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The elasticity theory of thin plate is applied to appropriate mirror thickness distributions and external load configurations for generating optical aberration mode corrections. From the analysis and an experiment, it has been shown that the formulation of the net shearing force of this theory, as found in the classical literature, must be corrected as presented here. The new formulation was validated and applied to meniscus form and vase form mirrors generating the correction of third-order astigmatism. Geometrical designs based on vase form thickness distributions also allow obtaining diffraction-limited deformations with a reduced set of four perimeter forces only. These active optics configurations, which show two concentric zones of constant thickness, are useful solutions to generate astigmatism corrections by a saddle-like flexure on flat or spherical surfaces -with glass or metal substrates -then providing hyperbolic-paraboloid or toroid shapes respectively.

Introduction -Elasticity and Optics

Elasticity analyses and optical designs of mirrors for astronomy allow the optimization of substrate geometry with appropriate boundary conditions for obtaining an optical surface either by stress polishing or by in-situ stressing. For materials having a linear stress-strain relationship, such as glass and some metal alloys, these methods provide accurate optical deformation modes which fully satisfy diffraction-limited criteria. The highly accurate and remarkably smooth surfaces obtained from active optics methods allow to built new optical systems that use highly aspheric and non-axisymmetricsometime called freeform -surfaces. The elasticity theory of thin plates is extremely useful for the research and optimization of obtaining aspheric surfaces with constant thickness distribution (CTD), this mainly because CTDs is drastically the only way for superposing many optical modes.

Optimal elasticity configurations can be found for obtaining by flexure particular optical modes such as the curvature mode Cv 1, represented in cylindrical coordinates by z = A 20 r 2 , or the three 3 rd -order aberration modes spherical aberration, coma and astigmatism -Sphe 3, Coma 3, Astm 3 represented by z ∝ r 4 , r 3 cos θ, r 2 cos 2θ respectively -or either some optical mode of the general form z n,m = A nm r n cos mθ, [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF] where n and m are integers such as m ≤ n and n + m even ≥ 2. For n + m ≥ 4, the aberration order of an optical mode is usually defined by the value n + m -1. The first-order two modes T ilt 1 and Cv 1 form the Gaussian terms of optics, or the dioptrics modes. The set of all z n,m optical modes belongs to a triangle matrix called the Seidel modes.

Because applying a non-uniform load over all the surface of a plate is a difficulty, for practicable reasons one restrains here to cases of circular plates where only an external uniform load q = constant , or nothing, q = 0 , are applied all over the clear optical aperture of a circular mirror. Generating by flexure a non-axisymmetric mode leads to apply force distributions along the mirror contourmodulated in mθ azimuthal angle -in order to provide the requested shearing forces and bending moments at the contour boundaries. Axisymmetric and non-axisymmetric flexural modes of a circular plate where first derived by Poisson and Clebsch respectively. These results reduced to solve the bi-laplacian equation ∇ 2 ∇ 2 z -q/D = 0, where D is a constant -called rigidity -related to the plate thickness t by D ∝ t 3 . The flexural modes which are solutions of this equation are called Clebsch modes.

Investigations carried out with variable thickness distribution (VTD) circular plates [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF] for obtaining Seidel modes generally lead to configurations which do not allow the superposition of the modes, or coadding modes, except for Cv 1 and Astm 1 which both have the same cycloid-like VTD. In order to achieve a high degree of aberration correction, the main goal from optics is to fully benefit from the coaddition capability of elastic modes, then obtaining aspheric optical mirrors which could provide the best imaging quality. Compared to VTDs, the reason of coaddition capability lead us to investigate hereafter only the case of constant thickness distributions (CTD).

Research of configurations where the flexural Clebsch-modes have the same form as optical Seidelmodes are investigated for two configuration classes : single thickness plates and double concentric zone plates, with one or two constant zonal thicknesses, i.e. mirror plates belonging to CTDs. For mirrors having a moderate optical power, these later configurations are called meniscus forms and vase forms respectively.

Elasticity theory of thin plates with constant thickness distributions -CTDs

Because of some discrepancies in the homogeneity of sign conventions found in books and literature on thin plate deformations, one have found useful to reformulate hereafter the classic theory of thin plates.

For further simplification in the notations, one use to introduce the rigidity D of a plate as related to its thickness t by

D = E t 3 / [12(1 -ν 2 )], (2) 
where the Young modulus E and Poisson's ratio ν are constant quantities depending on the material.

In the case of plates with a variable thickness distribution (VTD) the rigidity D is not a constant. Theoretical investigations with axisymmetric thickness plates -i.e. rigidity of the form D(r) -lead to obtain flexural modes satisfying the optics Seidel modes with very simple boundary conditions [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF][START_REF] Lemaitre | Compensation des aberrations par élasticité[END_REF]. Nevertheless, due to the extreme difficulty to realize the superposition of these flexural mode, one restrain below to the case constant thickness distributions (CTD), i.e. D = constant.

