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Oriented distance point of view on random sets with
application to shape optimization

M. Dambrine and B. Puig

Abstract: Motivated by free boundary problems under uncertainties, we consider the
oriented distance function as a way to define the expectation for a random compact or open
set. In order to provide a large numbers law and a central limit theorem for this notion of
expectation, we also adress the question of the convergence of the level sets of fn to the level
sets of f when (fn) is a sequence of functions uniformly converging to f . We provide error
estimates in terms of Hausdorff convergence. We illustrate our result on a free boundary
problem.

Key words: Random sets, continuity of level sets, oriented distance functions, large
numbers law, central limit theorem, free boundary problem.

1 Introduction

This work is motivated by the consideration of uncertainties in free boundary problem and
in shape optimization problem. Roughly speaking, we consider situations where a shape
is the output of a mathematical problem like the minimization of a functional or an over
determined boundary value problem and the situation depends of some parameters that
are not exactly known but only through some statistical information over its distribution.
A typical problem we have in mind is the optimal design of a bridge for when the applied
loading (typically the weight of the people on the bridge) is random.

For a fixed value p of the parameter, the problem is a classical shape optimization
problem associated to an objective D 7→ J(D, p) where D stands for a open subset of Rd

in a given class of domain. This question has been widely studied. However, its solution
is a shape in Argmin J(., p) and depends on p. When p is random, the object we are
interested in is a random set. After the first pioneering works of Matheron and Kendall
(see [20],[19], [21]), the study of random sets is receiving growing attention in the statistical
and probabilistic literature. Let us first precise some general notions about random sets
and what will be our point of view on this work.

We fix a dimension d. Let B∞ be a given open ball in Rd of radius R∞, this ball will play
the role of a box and we will consider only subsets of B∞. Let K be the set of all compact
sets contained in B∞. We also denote the probability space by (Ω,A,P). The space K
endowed with the Hausdorff metric (see section 2 for precise definition and properties) is
a complete separable metric space and is then endowed with the Borel σ- field associated
with this metric. A random compact set in B∞ is a measurable function from Ω to K.
As well-known, K is not a vector space but just a metric space: therefore the notion of
expectation of a random compact set is difficult, there is no canonical definition.
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The most usual choice is the so-called Aumann mean since it corresponds to the limit of
the natural Minkowski empirical means. Central Limit Theorems for this case have already
been derived (see [4]). This choice is not satisfactory for our purpose since the Aumann
mean of a random set is convex. If this notion is perfectly suited for situation where the
minimizers are known to be convex, it seems unadapted to application to usual mechanical
devices. In [11], we have explored two possibilities in the context of free boundary problem:
a notion based on a parametrization of the sets and the Vorob’ev mean based on the quan-
tiles of the coverage function of the random set (that is the probability that a given point
belongs to the random set). We would like to choose a notion of mean set adapted to the
shape optimization context, leading to computations that remains realistic and sufficiently
rich to provide a good description of the object.

In this work, we are interested by random sets that arising in shape optimization. We
will make the assumption pertinent in many application to deal in a bounded situation: we
shall consider subset of a fixed ball B∞ that plays the role of a box. In that context, the
compact assumption made in the probabilistic literature is unsuited: the theory of partial
differential equations requires to work with domains that are open sets. Moreover, the usual
existence results for optimal shapes are stated in the class of quasi open set. However, the
optimality conditions usually allow to prove more regularity of the set: typically, one can
expect to deal with open sets with a piecewise smooth boundary. Therefore, an alternative
appears: either, one deals with random compact sets that are closure of open sets, either
one deals directly with random open sets defined as follows. The class O of open subsets
of B∞ is a separable metric space endowed with the Hausdorff distance for open sets (see
Section 2) and a random open set is a measurable function from Ω to O endowed with the
Borel σ- field associated with the Hausdorff distance.

There are two important ways to parametrize domains. The first one is the Hadamard
point of view leading to the shape calculus and the notion of shape derivative: the idea is
to parametrize a domain as the image of a reference domain by a diffeomorphism and to
use the Banach structure of diffeomorphisms to define derivative. The second one is to use
a function f : Rd → R to implicitly define the domain under study D as {x | f(x) < 0} that
will be denoted in the sequel as [f < 0]. We will denote level sets defined by inequalities
or equalities as [f < 0]. This parametrization is the ground of the level set method which
coincides in that context to the shape gradient flow. The leading idea of this work is to
use such an implicit parametrization of shapes to define the expectation. Therefore, we are
interested in basing the notion of mean on the level set functions.

