges to this positive stationary solution. This proves the
statement (i) of the theorem.

Statement (ii).
Assume now that λ1 ≥ 0. Let (U, V ) be a bounded non-negative stationary solution
of (1.10). We start to show that (U, V ) ≡ (0, 0). We argue by contradiction, assuming
that this stationary solution is not identically equal to zero. Let (φ, ψ) be a positive
generalized principal eigenfunction associated with λ1, provided by Proposition 2.1.
The fact that λ1 ≥ 0, combined with the Fisher-KPP hypothesis (1.3), implies that
(φ, ψ) is a supersolution of (1.10). For ε > 0, we define

θε := max

{

θ > 0 : (φ, ψ) +

(

ε
ν

µ
, ε

)

≥ θ(U, V )

}

.

Hence, for ε > 0, there is either x′ε ∈ R or (xε, yε) ∈ R× [0,+∞) such that

φ(x′ε) + ε
ν

µ
= θεU(x

′
ε) or ψ(xε, yε) + ε = θεV (xε, yε).

Arguing as in the proof of Proposition 2.7, Step 1, we find that the norm of the
contact points x′ε or (xε, yε) is bounded independently of ε. Because θε is increasing
with respect to ε, it converges to a limit θ0 ≥ 0 as ε goes to 0. Up to extraction, we
have that either x′ε or (xε, yε) converges to some x′0 ∈ R or (x0, y0) ∈ R× [0,+∞) as
ε goes to zero. Taking the limit ε→ 0 then yields

(φ, ψ) ≥ θ0(U, V ),

and either φ(x′0) = θ0U(x
′
0) or ψ(x0, y0) = θ0V (x0, y0). In both cases, the elliptic

strong comparison principle, cf. Remark 1, implies that

(φ, ψ) ≡ θ0(U, V ),

Owing to the hypothesis (1.3) on f , this is possible only if θ0 = 0, but this would
contradict the strict positivity of (φ, ψ). We have reached a contradiction: there are
no non-negative non-null bounded stationary solutions of (1.10) when λ1 ≥ 0.

We can now deduce that extinction occurs: for a given compactly supported
initial datum (u0, v0), we choose M > 0 large enough so that the couple ( ν

µ
M,M) is

a stationary supersolution of (1.10) and, in addition,

(ν

µ
M,M

)

≥ (u0, v0).

We let (u, v) denote the solution of (1.10) arising from the initial datum ( ν
µ
M,M).

It is time-decreasing and converges locally uniformly to a stationary solution. The
only one being (0, 0), owing to Proposition 2.7, we infer that (u, v) converges to
zero locally uniformly as t goes to +∞. Lemma 2.8 implies that the convergence
is actually uniform. The same holds for (u, v), thanks to the parabolic comparison
principle, Proposition 2.6.
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We conclude this section by stating the dichotomy analogous to Theorem 1.4 in
the case of the system “without the road”, (1.11).

Proposition 2.9. Let λN be the generalized principal eigenvalue of the system (2.18).

(i) If λN < 0, the system (1.11) admits a unique positive bounded stationary solu-
tion and persistence occurs.

(ii) If λN ≥ 0, the system (1.11) does not admit any positive stationary solution,
and extinction occurs.

This result can be proved similarly to Theorem 1.4, or, alternatively, one can
recall the results of [10]. In that paper, the authors consider the problem (1.8) set on
the whole plane, but their results adapt to the problem (1.11) thanks to Lemma 2.5.

3 Influence of a road on an ecological niche

In this section, we study the effect of a road on an ecological niche. In terms of
our models, this means that we compare the system “with the road” (1.10) with the
system “without the road” (1.11), when c = 0, i.e., when the niche does not move.

3.1 Deleterious effect of the road on a population in an eco-

logical niche

This section is dedicated to the proof of Theorem 1.5, which answers Question 1. We
start with a technical result.

Proposition 3.1. Assume that c = 0. Let λ1 and λN be the generalized princi-
pal eigenvalues of the model “with the road” (1.12) and of the model “without the
road” (2.18) respectively. Then,

λN ≥ 0 =⇒ λ1 ≥ 0.

This proposition readily yields the statement (i) of Theorem 1.5. Indeed, suppose
that extinction occurs for the system “without the road” (1.11). Then Proposition 2.9
implies that λN ≥ 0 and thus Proposition 3.1 gives us that λ1 ≥ 0. Theorem 1.4 then
entails that extinction occurs for (1.10).

Remark 2. In view of Proposition 3.1, it might be tempting to think that λ1 ≥ λN .
However, this is not always the case. Indeed, taking ψ = 0 in (2.17), we find that
λR1 ≤ π2

4DR2 + µ, and therefore

λ1 = lim
R→+∞

λR1 ≤ µ.