Considering CTD plates and a cylindrical coordinate system, the radial and tangential bending moments and twisting moment, per unit length, can be defined by

M r = D [ ∂ 2 z ∂r 2 + ν ( 1 r ∂z ∂r + 1 r 2 ∂ 2 z ∂θ 2 )] , ( 3.1) 
M t = D [ 1 r ∂z ∂r + 1 r 2 ∂ 2 z ∂θ 2 + ν ∂ 2 z ∂r 2
] , (3.2)

M rt = M tr = (1 -ν) D [ 1 r 2 ∂z ∂θ - 1 r ∂ 2 z ∂r∂θ ] . (3.3)
where in this representation of flexural moments, → a positive flexure entails a positive radial bending moment M r applied at r = a for generating the fundamental Cv 1 mode z 2,0 = A 20 r 2 (curvature mode). For z nm modes with m = n, we may also verify that M r is positive in the x, z section i.e. if y = θ = 0. This sign convention is natural and in agreement with the generally used optics convention:

→ A curved surface z 20 is of positive curvature if ∀ r, z 20 (r) > z 20 (0).
Since the Laplacian is

∇ 2 z = ∂ 2 z ∂r 2 + 1 r ∂z ∂r + 1 r 2 ∂ 2 z ∂θ 2 , ( 4 
)
the bending moments satisfy

M r + M t = (1 + ν) D(r, θ) ∇ 2 z . ( 5 
)
The determination of radial and tangential shearing forces, Q r and Q t respectively, as functions of the flexural moments, is derived from the equilibrium of a segment element r dθ dr around the tangential axis Oτ ′ parallel to ωτ , and around the radial axis Oω respectively (Fig. 1).

Fig. 1.

Bending moments, twisting moment and shearing force providing the equilibrium of plate element r dθ dr.

For the radial shearing force Q r , the resulting components around Oτ ′ are

Q r r dθ dr + ∂ ∂r (rM r ) dθ dr -M t dθ dr - ∂M rt ∂θ dθ dr = 0 ,
where the third term in M t is the sum of two components tilted of ± dθ/2 from the radial axis Oω.

After simplification and use of eqs.(3), the radial shearing force is represented by

Q r = - ∂M r ∂r - 1 r ( M r -M t - ∂M rt ∂θ ) = -D ∂ ∂r (∇ 2 z) . ( 6 
)
The tangential shearing force Q t is derived from the moments around Oω. The resulting components are Q t r dθ dr + ∂M t ∂θ dθ dr -M rt dθ dr -∂ ∂r (rM rt ) dθ dr = 0 , and after simplification and use of eqs.(3), the tangential shearing force is

Q t = - 1 r ( ∂M t ∂θ -2 M rt ) + ∂M rt ∂r = -D 1 r ∂ ∂θ (∇ 2 z) , (7) 
Fig. 2. External uniform load q applied to plate element and shearing forces providing the equilibrium of a plate element in z-direction.

The net shearing force V r , first derived by Kirchhoff [START_REF] Kirchhoff | Uber das gleichewicht und die bewegung iener elastischen scheibe[END_REF][START_REF] Kirchhoff | Vorlesungen über Mathematische Physik : Mechanik[END_REF], takes into account the variation of the twisting moment M rt . Accordingly to the sign convention for the three flexural moments, the net shearing force [START_REF] Lemaitre | Active optics : Vase or meniscus multimode mirros and degenerated monomode configurations[END_REF] 

is 1 V r = Q r - 1 r ∂M rt ∂θ . ( 8 
)
The force V r , which represents the axial resultant acting at a plate radius r, is useful to define a boundary condition -known as Kirchhoff's condition -at the edge : if a plate is with free edge, then V r = 0 at its contour. After substitution of Q r and M rt , and since here D = constant, we obtain

V r = -D ∂ ∂r (∇ 2 z) + (1 -ν) D 1 r ∂ ∂r ( 1 r ∂ 2 z ∂θ 2 ) . (9) 
The external uniform load q , applied per unit area onto the surface of the elementary segment, is in static equilibrium with the shearing forces (Fig. 2). After dividing the terms of the equilibrium equation by element area r dθ dr,

1 r [ ∂ ∂r (rQ r ) + ∂Q t ∂θ ] + q = 0 . ( 10 
)
This partial derivative equation linking the shearing forces to a uniform load q is a general relation applying either to variable thickness plates (VTD) or constant thickness plates (CTD). Restraining to the case of constant thickness plates -CTDs -for reasons of coaddition mode capability (cf. §1), i.e. a rigidity D = constant, we obtain from eqs.( 6) and [START_REF] Timoshenko | Theory of Plates and Shells[END_REF],

∇ 2 ∇ 2 z(r, θ) -q/D = 0, with D = E t 3 / [12(1 -ν 2 )] = constant, ( 11 
)
which is the fundamental biharmonic equation of thin plate theory of circular plate [START_REF] Timoshenko | Theory of Plates and Shells[END_REF][START_REF] Reissner | Stresses and small displacements of shallow spherical shells -II[END_REF], also called Poisson's equation of elasticity.

1 The present positive sign convention for the bending moments M r and M t -cf. in detail below eqs.(3)-provides a logical representation of the flexure. It was used independently by Lubliner and Nelson [START_REF] Lubliner | Stress mirror polishing[END_REF] without comments. However, a negative sign convention has been used by other authors. As shown here in Fig. 1 especially drawn for this, the variation of the bending moment Mr along the radial direction entails that : a positive curvature mode z20 is generated by a positive bending moment Mr for increasing values of radius r.

There is an error in Theory of Plates and Shells by Timoshenko and Woinowsky-Krieger (TWK) [START_REF] Timoshenko | Theory of Plates and Shells[END_REF] at Eq. (j) p. 284 : Their convention uses a negative sign in the definition of the three moments M r , M t and M rt while the sign of their shearing forces Q r and Q t with respect to the Laplacian term is as above equations ( 6) and [START_REF] Timoshenko | Theory of Plates and Shells[END_REF]. Hence the correctly associated representation of the net shearing force should be V r = Q r + ∂M rt /(r ∂r), with their notation.