We then have to face a difficulty: the choice of f is not unique. Therefore, in order to
define an expectation, for each compact set K ∈ K, we have to choose a specific function
f such that K = [f ≤ 0]. The natural choice is the oriented distance function to K. Since
some decades, the oriented distance function to a compact set K has become a used way
to describe the property of the set. It has been first used to study the motion by mean
curvature on a theoretical level. Then, Osher and Sethian [22] introduced the level set
method that has become the reference encoding of evolving domains. In shape optimization,
it is used to implement the gradient method [2] or even the Newton method [1] and also
to obtained compactness result on class of domain [12] by exploiting the deep connection
between the geometric properties of the boundary of K and the oriented distance function
to K. Notice that few theoretical convergence results have been obtained for this level
method in the context of shape optimization even at the continuous level [8, 9].

Of course, the oriented distance function is a parametrization and we have to face the
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difficulties of parametrization based approaches to expectation. In particular, it is not
intrinsic but depends on the choice of parametrization. In addition, the natural procedure
to define the expectation of the random domain as the domain whose distance function is the
expectation of the distance functions to the random set makes no sense: the set of distance
functions is not convex: a mean of oriented distance functions is not the oriented distance
to some set (see section 2.2) and we have to consider some relaxation of the definition.

This article is organized as follows. In section 2, we recall the definitions of the Hausdorff
distance and oriented distance functions and provide useful result on their use to implic-
itly represent domains. In section 3, we study approximation properties. The underlying
question is: how far is [fn ≤ 0] from [f ≤ 0] when (fn) is a sequence converging to f ? We
provide condition to prove convergence of the level sets and also convergence rates. Then,
in section 4, we define a notion of expectation of random compact set through oriented
distance functions. It is therefore natural to consider an estimator of this expectation de-
fined like a level set of the empirical mean of this oriented distance function. Some results
of convergences are given. In the last part, an application of these tools to the Bernoulli
exterior free boundary problem is presented.

Notice that many parts of this work can be found spread in the literature on shape
optimization, convex analysis and statistical estimation. In particular, we discovered dur-
ing this work that the notion of oriented distance based expectation was introduced by
Jankowski and Stanberry in [18]. However, we provide many improvements in the results
and we believe to have simplified many proofs in a self contained work.

2 Implicit representation of sequence of sets by distance functions

In this section, we consider various implicit representations of compact sets and provide
technical results that will be used in the sequel.

2.1 Distance functions and Hausdorff convergence.

Let us recall the definition of the Hausdorff distance on K. We first consider compact sets.
Let K1 and K2 in K, then the excess of K1 with respect to K2 is

ρ(K1, K2) = sup
x∈K1

d(x,K2).

The Hausdorff distance is then dH(K1, K2) = sup(ρ(K1, K2), ρ(K2, K1)). As a consequence,
a sequence (Kn) in K Hausdorff converges to K if dH(Kn, K) → 0. This will be denoted

by Kn
H−→ K.

An important property is the characterization of the Hausdorff distance by the distance
functions. For K ∈ K, we set dK : x 7→ d(x,K) and then it holds

dH(K1, K2) = ‖dK1 − dK2‖∞.

Since we will only consider continuous functions defined on the whole Rd, the uniform
convergence on B̄∞ provides the notion of uniform convergence on B∞.

Lemma 2.1. Let Kn be a sequence of compact subsets of B∞ and let K be a compact subset

of B∞. The sequence (dKn) converges uniformly to dK if and only if Kn
H−→ K.
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In particular, this lemma means that the Hausdorff distance does not see to interior
of the compact set and is not suited to study properties of boundaries and that natural
geometric quantities like volume and perimeter are not continuous with respect to this
topology as emphasized as the example 2.6. However, the Hausdorff convergence enjoys
nice properties for monotone sequences of sets ([15, Section 2.2.3.2, page 32]).

Lemma 2.2. A decreasing sequence of nonempty compact sets Hausdorff converges to their
intersection. An increasing sequence of nonempty compact sets converges to the closure of
their union.

We shall also use the following lemma.

Lemma 2.3. Let A1, A2, B1 and B2 be compact sets such that A1 ⊂ Bi ⊂ A2. Then it
holds dH(B1, B2) ≤ dH(A1, A2).