Now, λN does not depend on µ, and for µ fixed can be made arbitrarily large. This
can be achieved for instance by choosing f = ρfL as in (1.13) with L sufficiently
negative and ρ sufficiently large.
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Proof of Proposition 3.1. Assume that λN ≥ 0. Then λRN ≥ 0 for any R > 0, thanks
to (2.21). Because c = 0, on the one hand, the variational formula (2.22) for λRN
gives us, for all R > 0

∀ψ ∈ H̃1
0 (ΩR),

∫

ΩR
(d|∇ψ|2 −mψ2)

∫

ΩR
ψ2

≥ 0.

H On the other hand, (2.17) implies that

λR1 ≥ inf
(φ,ψ)∈HR

∫

ΩR
(d|∇ψ|2 −mψ2)

∫

ΩR
ψ2

ν
∫

ΩR
ψ2

µ
∫

IR
φ2 + ν

∫

ΩR
ψ2
.

Gathering these inequalities, we get λR1 ≥ 0. Because this is true for every R > 0,
taking the limit R→ +∞ proves the result.

The proof of Theorem 1.5 (ii) is more involved. The key tool is the following.

Proposition 3.2. Assume that c = 0 and that the parameters d, µ, ν are fixed. For
L ∈ R and D > 0, let λN(L) and λ1(L,D) denote the generalized principal eigenvalues
of (2.18) and (1.12) respectively, with nonlinearity fL given by (1.13). Then, for
every D > 0, there exists L⋆ ∈ R such that

λN (L
⋆) < 0 < λ1(D,L

⋆).

Proof. Step 1. Finding L that yields λN = 0.
Let us first observe that

lim
L→−∞

λN(L) > 0 > lim
L→+∞

λN(L).

Indeed, owing to formula (2.22), L 7→ λN(L) is non-increasing on R, then it admits
limits as L goes to ±∞. Moreover, Proposition 2.4 yields, for every R > 0,

lim
L→+∞

λN(L) ≤ inf
ψ∈H̃1

0
(ΩR)

d
∫

ΩR
|∇ψ|2

∫

ΩR
ψ2

− 1.

Then, taking the limit as R → +∞ and using the well-known fact that the quantity

inf
ψ∈H̃1

0
(ΩR)

∫

ΩR
|∇ψ|2

∫

ΩR
ψ2

coincides with the principal eigenvalue of the Laplace operator on BR ⊂ R
2 un-

der Dirichlet boundary condition, which converges to 0 as R goes to +∞, we find
limL→+∞ λN(L) < 0.

Now, by definition of fL, if −L is large enough, we have that fL < −1
2
.

Hence, (2.22) implies that, for every such L and for R > 0,

λRN(L) = inf
ψ∈H̃1

0
(ΩR)

∫

ΩR

(

d|∇ψ|2 −mLψ2
)

∫

ΩR
ψ2

≥ 1

2
,
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and then limL→−∞ λN(L) > 0. Owing to Proposition 2.4, L 7→ λN(L) is a continuous
function on R, and we can then define

L := max{L ∈ R : λN (L) ≥ 0}.

It follows that λN(L) = 0 and λN(L) < 0 for L > L.

Step 2. For every D > 0, there holds λ1(L,D) > 0.
Assume by contradiction that there is D > 0 such that λ1(L,D) ≤ 0. Owing to the
last statement of Proposition 2.3, for any D′ ∈ (0, D), we have

0 ≥ λ1(L,D) > λ1(L,D
′).

This means that λ1(L,D
′) < 0 = λN(L), contradicting Proposition 3.1.

Step 3. Conclusion.
Let D > 0 be given. As stated in Proposition 2.3, L 7→ λ1(L,D) is a continuous
function and thus, by Step 2, λ1(L

⋆, D) > 0 if L⋆ > L, with L⋆ sufficiently close to L.
On the other hand, recalling the definition of L, we have λN(L

⋆) < 0. This concludes
the proof.

Combining Proposition 3.2 with Theorem 1.4 and Proposition 2.9 we derive the
statement (ii) of Theorem 1.5.

3.2 Influence of the diffusions D and d

3.2.1 Extinction occurs when d is large

This section is dedicated to the proof of Theorem 1.6. A similar result is derived for
the model “without the road” in [10]. Throughout this section, we let λ1(d) be the
generalized principal eigenvalue of (1.12) with c = 0, D, µ, ν, f fixed and d variable.
We start with a technical proposition.

Proposition 3.3. Let λ1(d) be the generalized principal eigenvalue of (1.12) with
c = 0 and diffusion in the field d > 0. Then,

lim inf
d→+∞

λ1(d) ≥ min
{

µ,− lim sup
|(x,y)|→+∞

m(x, y)
}

> 0.