Several other authors as well use twk's negative sign convention or the present positive sign convention in defining the two bending moments, but the torsion moment M rt appears with an opposite sign whatever used convention. In order to respect the equilibrium equations of statics, the sign before M rt is also changed in those equations so the Poisson biharmonic equation is satisfied. However there is an error in the sign before ∂Mrt/(r ∂r). A similar error in the definition of Vr seems also to appear in the article by E. Reissner on his Shallow Spherical Shells [Theory] [START_REF] Reissner | Stresses and small displacements of shallow spherical shells -II[END_REF].

Case 1 -Null uniform load : q = 0. The general solutions of eq.( 11) are of the form

Z = R n0 + ∞ ∑ m=1 R nm cos mθ + ∞ ∑ m=1 R ′ nm sin mθ , ( 12 
)
where R n0 , R n1 , ..., R ′ n1 , ... are function of the radial distance only. For simplification, one will retrain this study to deformation terms with cosine azimuth only, as proposed by eq.( 1), for obtaining optical modes z n,m -also denoted z nm . Then we consider hereafter only terms where R ′ nm vanish,

R ′ nm (r) = 0 .
Quantities R nm (r) are solutions of

( d 2 dr 2 + 1 r d dr - m 2 r 2 )( d 2 R nm dr 2 + 1 r dR nm dr - m 2 r 2 R nm ) = 0 . ( 13 
)
For m = 0, m = 1 and m > 1, the functions R nm of the general solutions -called Clebsch's polynomials [START_REF] Clebsch | Théorie de l'Elasticité des Corps Solides[END_REF] -have the following forms

R n0 = B n0 + C n0 ln r + D n0 r 2 + E n0 r 2 ln r , ( 14.1 
)

R n1 = B n1 r + C n1 r -1 + D n1 r 3 + E n1 r ln r , ( 14.2 
)

R nm = B nm r m + C nm r -m + D nm r m+2 + E nm r -m+2 . (14.3)
Case 2 -Uniform load -q = consatnt. The general solution of the biharmonic equation ( 11) is unique and axisymmetric, i.e. where R nm = 0 for m ̸ = 0. It is then parented to eq.( 14.1) but include a fifth term in r 4 ,

R n0 = q 64D r 4 + B n0 + C n0 ln r + D n0 r 2 + E n0 r 2 ln r , ( 14.4) 
N.B. -The logarithm terms in eqs.(14.1) and (14.4) are to be considered as follow : Both C n0 ln r and E n0 r 2 ln r terms apply to holed plates whilst the E n0 r 2 ln r term alone is relative to a concentrated load acting at the center of the circular plate.

Solution families generating Seidel optical modes

One usually characterize the optical power of a mirror of curvature 1/R and clear aperture d by its aperture-ratio f /d = R/(2d). For mirrors with relatively low f -ratios, say, f /5 (e.i. f /d = 5), f /4, up to f /3, the sag due to its curvature is relatively low, so the stresses induced in the middle surface of the meniscus plate remains very low and do not require using the theory of shallow spherical shells [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF]. Assuming that this condition is fulfilled, the thin plate theory is applied to either CTD plane mirrors or CTD meniscus mirrors.

One researches configurations able to generate flexure of a CTD circular plate identical to the shape of a wavefront optical mode, also called Seidel mode. These modes belong to a circular polynomial series. Each mode is represented by

z ≡ z nm = A nm r n cos mθ , with m ≤ n , m + n even ≥ 2 , ( 15 
)
and where n and m are integers. Given the condition m ≤ n, the series development of such optics modes generates the terms of a triangular matrix. For low-order modes we use the simple suffix denotation nm instead of n, m. With m + n = 4, the three terms coming after the dioptrics are the primary aberration modes z 40 , z 31 and z 22 , i.e. spherical aberration, coma and astigmatism respectively, also denoted Sphe 3, Coma 3 and Astm 3.

The following derivative elements, ∂ 2 z ∂r 2 = n(n -1) A nm r n-2 cos mθ , (16.1)

1 r ∂z ∂r + 1 r 2 ∂ 2 z ∂θ 2 = (n -m 2 ) A nm r n-2 cos mθ , (16.2) ∇ 2 z = [ n(n -1) + (n -m 2 ) ] A nm r n-2 cos mθ , (16.3)
allows determining the bilaplacian ∇ 2 ∇ 2 z. After substitution in [START_REF] Flamant | Mémoire sur la Torsion des Prismes[END_REF], we obtain

A nm (n 2 -m 2 ) [(n -2) 2 -m 2 ] r n-4 cos mθ -q /D = 0 with n ≥ 2 . ( 17 
)
The Clebsch solutions are combinations of n and m for which the equation can be solved for practicable applications -i.e. uniform load q = 0 or q = constant -are

     Case 1 : q = 0 -→ m = n , i.e. z 22 , z 33 , z 44 , ... terms, -→ m = n -2,
i.e. z 20 , z 31 , z 42 , ... terms, Case 2 : q = constant → n = 4, m = 0, i.e. the z 40 term.

(

) 18 
→ These solutions belong to a subclass of Seidel modes to be called Clebsch-Seidel modes.