Proof of Lemma 2.3. Notice that if K1 and K2 are two compact sets with K1 ⊂ K2 then
dK2 ≤ dK1 . Hence, dA2 ≤ dBi

≤ dA1 for i = 1, 2 and therefore |dB1(x)− dB2(x)| ≤ |dA1(x)−
dA2(x)| for all x and passing to the supremum we obtain ‖dB1 − dB2‖∞ ≤ ‖dA1 − dA2‖∞. �

The Hausdorff distance is extended to open subsets of B∞ by the definition:

dH(Ω1,Ω2) = dH(B̄∞ \ Ω1, B̄∞ \ Ω2),

when Ω1, Ω2 are open subsets of B∞. It is sometimes called the Hausdorff complementary
distance.

2.2 Oriented distance functions.

Let us recall the main properties of oriented distance functions and their connection with
the Hausdorff distance between compact sets. We first give definition and fix notations.
For any subset A of B∞, the oriented distance function to A is the function bA defined as

bK(A) = d(x,A)− d(x,Ac).

Notice dA = (bA)+ and dAc = (bA)− where (t)+ = max(0, t) is the positive part and where
(t)− = max(0,−t) is the negative part.

The oriented distance function bK provides a nice implicit representation of open and
compact sets.

Lemma 2.4 (Implicit representation of domains by oriented distance function). Let A
denote a non empty subset of Rd.

1. Its closure is given by Ā = [bA ≤ 0]. In particular, if K ∈ K is a compact set then

K = [bK ≤ 0] and ∂K = [bK = 0].

2. If A satisfies
¯̊
A = Ā then Å = [bA < 0].

3. for any real λ and any set A, [bA < λ] ⊂ [bA ≤ λ]. If λ > 0 and K is compact, then
the equality holds [bK < λ] = [bK ≤ λ].
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Proof of Lemma 2.4.
Step 1: Proof of the first point. The inclusion Ā ⊂ [bA ≤ 0] is clear since A is contained in
the closed set [bA ≤ 0]. Conversely, if x is a point where bA(x) ≤ 0, then dA(x) = 0 and,
by definition of the distance, there is a sequence (yn) of points in A such that yn → x. The
characterization of the boundary is stated in [12, Theorem 2-1,(iii),p 338]).

Step 2: case of open sets. We now prove that if A is open then A = [bA < 0]. Indeed, on
the one hand, if bA(x) < 0, then dA(x) = 0 and dAc(x) > 0 hence x /∈ Ac that is to say
x ∈ A. On the other hand if x ∈ A then first dA(x) = 0 and second there is a open ball
centered in x and contained in A so that dAc(x) > 0.

Step 3: Proof of the second point. The interior Å is open and Å = [bÅ < 0] by the

second step. To conclude, it suffices to prove that bÅ = bA. If
¯̊
A = Ā, one also has

∂Å =
¯̊
A \ Å = Ā \ Å = ∂A. Now, we use the equivalence

bB1 = bB2 ⇔ B̄1 = B̄2 and ∂B1 = ∂B2

proved in [12, Theorem 2-1,(ii),p 338]) to deduce that bÅ = bA.

Step 4: Proof of the third point. The inclusion [bA < λ] ⊂ [bA ≤ λ] is clear: any point
x ∈ [bA < λ] is the limit of a sequence (xn) such that bA(xn) < λ then by continuity of bA,
bA(x) ≤ λ.

We now assume λ > 0 and K compact and prove [bK ≤ λ] ⊂ [bK < λ]. Set x ∈ [bK ≤ λ].
If x ∈ K, then B(x, λ) ⊂ [bK < λ] and x ∈ [bK < λ]. If x /∈ K, let y ∈ K such that
‖x − y‖ = dK(x) = bK(x) ≤ λ. Then, for any t ∈ (0, 1), the point x(t) = y + t(x − y) of
the segment [y, x] satisfies ‖y− x(t)‖ = t‖y− x‖ < ‖x− y‖ ≤ λ and x(t) ∈ [bK < λ]. Since
x(t) converges to x when t→ 1, x ∈ [bK < λ]. �

We state useful properties of the parametrization by oriented distance function.

Lemma 2.5. Let K1 and K2 be two compact subsets of B∞.

1. bK2 ≤ bK1 if and only if K1 ⊂ K2 and (Kc
1) ⊂ (Kc

2)

2. The Hausdorff distance is dominated by the gap of oriented distance function:

dH(K1, K2) = ‖dK1 − dK2‖∞ ≤ ‖bK1 − bK2‖∞.