Proof. The proof relies on the construction of suitable test functions for the for-
mula (2.15). It is divided into five steps.

Step 1. Defining the test function.
We take λ ≥ 0 such that

λ < min{µ,− lim sup
|(x,y)|→+∞

m(x, y)}.

By hypothesis (1.4), we can find M large enough so that

K := − sup
|(x,y)|≥M

m(x, y) > 0
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whence λ ∈ (0,min{µ,K}). We take A ∈ (λ, µ) and we define

{

Ψ(x, y) := φ(x) + ψ(y),

Φ(x) := ν
µ−A

Ψ(x, 0),
(3.30)

where
{

φ(x) := cos(αdx)1|x|≤M + cos(αdM)e
1

dβ
(M−|x|)1|x|>M for x ∈ R,

ψ(y) := e
− y

dβ for y ∈ R,
(3.31)

with β ∈ (1
2
, 1) and αd being the unique real number such that

αd ∈
(

0,
π

2M

)

and tan(αdM) =
1

dβαd
.

Then, the functions Φ and Ψ given by (3.30) are non-negative and belong toW 2,∞(R)
and W 2,∞(R × [0,+∞)) respectively. They are suitable test functions for for-
mula (2.15).

The next steps are dedicated to proving the following inequalities











DΦ′′ − µΦ + νΨ|y=0 + λΦ ≤ 0,

d∆Ψ+mΨ+ λΨ ≤ 0,

d∂yΨ|y=0 − νΨ|y=0 + µΦ ≤ 0.

(3.32)

Observe that Ψ ≤ 2, Φ ≤ 2ν
µ−A

. These inequalities will be used several times in the
following computations.

Step 2. The boundary condition.
Let us first check that (Φ,Ψ) satisfies the third inequality of (3.32). We have

d∂yΨ|y=0 − νΨ|y=0 + µΦ = dψ′(0) + AΦ
≤ −d1−β + 2Aν

µ−A
.

Because 1− β > 0, this is negative is d if large enough.

Step 3. Equation for Φ.
Let us check that the first inequality of (3.32) holds true almost everywhere. First,
assume that |x| < M . Then

DΦ′′ − µΦ+ νΨ|y=0 + λΦ = DΦ′′ −AΦ + λΦ
= ν

µ−A
(−Dα2

d cos(αdx) + (λ− A)(cos(αdx) + 1)).

Because λ < A, this is negative. Now, if |x| > M , we have

DΦ′′ − µΦ+ νΨ|y=0 + λΦ = DΦ′′ − AΦ + λΦ

= ν
µ−A

(

( D
d2β

+ λ− A) cos(αdM)e
1

dβ
(M−|x|) + λ−A

)

.

Because λ < A, this is negative if d is large enough.
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Step 4. Equation for Ψ.
Finally, let us check that the second inequality of (3.32) holds almost everywhere.
First, when |x| < M , we have (a.e.)

d∆Ψ+mΨ + λΨ = d(φ′′ + ψ′′) + (λ+m)(φ+ ψ)
≤ −dα2

d cos(αdM) + d1−2β + 2(supm+ λ).

Observe that

α2
d ∼

1

Mdβ
as d goes to+∞.

Therefore,

−dα2
d cos(αdM) ∼ − 1

M
d1−β as d goes to +∞.

Because β < 1, this goes to −∞ as d goes to +∞. On the other hand, d1−2β goes to
zero as d goes to +∞, because 1− 2β < 0. Then, for d large enough,

−dα2
d cos(αdM) + d1−2β + 2(supm+ λ)

is negative.
If |x| > M , we have

d∆Ψ+mΨ + λΨ = d(φ′′ + ψ′′) + (λ+m)(φ+ ψ)

≤ d( 1
d2β

cos(αdM)e
1

dβ
(M−|x|) + d−2βe

− 1

dβ
y) + (−K + λ)(φ+ ψ)

≤ (d1−2β + λ−K)φ+ (d1−2β + λ−K)ψ.

Because λ < K and β > 1
2
, this is negative for d large enough.

Step 5. Conclusion.
Gathering all that precedes, we have shown that, for d large enough, (3.32) is verified.
Owing to the formula (2.15) defining λ1(d), this implies that λ1(d) ≥ λ, for d large
enough. The fact that we choose λ arbitrarily yields the result.

We are now in a position to prove Theorem 1.6.

Proof of Theorem 1.6. Owing to Proposition 3.3, we see that there is d > 0 such that

∀d > d, λ1(d) ≥ 0.

It is readily seen from the variational formula (2.17) that the function d ∈ R
+ 7→ λ1(d)

is non-decreasing. We can define

d⋆ := min{d ≥ 0 : λ1(d) ≥ 0}.