Except for z 40 mode, the other modes belong the two lower diagonals of the optics triangle matrix (Table 1). The generation of z 20 ≡ Cv 1, z 40 ≡ Sphe 3, z 31 ≡ Coma 3, z 22 ≡ Astm 3, z 42 ≡ Astm 5, z 33 ≡ T ri 5, z 53 ≡ T ri 7, z 44 ≡ Squa 7, ... modes is obtained, while it is found not possible to generate the two other 5th-order modes z 51 ≡ Coma 5 or z 60 ≡ Sphe 5 by only using q = 0 or a uniform loading q = constant. Generating z 51 would require a prismatic loading while for z 60 a parabolic loading. Due the extreme difficulties to achieve them in practice, such non-uniform loading distributions are not considered hereafter. 

Meniscus form mirrors generating Clebsch-Seidel modes

One usually characterize the optical power of a mirror of curvature 1/R and clear aperture d by its aperture-ratio f /d = R/(2d). For mirrors with relatively low f -ratios, say, f /5 (e.i. f /d = 5), f /4, up to f /3, the sag due to its curvature is relatively low, so the stresses induced in the middle surface of the meniscus plate remains very low and do not require using the theory of shallow spherical shells [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF]. Assuming that this condition is fulfilled, the thin plate theory is applied to either CTD plane mirrors or CTD meniscus mirrors.

The bending and twisting moments, as derived from eqs.(3), are

M r = D [ n(n -1) + ν(n -m 2 )] A nm r n-2 cos mθ , (19.1) M t = D [ n -m 2 + νn(n -1)] A nm r n-2 cos mθ , ( 19.2) 
M rt = D [ m (n -1)(1 -ν)] A nm r n-2 sin mθ . (19.3)
From ( 6) and ( 9), the radial shearing force Q r and the net shearing force V r are

Q r = -D [ (n -2)(n 2 -m 2 ) ] A nm r n-3 cos mθ , ( 20 
) V r = -D [ (n -2)(n 2 -m 2 ) + (1-ν)(n -1)m 2 ] A nm r n-3 cos mθ . ( 21 
)
For each of the first flexural modes of identical shape to that of optical modes, the bending moment M r and shearing forces Q r and V r at the mirror perimeter r = a and at θ = 0 are the followings : ⋆ with Sphe 3 mode, the uniform loading is q = 64DA 40 .

Mode n m M r (a, 0) Q r (a, 0) V r (a, 0) Cv 1 2 0 2(
For generating a non-axisymmetric mode, the required boundary conditions at the contour r = a are defined from the associated bending moment M r (a, θ) and net shearing force V r (a, θ). This requires use of K radial arms clamped to the mirror contour (Fig. 3). A 20 is positive, then the curvature is positive and the sign convention gives also M r > 0.

The total number K of implemented radial arms depends on the type of mode and of the number of modes to be superposed. The rigidity of the meniscus must be optimized for an admissible stress level of the material. The intensity of axial forces F a,k and F c,k to apply, at r = a and at the end r = c of radial arms clamped onto the edge, are derived from static equilibrium relationships

F a,k + F c,k = a ∫ π(2k-1)/K π(2k-3)/K V r (a, θ) dθ , (23.1) (c -a) F c,k = a ∫ π(2k-1)/K π(2k-3)/K M r (a, θ) dθ , ( 23.2) 
with k = 1, 2, ..., K for a mirror having K radial arms.

Coaddition of various modes is obtained by summing the corresponding forces. The resulting forces to apply, F a,k and F c,k , are

F a,k = ∑ n,m modes F a,k and F c,k = ∑ n,m modes F c,k . ( 24 
)
The resulting mirror geometry with radial arms built-in along the contour and allowing various modes coaddition is called hereafter a multimode deformable mirror or MDM.

Meniscus form with special arm geometry for the astigmatism mode

The 3 rd -order astigmatism aberration, Astm 3, is an off-axis aberration which appears on any optical beams reflected by a convex or concave spherical mirror when the principal ray of the beam is not reflected perpendicularly to the mirror surface, i.e. when this beam is deviated by the mirror.

Generating the Astm 3 mode by active optics on a meniscus mirror requires use of a minimum number of four radial arms, K = 4, angularly distributed at θ = 0, π/2, π and 3π/2. This would generally entail applying a set of four forces F a,k at the mirror edge r = a and a set of four forces F c,k at the outer ends of the arms r = c. However a special design with only four F c,k forces can be obtained by ensuring the convenient distributions of M r a, θ and V r a, θ. Stating that F a,k = 0, we obtain from k = 1 to 4, from eqs.(23),

∫ π(2k-1)/4 π(2k-3)/4 V r (a, θ) dθ = 1 a -c ∫ π(2k-1)/4 π(2k-3)/4 M r (a, θ) dθ , ( 25 
)
After substitution of M r and V r by their values in (22.4), the radial c value of the arm end is

c = a/2 . ( 26 
)
This very simple geometry reduces the number of forces to four instead of height, then is called degenerated configuration. The four arms must be folded towards the mirror center (Fig. x and y. Because ∀ F a,k = 0 avoid use of height forces, we call it a degenerated configuration. The boundaries are realized via arches linked to the mirror edge by two thin tangential stripes, 22.5 • separated, then providing a best azimuth modulation in cos 2θ for generating M r and V r .