Proof of Lemma 2.5. The first property is stated in [12, Theorem 2-1,(ii),p 338]. To prove
the second one, it suffices to check that dK = (bk)+ and to notice that the map t 7→ (t)+ is
1 Lipschitz on R. Hence, for any x ∈ B∞, we get

|dK1(x)− dK2(x)| ≤ |bK1(x)− bK2(x)|.

The conclusion follows by taking the supremum to the right hand side then to the left hand

side. Notice that a converse inequality is not possible if
˚︷ ︸︸ ︷

K1 ∩K2 6= ∅ and K1 6= K2. �

As a consequence of the second point, the convergence of oriented distance functions
to compact subsets implies the Hausdorff convergence. However, the equivalence stated in
Lemma 2.1 is lost when one replaces distance functions by oriented distance function as
shown by the following example on R.
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Example 2.6. Let (xn) be a dense sequence in [0, 1]. Set Kn = {x0, . . . , xn}, then Kn
H−→

[0, 1] while bKn → d[0,1] 6= b[0,1].

The reason is that oriented distance function contains also information on the interior of
the set as stated in the following result.

Proposition 2.7 (Convergence of oriented distance functions to compact sets). Let Kn be
a sequence of compacts subsets of B∞ and let K be a compact subset of B∞. The statements

(i) (bKn) uniformly converges to bK ,

(ii) Kn
H−→ K and K̊n

H−→ K̊;

are equivalent.

Proof of Proposition 2.7.
Step 1: (i) =⇒ (ii). Since the positive ()+ part is 1 Lipschitz, the sequence (dKn)

uniformly converges to dK implying Kn
H−→ K. In the same manner, the negative ()−

part is 1 Lipschitz and the sequence (dKc
n
) uniformly converges to dKc . Since dA = dĀ

for any A ⊂ B∞, the sequence (d(Kc
n)) uniformly converges to d(Kc) and the compact sets

(Kc
n)
H−→ (Kc) that is K̊n

H−→ K̊ since for any A ⊂ B∞, Ac = (Å)c.

Step 2: (ii) =⇒ (i). If Kn
H−→ K, then (dKn) uniformly converges to dK . If K̊n

H−→ K̊

that is (Kc
n)

H−→ (Kc), then (d(Kc
n)) uniformly converges to d(Kc) that is (dKc

n
) uniformly

converges to dKc .

�

As a clear consequence, we get a similar statement for open sets.

Proposition 2.8. Let (Ωn) be a sequence of non empty open sets in B∞ and let Ω ⊂ B∞
be open. The statements

(i) (bΩn) uniformly converges to bΩ,

(ii) Ωn
H−→ Ω and Ω̄n

H−→ Ω̄;

are equivalent.

Let us denote by D the set of oriented distance functions to compact sets that is f ∈ D
if and only if there is a compact K in B∞ such that f = bK . The main properties of
functions of D are:

Lemma 2.9 (Properties of D). Ones has :

1. D ⊂ Lip(B∞, 1) the space of 1-Lipschitz functions on B∞,

2. D is not convex.

The first point is [12, Theorem 2-1,(vi),p 338]. The second point is just a calculus on
R: the function (b{0} + b{1})/2 is not a oriented distance function.

Remark 2.10. It would be more natural to work in the sequel within the convex hull of D
than in the space Lip(B∞, 1) . However, we did not manage to characterize of this convex
hull. Is it the whole Lip(B∞, 1) ?
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We shall work within the space Lip(B∞, 1). Let us recall its main properties that we
shall use.

Lemma 2.11. The space Lip(B∞, 1) is endowed with the norm

‖f‖∞ = sup
x∈B̄∞

|f(x)|.

It is a convex closed set. Moreover, if (fn) is a pointwise convergent sequence of functions
in Lip(B∞, 1), then the convergence is uniform.

3 Implicit representation of sequence of sets by continuous func-

tions.

We say that a continuous function f is a parametrization of a compact K if K is the
0 sublevel set of {x | f(x) ≤ 0} that we will denote by [f ≤ 0]. Of course, such a
parametrization is not unique since for any non decreasing function φ with φ(0) = 0 one
has [f ≤ 0] = [φ ◦ f ≤ 0].

3.1 Convergence of approximated level set.

We first discuss the following general question posed here in a rough way: if the sequence
of functions (fn) converges to some function f , does the sequence of level-sets [fn(x) ≤ 0]
converges in the Hausdorff sense to the level-set [f(x) ≤ 0] ? In general, the answer is
negative as shown by the following examples in dimension one.