Theorem 1.4 then yields the result.

We have proved that extinction occurs when the diffusion in the field is above
a certain threshold. It is natural to wonder whether the same result holds in what
concerns the diffusion on the road: is there D⋆ such that extinction occurs for (1.10)
with c = 0 when D ≥ D⋆? Without further assumptions on the coefficients, the
answer is no in general, as shown in the following section.
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3.2.2 Influence of the diffusion on the road

This section is dedicated to proving the following statement.

Proposition 3.4. Consider the system (1.10), with c = 0 and f = fL given by (1.13).
For L large enough (depending on d), persistence occurs for every D, µ, ν > 0.

This result is the counterpart of Theorem 1.6, which asserts that increasing the
diffusion d in the field, the system is inevitably led to extinction (under assump-
tion (1.4)). Proposition 3.4 shows that this is not always the case if, instead of d,
one increases the diffusion on the road. It is also interesting to compare it with The-
orem 1.5. While the latter states that the road always has a deleterious influence on
the population, Proposition 3.4 means that this effect is nevertheless limited. Indeed,
if the favorable zone is sufficiently large, then, no matter what happens on the road,
that is, regardless of the coefficients D, µ, ν, there will always be persistence.

Proof of Proposition 3.4. For R > 0, let λR and φR denote the principal eigenvalue
and (positive) eigenfunction of −∆ on BR ⊂ R

2, under Dirichlet boundary condition.
We take R large enough so that λR <

1
d
(it is well known that λR ց 0 as R goes to

+∞). Then define v(x, y) := φR(x, y − 2R) for (x, y) ∈ BR(0, 2R). The definition
of fL and the fact that dλR < 1 allows us to find L sufficiently large so that

min
(x,y)∈B3R

mL(x, y, 0) > dλR.

As a consequence,

−d∆v = dλRv < mL(x, y, 0)v in BR(0, 2R).

Owing to the regularity of f , we can take ε > 0 small enough so that εv satisfies
−d∆(εv) < fL(x, y, εv) in BR(0, 2R). The parabolic comparison principle in the ball
BR(0, 2R) implies that the solution of (1.10) with c = 0, arising from the initial
datum (0, εv) with εv extended by 0 outside BR(0, 2R), is larger than or equal to
(0, εv) for all positive times. In particular, extinction does not occur and hence, by
Theorem 1.4, we necessarily have persistence. Because this is true independently of
the values of D, µ, ν, the proof is complete.

It is worthwhile to note a few observations about this result. To prove Proposition
3.4, we compared system (1.10) with the single equation in a ball, under Dirichlet
boundary condition, for which we are able to show that persistence occurs provided
L is sufficiently large. The population dynamics intuition behind this argument is
clear: the Dirichlet condition means that the individuals touching the boundary are
“killed”; it is therefore harder for the population to persist. One could have compared
our system with the system with Dirichlet condition on the road instead, by showing
that the generalized principal eigenvalue of the latter is always larger than λ1. As
a matter of fact, it is also possible to compare system (1.10) with the system with
Robin boundary condition:

{

∂tv − d∆v = f(x, y, v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0 + νv|y=0 = 0 t > 0, x ∈ R× {0}.
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This system describes the situation where the individuals can enter the road, but
cannot leave it. It can actually be shown that the generalized principal eigenvalue
of the linearization of this system, which we denote by λRobin, is larger than λ1. We
conjecture that

λ1 −→
D→+∞

min{λRobin, µ}.

This is based on the intuition that, as D becomes large, the population on the road
diffuses “very fast” and then is sent “very far” into the unfavorable zone, where it
dies.

4 Influence of a road on a population facing a cli-

mate change

4.1 Influence of the speed c

This section is dedicated to proving Theorem 1.7. In this whole section, we assume
that the coefficients D, d, µ, ν are fixed in (1.12), and we let λ1(c) denote the gener-
alized principal eigenvalue of (1.12) and λR1 (c) the principal eigenvalue of (2.16), as
functions of the parameter c ≥ 0. We start with proving two preliminary results.

Proposition 4.1. Let λ1(c) be the generalized principal eigenvalue of (1.12). Then

λ1(c) ≥
1

4
min

{

1

d
,
1

D

}

c2 − [m]+.

Proof. Let c ≥ 0 be chosen. ForR > 0, let (φR, ψR) denote the principal eigenfunction
of (2.16) and λR1 the associated principal eigenvalue. Take κ ∈ R. The idea is to
multiply the system (2.16) by the weight x 7→ eκx, and to integrate by parts. At the
end, optimizing over κ will yield the result. We define

Iψ :=

∫

ΩR

ψR(x, y)e
κxdxdy and Iφ :=

∫

IR

φR(x)e
κxdx.