The set of four forces F c,k is by itself in equilibrium -or self-reacting. The force intensities and directions are, from (23.1),

F c,k = (-1) k 4(1 -ν) D A 22 = (-1) k E t 3 3(1 + ν) A 22 , with k = 1, 2, 3, 4. (27) 
N.B.: One can show as a general result that Clebsch-Seidel modes with m = n, such as T ri 5 mode A 33 r 3 cos 3θ, can benefit for these simple degenerated configurations where F a,k = 0. [1]

Vase form and multimode deformable mirrors -MDMs

Saint-Venant's pinciple of equivalence and vase form

In order to generate very smooth optical surfaces by active optics, one has to avoid or minimize the effects of local deformations at the regions where the forces are applied. These local deformations are well known from analyses with the thick plate theory [cf. TWK] which takes into account the shear stresses and shows that the amplitude of the flexure varies along the thickness of the plate and is a maximum where the forces are applied.

With the meniscus plate treated in the previous section for correcting astigmatism, the proximity of the forces applied at the mirror contour entails to built a mirror somewhat larger than that of its clear aperture. Another alternative to avoid these local deformations at the mirror surface is to develop a vase form design. This is made of two concentric zones -each of them of constant thickness -where the outer ring is thicker than the inner meniscus. The diameter of the meniscus corresponds to that of the mirror clear aperture.

Saint-Venant enounced a useful principle which introduced some flexibility for practical applications of the boundary conditions. 2 We recall that a set of forces define a torsor which, at any given point, is globally represented by a resultant force and a resultant moment. An excellent statement of Saint-Venant's principle of equivalence has been given by Germain & Muller [START_REF] Germain | Introduction à la Mécanique des Milieux Continus[END_REF] as follows :

→ If one substitutes a first distribution of given surface forces F, acting on a part δA B of a boundary area, by a second one acting on the neighborhood and determining the same torsor whilst the other boundary conditions on the complementary parts of A B relatively to A remain unchanged, then, in all regions of A sufficiently distant from A B the stress and strain components are practically unchanged.

The application of Saint-Venant's principle allows determining equivalent loading configurations at the contour of a solid (Fig. 5). boundary of an axisymmetric vase form mirror. The optical clear aperture is that of the junction zone. Configuration on right : Local deformations at force application zones will not affect the optical figure.

Vase form and radial arms geometrical design

Let us consider a plane MDM with a clear aperture zone defined by 0 ≤ r < a, a built-in ring zone defined by a < r ≤ b , where t 1 , t 2 and D 1 , D 2 are the thicknesses and associated rigidities of the inner and outer zones respectively. The axial forces applied to the ring inner radius, r = a, are denoted F a,k ; those applied to the arm outer-end, at r = c, are F c,k . With a total number of K arms, each arm is numbered by k ∈ [1, 2, ..., K] and k = 1 ⇔ θ = 0. In addition, positive or negative uniform loads q can be superposed into vase inner zone by mean of air pressure or depressure (Fig. 6). • Inner and outer zone -Rigidity ratio : The constant rigidities of inner and outer zones of the vase form can be denoted D 1 and D 2 respectively, where

{ D 1 = Et 3 1 / [12(1 -ν 2 )] for 0 ≤ r ≤ a, D 2 = Et 3 2 / [12(1 -ν 2 )] for a ≤ r ≤ b. ( 28 
)
Let introduce the rigidity ratio γ between the two zones as

γ = D 1 /D 2 = t 3 1 / t 3 2
where γ < 1 for a vase form.

(29)

• Continuity conditions : The continuity conditions on z, ∂z/∂r, M r and V r at the junction r = a, ∀ θ , are respectively, after simplifications, A nm a n = R nm (a) , (30.1)

A nm n a n-1 = [ dR nm dr ] r=a , (30, 2) A nm [n(n-1) + ν(n-m 2 )] a n-2 = 1 γ [ d 2 R nm dr 2 + ν r dR nm dr - νm 2 r 2 R nm ] r=a , (30.3) A nm [ (n-2)(n 2 -m 2 ) + (1-ν)(n-1)m 2 ] a n-3 = 1 γ [ d 3 R nm dr 3 + 1 r d 2 R nm dr 2 - 1+ν m 2 r 2 dR nm dr + (1+ν)m 2 r 3 R nm ] r=a . (30.4) (31.5)
Triangle 5th-order mode -T ri 5, n = 3, m = 3,

B33 = [ 2 + (1 -γ)(1 -ν) ] A33/ 2 C33 = -(1 -γ)(1 -ν) a 6 A33/ 8 D33 = -3 (1 -γ)(1 -ν) a -2 A33/ 8 E33 = 0 Mr(b, 0) = 2 D2 [3(1 -ν)B33b + 6(1 -ν)C33/ b 5 + 2(5 -ν)D33b 3 + (1 -5ν)E33/ b 3 ] Qr(b, 0) = -24 D2 [2D33b 2 + E33/ b 4 ] Vr(b, 0) = -6 D2 [3(1 -ν)B33 -6(1 -ν)C33/ b 6 + 2(7 -3ν)D33b 2 + (1 + 3ν)E33/ b 4 ]
(31.6)

• Monomode forces F a,k and F c,k : In order to generate the bending moments M r and net shearing forces V r at r=b for a given mode z nm , we may remark that the MDM design gains in compactness by applying axial forces at r = a and r = c instead of at r = b and r = c. For each mode (n, m), the corresponding axial forces denoted F a,k and F c,k are determined from the statics equilibrium equations (cf. Fig. 6),

F a,k + F c,k = b ∫ π(2k-1)/K π(2k-3)/K V r (b, θ) dθ , (32.1) (a -b)F a,k + (c -b)F c,k = b ∫ π(2k-1)/K π(2k-3)/K M r (b, θ) dθ , ( 32.2) 
with k = 1, 2, ..., K for a MDM having K arms.