Example 3.1. The sequence of functions fn(x) = inf(b[0,2], d{3}+ 1/n) converges to f(x) =
inf(b[0,2], d{3}). One has ‖fn − f‖∞ = 1/n→ 0 while

Kn = [0, 2]
H−→ [0, 2] 6= K = [0, 2] ∪ {3}.

Example 3.2. Set f be the piecewise linear function such that f(−1) = 1 = f(3) , f(0) =
f(1) = f(2) = 0 and f(1.5) = −0.5. Set fn = f + φ/n where φ is a continuous function
supported in (0, 1) with φ(x) > 0 on (0, 1). Then ‖fn − f‖∞ = ‖φ‖∞/n→ 0 while

Kn = {0} ∪ [1, 2]
H−→ {0} ∪ [1, 2] 6= K = [0, 2].

We nevertheless obtain such a result under an additional assumption of topological
nature of the limit set. Notice that we then obtain also convergence of the 0-level-set.

Theorem 3.3. If the sequence of continuous functions (fn) uniformly converges to f in
B∞ such that

[f ≤ 0] 6= ∅.
If the following regularity from the inside condition

(A<) [f < 0] = [f ≤ 0]

holds then the compact level sets converge

[fn ≤ 0]
H−→ [f ≤ 0], (1)
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If the following regularity from the outside condition

(A>)
˚︷ ︸︸ ︷

[f ≤ 0] = [f < 0]

holds, then the open level sets converge

[fn < 0]
H−→ [f(x) < 0], (2)

If both conditions (A<) and (A>) hold, then the boundaries converge

[fn = 0]
H−→ [f = 0]. (3)

We propose an elementary proof of this theorem. It relies on a pinching lemma for the
Hausdorff convergence.

Lemma 3.4. Let (An), (Bn) and (Cn) be three sequences of compact sets (resp. open sets)
such that for all n, An ⊂ Bn ⊂ Cn. Let K be a compact set (resp. open set). If (An) and
(Cn) Hausdorff converges to K then (Bn) Hausdorff converges to K.

Proof of Lemma 3.4. It suffices to prove the lemma for compact sets. Indeed the case of
open sets is obtained by passing to the complement. One checks that

ρ(Bn, K) = sup
x∈Bn

d(x,K) ≤ sup
x∈Cn

d(x,K) = ρ(Cn, K) ≤ dH(Cn, K),

and
ρ(K,Bn) = sup

x∈K
d(x,Bn) ≤ sup

x∈K
d(x,An) = ρ(K,An) ≤ dH(An, K).

Then, 0 ≤ dH(Bn, K) ≤ sup(dH(An, K), dH(Cn, K))→ 0.

�

Proof of Theorem 3.3.

Step 1: construction of barrier domains. Set εn = supk≥n ‖f − fk‖∞. Since the sequence
(fn) uniformly converges to f , the sequence εn is decreasing and converges to 0. For each
integer n, we define compact sets by

An = [f ≤ −εn], Bn = [fn(x) ≤ 0] and Cn = [f ≤ εn].

The triangle inequality

f(x)− εn ≤ f(x)− ‖fn − f‖∞ ≤ fn(x) ≤ f(x) + ‖fn − f‖∞ ≤ f(x) + εn,

valid for each x ∈ B∞ translates to inclusions for level sets

∀n, An ⊂ Bn ⊂ Cn.

Notice that the sets An is not empty for n large enough since [f < 0] 6= ∅. In a similar way,
set

An = [f < −εn], Bn = [fn < 0] and Cn = [f < εn]
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so that An ⊂ Bn ⊂ Cn. Notice that the monotony of the sequence (εn) implies the monotony
of the sequences (An), (Cn), (An) and (Cn).

Step 2: proof of (1). Now, we study the limits of (An) and (Cn). The sequence (Cn) is a
decreasing sequence of non empty compact sets, hence it converges in the sense of Hausdorff
to its intersection by Lemma 2.2

Cn
H−→
⋂
n≥0

Cn =
⋂
n≥0

[f ≤ εn] = [f ≤ 0].

The sequence (An) is a increasing sequence of compacts set, hence it converges in the sense
of Hausdorff to the closure of its union by Lemma 2.2:

An
H−→
⋃
n≥0

An =
⋃
n≥0

[f ≤ −εn] = [f < 0].

We conclude thanks to the comparison principle (Lemma 3.4).