We multiply the equation for ψR in (2.16) by eκx and integrate over ΩR to get

− d

∫

ΩR

(∆ψR)e
κx − c

∫

ΩR

(∂xψR)e
κx =

∫

ΩR

m(x, y)ψRe
κx + λR1 Iψ. (4.33)

We let ex denote the unit vector in the direction of the road, i.e., ex := (1, 0), and ν
the exterior normal vector to ΩR. We have

∫

ΩR

(∂xψR)e
κx = −κ

∫

ΩR

ψRe
κx +

∫

ΩR

∂x(ψRe
κx).

Because ψR = 0 on ∂ΩR \ IR, the Fubini theorem implies that
∫

ΩR
∂x(ψRe

κx) = 0.
Hence

∫

ΩR

(∂xψR)e
κx = −κIψ.
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Using the divergence theorem, as well as the above equivalence, we find that

−d
∫

ΩR

(∆ψR)e
κx = −d

∫

∂ΩR

(∂νψR)e
κx + dκ

∫

ΩR

(∂xψR)e
κx

= −dκ2Iψ − d

∫

∂ΩR\IR

(∂νψR)e
κx + d

∫

IR

(∂yψR)e
κx

≥ −dκ2Iψ + d

∫

IR

(∂yψR)e
κx,

where the last inequality comes from the fact that we have ψR = 0 on ∂ΩR\IR and
ψR ≥ 0 elsewhere, hence ∂νψR ≤ 0 on ∂ΩR\IR. Then, (4.33) yields

0 ≤
(

[supm]+ + λR1 − κc+ dκ2
)

Iψ +

∫

IR

(−d∂yψR)eκx. (4.34)

Now, the boundary condition in (2.16) combined with the equation satisfied by φR
gives us

∫

IR

(−d∂yψR)eκx =
∫

IR

(D∂xxφR + c∂xφR + λR1 φR)e
κx

=

∫

IR

(D∂xxφR + c∂xφR)e
κx + λR1 Iφ.

Integrating by parts and arguing as before, we obtain

∫

IR

(−d∂yψR)eκx ≤ (Dκ2 − cκ+ λR1 )Iφ.

Then, (4.34) implies that

0 ≤
(

dκ2 − cκ+ [m]+ + λR1
)

Iψ +
(

Dκ2 − cκ + λR1
)

Iφ.

We write κ := αc, using α ∈ R as the new optimization parameter. Because Iφ and
Iψ are positive, we deduce that one of the following inequalities necessarily holds:

(dα2 − α)c2 + [supm]+ + λR1 ≥ 0, (Dα2 − α)c2 + λR1 ≥ 0.

Namely, we derive

λR1 (c) ≥ sup
α∈R

(

min{−(dα2 − α)c2 − [supm]+,−(Dα2 − α)c2}
)

≥ sup
α∈R

(

min{α− dα2, α−Dα2}c2 − [supm]+
)

≥ 1

4
min

{

1

d
,
1

D

}

c2 − [supm]+.

Letting R go to +∞, we get the result.
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Proposition 4.1 implies that λ1(c) ≥ 0 if

c ≥ 2
√

max{d,D}[supm]+.

Owing to the continuity of c 7→ λ1(c) (recalled in Proposition 2.3 above), this allows
us to define

c⋆ := min{c ≥ 0 : λ1(c) ≥ 0}, c⋆ := sup{c ≥ 0 : λ1(c) < 0},

with the convention that c⋆ = 0 if the set in its definition is empty. Moreover, c⋆ > 0 if
and only if λ1(0) < 0. Thanks to Theorem 1.4, we have thereby proved Theorem 1.7.

As we mentioned in the introduction, Section 1.4, we actually conjecture that
c⋆ = c⋆. We prove that this is true when d = D.

Proposition 4.2. Assume that d = D in (1.10). Then

c⋆ = c⋆ = 2
√

−d[−λ1(0)]+.

This proposition is readily derived using the change of functions

φ̃ := φe
c
2d
x, ψ̃ := ψe

c
2d
x

in (2.15) to get

λ1(c) =
c2

4d
+ λ1(0).

We conclude this section by showing that c 7→ λ1(c) attains its minimum at c = 0.
This has a natural interpretation: it means that a population is more likely to persist
if the favorable zone is not moving; in other words, the climate change always has a
deleterious effect on the population, at least for what concerns survival.

Proposition 4.3. Let c ≥ 0. Then

λ1(c) ≥ λ1(0).