• Resultant multimode forces F a,k and F c,k : The forces F a,k and F c,k are determined for each mode by solving this system. The coaddition of various modes is obtained by summing the corresponding forces. The resultant forces F a,k and F c,k to apply to the MDM are

F a,k = ∑ nm modes F a,k and F c,k = ∑ nm modes F c,k (33) 

Vase form MDM with 12 radial arms -Experiment and results

A stainless steel MDM with 12-arm (K=12) was designed and built in quenched Fe87 Cr13 alloy [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF](Fig. 7). Its optical clear aperture is 2a = 160mm. Table 2 displays The 3 rd -order astigmatism aberration, Astm 3, is caused by the reflection of a non-focused beam on a spherical mirror when the principal ray of the incident beam is not reflected perpendicularly to mirror surface but make a deviation angle with respect to this incident ray. As a characterization the reflected beam shows two different curvatures in orthogonal directions.

The correction of Astm 3 can be achieved by use of a deformed plane mirror or a deformed spherical mirror which shape is a hyperbolic-paraboloid or a toroid respectively.

Vase form configurations using 4 forces without arms instead of 8 forces with K = 4 arms -then called degenerated configurations -are presented hereafter for correcting the Astm 3 mode. These configurations bring interesting solutions for practical applications. These solutions, where all F c,k = 0, just use a vase form and 4 forces only applied at the rear side of outer ring.

Analysis and theoretical results -Degenerated configurations

• Forces F a,k applied to the inner edge of the ring : Eliminating F a,k in eqs.(32), we deduce F c,k . After nulling these forces, we obtain for the quadrant centered at θ = 0, i.e. k = 1, (b -a)

∫ π/4 -π/4 V r (b, θ) dθ + ∫ π/4 -π/4 M r (b, θ) dθ = 0 . ( 34 
)
Since V r and M r have the same modulation in cos 2θ, this condition leads, for θ = 0, to

(b -a) V r (b, 0) + M r (b, 0) = 0 . ( 35 
)
After substitution of B 22 , C 22 , D 22 and E 22 coefficients expressed by equation set (31.4), the net shearing force and radial bending moment at r = b are respectively

V r (b, 0) = -2(1 -ν)D 2 A 22 ( 1 - a b )[ 2 + 1 2 (1 -γ)(1 -ν) ( 1 - a 4 b 4 ) -(1 -γ)(3 -ν) b 2 a 2
] , (36.1)

M r (b, 0) = 2(1 -ν)D 2 A 22 [ 1 -(1 -γ) b 2 a 2 + 1 4 (1 -γ)(1 -ν) ( 1 - a 4 b 4 )] . (36.2)
The substitution in eq.( 35) leads to the condition

1 - a b - 1 1-γ -b 2 a 2 + 1 4 (1 -ν) ( 1 -a 4 b 4 ) 2 1-γ -(3 -ν) b 2 a 2 + 1 2 (1 -ν) ( 1 -a 4 b 4 ) = 0 , ( 37 
)
where

γ = D 1 /D 2 = (t 1 /t 2 ) 1/3 < 1.
Although the b/a ratio must be close to unity for practicable reasons, solutions t 2 /t 1 can be found for a < b < 1.15 a (Fig. 9)(Table 2). • Forces F b,k applied to the outer edge of the ring : Assuming that the forces are applied to each end of radial arms at r = b and r = c are denoted F b,k and F c,k respectively, the equations from statics equilibrium writes, for k = 1, 2, 3 and 4,

F b,k + F c,k = b ∫ π(2k-1)/4 π(2k-3)/4 V r (b, θ) dθ , (38.1) (c -b) F c,k = b ∫ π(2k-1)/4 π(2k-3)/4 M r (b, θ) dθ . (38.2)
Researching a condition for nulling F c,k , from (3.1) and ( 14.3), we have for the outer ring,

M r = D 2 [ ∂ 2 z ∂r 2 + ν ( 1 r ∂z ∂r + 1 r 2 ∂ 2 z ∂θ 2 )] , ( 39 
) z = R 22 cos 2θ = (B 22 r 2 + C 22 r -2 + D 22 r 4 + E 22 ) cos 2θ , ( 40 
)
where the rigidity D 2 of the outer ring is a constant. This leads to

M r = 2D 2 [ (1 -ν)B 22 + 3(1 -ν)C 22 r -4 + 6 D 22 r 2 ] cos 2θ . ( 41 
)
The integration on θ from -π/4 to π/4 of eq.(38.2) is not necessary since one search to null M r for nulling F c,k . Then, using the analytical value of B 22 , C 22 , D 22 and E 22 coefficients in (31.4), a necessary condition is given by M r (r = b, θ = 0) = 0. After substitution and simplification, we obtain the condition 4

1 -γ + 1 -ν -(1 -ν) a 4 b 4 -4 b 2 a 2 = 0 , ( 42 
)
where γ = D 1 /D 2 = (t 1 /t 2 ) 1/3 < 1.
This equation admits solutions t 2 /t 1 for b/a-ratios such as 1 < b/a < 1.15 (Fig. 9-B)(Table 3). • Forces F m,k applied to the middle circle of the ring rear area : For practical reasons it has been found convenient to achieve the astigmatism deformation Astm 3 of a vase form mirror with four orthogonal forces F m,k applied at the mid circle r = 1 2 (a + b) of the rear side of the outer ring (Fig. 9-C). The corresponding vase form geometries with F c,k = 0 can be deduced by adopting the mean values t 2 /t 1 of previous Tables 2 and3 (Table 4). 

Boundary conditions for practical applications

Above solutions to generate the Astm 3 mode provide a pure and accurate parabolic flexure in radial directions, however obtaining an accurate cos 2θ modulation along the perimeter surface requires use of appropriate boundary conditions. Because each of four F m,k forces are discrete, as resulting from integrations of a continuous force distribution f cos 2θ dθ which should be applied all along the perimeter, it is preferable to not apply the four forces directly to the outer ring but to adopt one of the following alternative designs.

• Outer ring with variation of the axial thickness : The rear side of the ring departs from a flat surface and shows four wedged shapes where each forces F m,k are applied. The variation of the axial thickness t 2 along the ring distributes a smooth and accurate flexure in cos 2θ with only four forces applied at the wedges. The axial thickness t 2 (θ) in a quadrant, designed and optimized by Hugot et al. [START_REF] Hugot | Active Optics : stress polishing of toric mirrors for the Vlt Sphere adaptive optics system[END_REF][START_REF] Hugot | Active optics methods for exoplanet direct imaging. Stress polishing of supersmooth aspherics for VLT-SPHERE planet finder[END_REF], is

t 2 (θ) = λ t 1 [ (1/2 -2θ/π) cos 2θ ] 1/3 , 0 ≤ θ ≤ π/2 , ( 43 
)
which satisfies t 2 (θ) = t 2 ( π 2 -θ) and leads to t 2 (0)/t 2 (π/4) = 3 √ π/2 = 1.162... and where λ is a constant depending on b/a, ν and E. In fact the four wedges are not made angularly sharp but show a square flat area to allow sealing a removable metal part used for the force applications with springs (Fig. 10). This vase form alternative has been designed and built for three spherical concave mirrors in Zerodur (ν = 0.24) bring to various toroid shapes by stress figuring. These off-axis mirrors belong to the main optical train of Sphere, the new planet finder instrument of Eso-Vlt. • Outer ring with forces acting on angular bridges : In this alternative one still have a ring of constant thickness t 2 but instead of directly applying the external force F m,k in a direction where the angular modulations are at maximum amplitude, one subdivides each forces into two equal force components via bridges linked to the ring. Each of four forces acts at the center of a bridge. The two arch feet are linked to the ring by tangentially thin ends that are equivalent to articulations. These bridges can be made of metal and removable for glass mirror substrates. A smooth and accurate cos 2θ modulation of the flexure is achieved when the angular separation of the two arch ends is ∆θ = π/16 = 22.5 • . Deformable active matrices with four bridges (Fig. 11) were first designed and built for makingvia replications process -the toroid gratings of single surface spectrographs Cds and Uvcs of the Soho Mission Esa/Nasa for solar studies at Lagrange point L 1 . In this case the thickness t 1 was not a constant but of the cycloid-like form (1-r 2 /a 2 ) 1/3 simply supported by thin collar to the outer ring [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF]. For applications, a detailed geometry of each above vase form alternatives can be optimized with finite element analysis. Beside making a design much under the maximum admissible stress σ ult of the material substrate, a useful parameter is the determination of the bending force intensities. Starting from eq.(38.1) and using eq. set (31.4), and assuming that b and a are about similar i.e. F m,k ≃ F b,k , we obtain as a first approximation for k = 1,

F m,1 ≃ F b,1 = -(1 -ν)(1 -γ) [ 4 
1 -γ + 1 -ν + (1 -ν) a 4 b 4 -2(3 -ν) b 2 a 2 ] D 2 A 22 . ( 44 
)
From condition given by eq.( 42), and for the four forces,

F m,k = -(-1) k 2(1 -ν) 2 (1 -γ) ( b 2 a 2 - a 4 b 4 ) D 2 A 22 , k = 1, 2, 3, 4 . ( 45 
)
This set of forces is by itself in static equilibrium, i.e. self-reacting.

Conclusions

Deformable vase form substrates can provide a highly accurate flexure for correcting the primary astigmatism aberration Astm 3 within diffraction limited criteria. Two alternative boundary configurations applied to this design allow use of four self-reacting forces only which are located far from the optical surface in agreement with Saint-Venant principle.

The substrate material can be either a vitro-ceram glass such as Zerodur or a metal alloy with linear stress-strain relationship as chromium stainless steel in a quenched state. Vase form designs will find many applications for segmented large telescope mirror segments used off-axis and also in astronomical optics as off-axis mirrors of unobstructed planet finder instruments and for obtaining saddle shaped concave gratings used in spectrographs [START_REF] Lemaitre | Astronomical Optics and Elasticity Theory -Active Optics Methods[END_REF][START_REF] Lemaitre | Active optics with a minimum number of actuators, Review article[END_REF].

More generally, other Clebsch-Seidel modes r n cos mθ, such as those with m = n, can be also accurately generated from vase form geometries and by use of four forces only.

Table 1 .

 1 Triangular matrix of optics Seidel modes. Except for spherical aberration mode Sphe 3, the subclass of Clebsch-Seidel modes -shown in boxes -represented by the diagonal lines m = n and m = n -2.

Fig. 3 .

 3 Fig. 3. Sign convention -Meniscus form deformable mirror. K clamped arms are angularly and uniformly distributed around the mirror. Axial forces F a,k and F c,k act respectively at radii r = a and r = c at the ends of radial arm number k. These forces are derived from M r and V r . For the single curvature mode z = A 20 r 2 , ifA 20 is positive, then the curvature is positive and the sign convention gives also M r > 0.