Proof. Take R ≥ 0 and let (φR, ψR) be the principal eigenfunction of (2.16) and λR1
be the associated eigenvalue. We multiply the equation for ψR in (2.16) by ψR and
integrate over ΩR to get

∫

ΩR

d|∇ψR|2 − d

∫

∂ΩR

ψR∂νψR −
∫

ΩR

mψ2
R = λR1 (c)

∫

ΩR

ψ2
R,

where we have used the fact that
∫

ΩR

cψR∂xψR =
c

2

∫

ΩR

∂x(ψR)
2 = 0.

Then, the boundary condition yields

∫

ΩR

d|∇ψR|2 −
∫

IR

ψR|y=0(µφR − νψR|y=0)−
∫

ΩR

mψ2
R = λR1 (c)

∫

ΩR

ψ2
R. (4.35)

30



Likewise, multiplying the equation on the road by φR and integrating, we have

∫

IR

D|φ′
R|2 +

∫

IR

φR(µφR − νψR|y=0) = λR1 (c)

∫

IR

φ2
R. (4.36)

Multiplying (4.35) by ν and (4.36) by µ and summing the two resulting equations
yields

λR1 (c) =
µ
∫

IR
D|φ′

R|2 + ν
∫

ΩR
(d|∇ψR|2 −mψ2

R) +
∫

IR
(µφR − νψR|y=0)

2

µ
∫

IR
φ2
R + ν

∫

ΩR
ψ2
R

.

Owing to Proposition 2.2, this is greater than λR1 (0), hence the result.

4.2 Positive effect of the road in keeping pace with a climate
change

In this section, we prove Theorem 1.8, whose Corollary 1.9 answers Question 2.
The key observation is that, when L goes to +∞, the nonlinearity fL converges
to f∞(v) := v(1 − v), the favorable zone then being the whole space, and the sys-
tem (1.10) becomes, at least formally







∂tu−D∂xxu− c∂xu = νv|y=0 − µu, t > 0, x ∈ R,

∂tv − d∆v − c∂xv = v(1− v), t > 0, (x, y) ∈ R× R
+,

−d∂yv|y=0 = µu− νv|y=0, t > 0, x ∈ R.

(4.37)

This system is the road-field model (1.9) from [7], recalled in Section 1.3, rewritten
in the frame moving in the direction of the road with speed c ∈ R. The results
of [7], summarized here in Proposition 1.2, are obtained by constructing explicit
supersolutions and subsolutions, and do not use principal eigenvalues. We need to
rephrase Proposition 1.2 in terms of the generalized principal eigenvalue. Namely, we
define

λH := sup
{

λ ∈ R : ∃(φ,ψ) ≥ 0, (φ,ψ) 6≡ (0, 0) such that

Dφ′′ + cφ′ − µφ+ νψ|y=0 + λφ ≤ 0 on R,

d∆ψ + c∂xψ + ψ + λψ ≤ 0 on R× R
+, d∂νψ − νψ|y=0 + µφ ≤ 0 on R

}

.

(4.38)

Then, λH is the generalized principal eigenvalue of







−D∂xxφ− c∂xφ = νψ|y=0 − µφ, x ∈ R,

−d∆ψ − c∂xψ = ψ, (x, y) ∈ R× R
+,

−d∂yψ|y=0 = µφ− νψ|y=0, x ∈ R.

(4.39)

This is the linearization at (u, v) = (0, 0) of the stationary system associated with the
road-field model (4.37), in the frame moving in the direction of the road with speed c.
For R > 0, we let λRH denote the principal eigenvalue of (4.39) on the truncated
domains ΩR in the field and IR on the road. We know from [5] that λRH → λH as R
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goes to +∞ and that there is a positive generalized principal eigenfunction associated
with λH .

Consistently with our previous notations, we let λH(c) denote the generalized
principal eigenvalue of (4.39) with D, d, µ, ν > 0 fixed and with c ∈ R variable.

Lemma 4.4. Let λH(c) denote the generalized principal eigenvalue of (4.39). Then

λH(c) < 0 for c ∈ [0, cH) and λH(c) ≥ 0 for c ≥ cH .

Proof. We argue by contradiction. Assume that there is c ∈ [0, cH) such that
λH(c) ≥ 0. Let (φ, ψ) ≥ (0, 0) be a generalized principal eigenfunction associ-
ated with λH(c). Then (φ, ψ) is a stationary supersolution of (4.37), owing to the
Fisher-KPP property, and because λH(c) ≥ 0. We normalize it so that ψ(0, 0) = 1

2
.

Now, let (u0, v0) be a non-negative, not identically equal to zero compactly sup-
ported initial datum such that

(u0, v0) ≤ (φ, ψ).