Fig. 4 .

 4 Fig. 4. Configuration of a four-arm meniscus-form mirror generating Astm 3 mode. This uses only two pairs of opposite forces F c,1 = -F c,2 = F c,3 = -F c,4 acting at radius c = a/2 on folded arm ends located in directions

Fig. 5 .

 5 Fig. 5. Saint-Venant's principle of equivalence : example of two equivalent load configurations applied at the 2 Saint-Venant first enounced the equivalence principle in Sur la Torsion des Prismes [11] p. 298-299.

Fig. 6 .

 6 Fig. 6. Elasticity design of a vase form MDM based on two concentric rigidities and radial arms. The clear aperture zone is built-in at r = a into a thicker ring. This holosteric design allows generating and coadding the Clebsch-Seidel deformation modes, Cv 1, Sphe 3, Coma 3, Astm 3, etc, by axial forces F a,k and F c,k applied at the ring inner radius r = a and outer end r = c of K arms.

Fig. 7 .

 7 Fig. 7. View of the twelve-arm vase form and plane MDM. Geometrical parameters are a = 80 mm, b/a = 1.25, c/a = 1.8125, t 1 = 4 mm, t 2 /t 1 = 1/γ 1/3 = 3. Elasticity constants of quenched stainless steel Fe87 Cr13 are E = 2.05×10 4 daN.mm -2 and ν = 0.305. Deformations modes generated by rotation of differential screws at r = a and r = c. Air pressure or depressure can be applied onto rear side of clear aperture r ≤ a for generating

Fig. 9 .

 9 Fig. 9. Vase forme configurations generating Astm 3 -primary astigmatism mode -z 22 = A 22 r 2 cos 2θ with only four forces. (A) Forces F a,k applied to the ring inner edge at r = a. (B) Forces F b,k applied to the ring

Fig. 10 .

 10 Fig. 10. [Left] Alternative design for obtaining a pure cos 2θ modulation of the flexure with four discrete axial forces F m,k applied to a four-wedged outer ring of thickness t 2 (θ). [Center] View of one of three Zerodur toroid mirrors of the Sphere planet finder optical train installed at Vlt-Eso. [Right] He-Ne interferogram of the Astm 3 saddle-like aspherisation after stress polishing and elastic relaxation [Loom and Thales Seso Corp.]

Fig. 11 .

 11 Fig. 11. [Left] Alternative design for obtaining a pure cos 2θ modulated flexure by keeping the ring axial t 2 = constant. The 4 forces F m,k are subdivided into 8 forces via orthogonal bridges with ∆θ = 22.5 • angular arch separation. [Center] View of the one-piece stainless steel matrix for making concave toroid gratings, via replicas, for the single surface spectrographs Cds and Uvcs of Soho Mission. [Right] He-Ne fringes of the Astm 3 saddle-like aspherisation [Loom, Eth-Zurich and Bach Research Corp.]

  

Table 2 -

 2 Solution for vase form mirror geometries generating the Astm 3 mode z 22 with only four forces F a,k -i.e. ∀ F c,k = 0 -applied at the inner edge r = a of the ring. The ratios b/a and t 2 /t 1 are given with respect to Poisson's coefficient ν.

	b/a		1.050 1.075 1.100 1.125 1.150
	ν = 0.15	t2/t1	2.21	1.96	1.80	1.69	1.60
	ν = 0.20	t2/t1	2.22	1.96	1.80	1.69	1.61
	ν = 0.30	t2/t1	2.23	1.97	1.81	1.70	1.62

Table 3 -

 3 Solution for vase form mirror geometries generating the Astm 3 mode z 22 with only four forces F b,k -i.e. ∀ F c,k = 0 -applied at the outer edge r = b of the ring. The ratios b/a and t 2 /t 1 are given with respect to Poisson's coefficient ν.

	b/a		1.050 1.075 1.100 1.125 1.150
	ν = 0.15	t2/t1	2.54	2.21	2.00	1.85	1.74
	ν = 0.20	t2/t1	2.52	2.19	1.98	1.84	1.73
	ν = 0.30	t2/t1	2.47	2.15	1.95	1.82	1.71

Table 4 -

 4 Vase form mirror geometries generating the Astm 3 mode z 22 = A 22 r 2 cos 2θ with only four forces F m,k applied at the mid-circle r = 1 2 (a + b) of the rear surface of the ring. The ratios b/a and t 2 /t 1 are given with respect to Poisson's coefficient ν.

	b/a		1.050 1.075 1.100 1.125 1.150
	ν = 0.15	t2/t1	2.38	2.08	1.90	1.77	1.67
	ν = 0.20	t2/t1	2.37	2.07	1.89	1.76	1.67
	ν = 0.30	t2/t1	2.35	2.06	1.88	1.76	1.66
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The above set allows to determine the constants B nm , C nm , D nm and E nm in eqs. [START_REF] Hugot | Active optics methods for exoplanet direct imaging. Stress polishing of supersmooth aspherics for VLT-SPHERE planet finder[END_REF] as functions of A nm , and then the bending moment M r (b, θ) and net shearing force V r (b, θ) distributions to apply at the ring outer edge r = b.

• First Clebsch-Seidel modes : For the first Clebsch-Seidel modes, the substitution of each z nm mode into eqs. (30) and solving of the associate system set lead to the following relation sets :

Spherical aberration 3rd-order mode -Sphe 3, n = 4, m = 0, with q = 64D 1 A 40 ,