Let (u, v) be the solution of (4.37) arising from (u0, v0). The parabolic comparison
principle Proposition 2.6 implies that

(u, v) ≤ (φ, ψ). (4.40)

However, because 0 ≤ c < cH , the main result of [7], Proposition 1.2 above, when
translated in the moving frame of (4.37), yields

(u(t, x), v(t, x, y)) −→
t→+∞

(

ν

µ
, 1

)

,

locally uniformly in x and (x, y). This contradicts (4.40) because ψ(0, 0) = 1
2
. There-

fore, λH(c) < 0 when c ∈ [0, cH).
Now, take c > cH . If we had λH(c) < 0, we could argue as in the proof of

Theorem 1.4 to show that persistence occurs. However, in view of Proposition 1.2,
this cannot be the case. Hence, λH(c) ≥ 0. Because λH is a continuous function of
c (see [5, Proposition 2.4]), it must be the case that λH(cH) = 0. This concludes the
proof.

The next proposition states that, in some sense, the system (1.10) converges to
the homogeneous system (4.37) as L goes to +∞. In agreement with our previous
notations, we let λ1(c, L) denote the generalized principal eigenvalue of (1.12) with
parameters d,D > 0 fixed and with c ∈ R and nonlinearity fL given by (1.13)
variable.

Proposition 4.5. Let λ1(c, L) be the generalized principal eigenvalue of (1.12) with
nonlinearity fL defined in (1.13). Then

λ1(c, L) −→
L→+∞

λH(c) locally uniformly in c.
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Proof. First, because mL(·, ·, 0) ≤ 1, formulae (2.15) and (4.38) yield

∀L > 0, c ≥ 0, λH(c) ≤ λ1(c, L),

hence
λH(c) ≤ lim inf

L→+∞
λ1(c, L).

Let ε ∈ (0, 1) be fixed. In view of the definition of fL (1.13), for any R > 0, we can
take LR > 0 such that, for L ≥ LR, m

L(x, y, 0) ≥ 1− ε on ΩR. Therefore,

∀R > 0, L ≥ LR, λR1 (c, L) ≤ λRH(c) + ε. (4.41)

Because λR1 (c, L) ≥ λ1(c, L) and by arbitrariness of ε in (4.41), we find that

lim sup
L→+∞

λ1(c, L) ≤ λH(c),

Hence,
λ1(c, L) −→

L→+∞
λH(c).

This convergence is locally uniform with respect to c ≥ 0. Indeed, the continuity
of the functions c 7→ λ1(c, L) and c 7→ λH(c) combined with the fact that the family
(λ1(c, L))L>0 is decreasing and converges pointwise to λH(c) as L goes to +∞ allows
us to apply Dini’s theorem.

We are now in a position to prove Theorem 1.8.

Proof of Theorem 1.8. As explained in the proof of Proposition 4.5 above, we have

∀L ∈ R, c ≥ 0, λH(c) ≤ λ1(c, L).

Owing to Lemma 4.4, we have λH(c) ≥ 0 for every c ≥ cH . By definition of c⋆, we
find that

∀L ∈ R, c⋆ ≤ cH . (4.42)

Take η ∈ (0, cH). Lemma 4.4 yields λH(c) < 0 for every c ∈ [0, cH − η]. Because
λ1(c, L) converges locally uniformly to λH(c) as L goes to +∞, by Proposition 4.5,
we find that there is L⋆ such that

∀L ≥ L⋆, c ∈ [0, cH − η], λ1(c, L) < 0.

Theorem 1.4 then implies that persistence occurs in (1.10) if c ∈ [0, cH − η] and
L ≥ L⋆. It follows from the definition of c⋆ that

∀L ≥ L⋆, c⋆ ≥ cH − η. (4.43)

We can take η arbitrarily close to zero, up to increasing L⋆ if need be. Combining
(4.42) and (4.43) yields the result.

We can now deduce Corollary 1.9 from Theorem 1.8
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Proof of Corollary 1.9. Assume that D > 2d. Consider the system (1.10) with non-
linearity fL given by (1.13). Proposition 1.2 implies that cH > cKPP = 2

√
d, and

then, in view of Theorem 1.8, we can choose L sufficiently large to have c⋆ > cKPP .
Now, taking ψ = e−

c
2d
x in the formula (2.19) and using mL ≤ 1, shows that

λN(c) ≥ c2

4d
− 1. It follows that λN(c) ≥ 0 when c ≥ cKPP . From Propositions 1.1

and 2.9, we infer that cN ≤ cKPP . We eventually conclude that

cN ≤ cKPP < c⋆.

That is, the two statements of the corollary hold with c1 := cN and c2 := c⋆.

5 Extension to more general reaction terms

Throughout the whole paper, up to now, we assumed (1.4), that is, that the favorable
zone is bounded. It is natural to wonder whether this condition can be weakened.
This question turns out to be rather delicate and it is still by and large open.

Nevertheless, we point out that the notion of generalized principal eigenvalue
introduced and studied in [5], and the basic technical facts recalled in Section 2.1,
do not require hypothesis (1.4). However, when it comes to studying the long-time
behavior and the qualitative properties of road-field models of the type (1.10), the
boundedness of the ecological niche is crucial.

For instance, without (1.4), the uniqueness of stationary solutions is not guar-
anteed anymore. In addition, it is not clear that the solutions of road-field models
(1.10) would converge to stationary solutions as t goes to +∞. As a consequence, the
keystone of our analysis, Theorem 1.4 (which states that the sign of λ1 completely
characterizes the long-time behavior of solutions) is not known in this context.

Therefore, in this framework, the notions of persistence and extinction, as stated
in Definition 1.3, do not make much sense. For this reason, we introduce the following
modified notions:

Definition 5.1. For the system (1.10), that is, the system in the moving frame, we
say that

(i) local extinction in the moving frame occurs if every solution arising from a non-
negative compactly supported initial datum converges locally uniformly to zero
as t goes to +∞;

(ii) local persistence in the moving frame occurs if every solution arising from a
non-negative not identically equal to zero compactly supported initial datum
satisfies, for every R > 0,

lim inf
t→+∞

(

inf
x∈IR

u(t, x)

)

> 0, lim inf
t→+∞

(

inf
(x,y)∈ΩR

v(t, x, y)

)

> 0.

The fact that we are working in the moving frame is important. Indeed, in a
system exhibiting a climate change (c 6= 0), if the favorable zone is bounded, i.e.,
(1.4) is verified, then every solution of the road-field model (1.1) in the original frame
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goes to zero locally uniformly as t goes to +∞ (even when we have persistence in the
moving frame).

We have the following weak version of Theorem 1.4:

Theorem 5.2. Let λ1 be the generalized principal eigenvalue of system (1.12), with
m not necessarily satisfying (1.4).

(i) If λ1 < 0, local persistence in the moving frame occurs for (1.10).

(ii) If λ1 > 0, local extinction in the moving frame occurs for (1.10).

The proof of this result is similar to that of Theorem (1.4). We briefly sketch it
here for completeness.

Proof. Let (u, v) be a solution of (1.10) arising from a compactly supported non-null
initial datum.

Statement (i).
As in the proof of statement (i) of Theorem 1.4, we can take R > 0 and ε > 0 such
that ε(φR, ψR) is a stationary subsolution of (1.10) and such that (u(1, ·), v(1, ·, ·) ≥
ε(φR, ψR). Then, the parabolic comparison principle yields that the solution of (1.10)
arising from the initial datum ε(φR, ψR) is time-increasing and converges to a positive
stationary solution, hence statement (i) of Theorem 5.2 follows.

In the proof of statement (i) of Theorem 1.4, we also used ( ν
µ
M,M), with M > 0

large enough, as an initial datum in (1.10) to bound from above (u, v). We could
do the same here. However, for want of an uniqueness result, the solution of (1.10)
arising from ( ν

µ
M,M) may converge to a stationary solution different from the one

obtained by starting with the initial datum ε(φR, ψR).

Statement (ii).
Observe that, for M > 0, the pair Me−λ1t(φ, ψ) is supersolution of (1.10). Taking A
large enough so that (u0, v0) ≤ A, the parabolic comparison principle yields that (u, v)
goes to zero, locally uniformly as t goes to +∞. The converge to zero is only locally
uniform because the generalized principal eigenvalue (φ, ψ) may not be bounded.

Is is natural to wonder whether there are situations where weak extinction occurs
but not extinction. In such situation, the population would move inside favorable
zones but would neither settle definitively there nor go extinct. We leave this as an
open question.

6 Conclusion

We have introduced a model that aims at describing the effect of a line with fast
diffusion (a road) on the dynamics of an ecological niche. We incorporate in the
model the possibility of a climate change. We have found that this model exhibits
two contrasting influences of the road. The first one is that the presence of the line
with fast diffusion can lead to the extinction of a population that would otherwise
persist: the effect of the line is deleterious. On the other hand, if the ecological niche
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is moving, because of a climate change, then there are situations where a population
that would otherwise be doomed to extinction manages to survive thanks to the
presence of the road.

The first result is not a priori intuitive: in our model, the line with fast diffusion
is not lethal, in the sense that there is no death term there. The second result, that
is, the fact that the line can “help” the population, is also surprising, because there
is no reproduction on the line either.

These results are derived through a careful analysis of the properties of a notion of
generalized principal eigenvalue for elliptic systems set in different spatial dimensions,
introduced in our previous work [5].
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