Step 3: proof of (2). It is a straightforward adaptation of the previous step: (An) is an
increasing sequence of open sets, then it converges in the sense of Hausdorff to its union
that is [f < 0]. Then, (Cn) is a decreasing sequence of open sets. Therefore it converges to
the interior of the intersection of all the open sets: namely the interior of [f ≤ 0] which is
exactly [f < 0] since (A′′) holds.

Step 4: proof of (3). Set Γ = [f = 0] and Γn = [fn(x) = 0]. These are compact sets.

We first prove that ρ(Γn,Γ) the excess from Γn to Γ tends to 0. For all n, there exists
xn ∈ Γn such that d(xn,Γ) = ρ(Γn,Γ). Since the sequence (xn) stays in the compact
B̄∞, there are accumulation points. Let x̄ = limxnk

be such an accumulation point, then
f(x̄) = lim fnk

(xnk
) = 0 since (fn) converges uniformly to f and x̄ ∈ Γ. Then d(xnk

,Γ) ≤
‖xnk

− x̄‖ → 0.

We then prove that ρ(Γ,Γn) the excess from Γ to Γn tends to 0. For all n, there exists
xn ∈ Γ such that d(xn,Γn) = ρ(Γ,Γn). By reductio ad absurdum, assume that there exists
η > 0 such that d(xn,Γn) ≥ η.

Since the sequence (xn) stays in the compact Γ, there are accumulation points. Let
x̄ = lim xnk

be such an accumulation point in Γ. Hence there is a rank k0 such that for
k ≥ k0, ‖x̄− xnk

‖ ≤ η/2 then d(x̄,Γnk
) ≥ η/2.

Now, we use (A<) since x̄ ∈ ∂[f < 0], there exists a point y with ‖y − x̄‖ ≤ η/4 such
that f(y) < 0. Since fn(y) → f(y), there exists a rank k1 > k0 such that for k ≥ k1,
fnk

(y) < 0. Using (A>), x̄ ∈ ∂[f > 0], there exists a point z with ‖z − x̄‖ ≤ η/4 such that
f(z) > 0. Since fn(z)→ f(z), there exists a rank k2 > k1 such that for k ≥ k2, fnk

(z) > 0.

Since the ball B(x̄, η/4) is convex, it contains the whole segment [y, z]. For k ≥ k2, fnk

is continuous on [y, z] with fnk
(y)fnk

(z) < 0 then by the intermediate value theorem, there
is a point t ∈ [y, z] ⊂ B(x̄, η/4) with fnk

(t) = 0. Then, d(x̄,Γnk
) ≤ ‖x̄ − t‖ ≤ η/4 that

negates d(x̄,Γnk
) ≥ η/2

�

Remark 3.5. Notice that the implication,

If sup
B∞

|fn(x)− f(x)| → 0 and [f < 0] = [f ≤ 0], then [fn ≤ 0]
H−→ [f ≤ 0]
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remains true under the weaker assumption that the functions f and fn are only lower semi-
continuous. In the same spirit,

If sup
B∞

|fn(x)− f(x)| → 0 and
˚︷ ︸︸ ︷

[f ≤ 0] = [f < 0], then [fn < 0]
H−→ [f < 0],

when the functions are upper semi-continuous.

Let us comment the meaning of the topological assumption (A) = (A<) and (A>). On
the one hand, it prohibits the 0 level-set [f = 0] to be fat. In general, the two boundaries
∂[f < 0] and ∂[f > 0] do not coincide to the 0 level-set that is the space delimited by these
boundaries. But it also prohibits isolated points and more generally parts of the boundary
of codimension bigger than two.

The topological assumption (A) is sharp as stated by the following proposition.

Proposition 3.6. Let f be a continuous function such that

[f = 0] 6⊂ [f < 0].

There exists a sequence of continuous functions (fn) that converges uniformly to f and such
that [fn ≤ 0] Hausdorff converges to a compact set that is not [f ≤ 0].

Proof of Proposition 3.6. Since
[f = 0] 6⊂ [f < 0],

there exists a with f(a) = 0 and a real δ > 0 such that d(x, [f < 0]) ≥ η that is to say
f(x) ≥ 0 on B(a, δ). Let χ be a continuous function on [0,+∞) with χ(t) > 0 on [0, 1) and
χ(x) = 0 for t > 1. Set

fn(x) = f(x) +
1

n
χ

(
n‖x− a‖

δ

)
.

By construction, [fn ≤ 0] = [f ≤ 0] \ B(a, δ/n) is an increasing sequence of compact sets
then it convergences to its union that is

[fn ≤ 0]
H−→ [f ≤ 0] \ {a},

while ‖fn − f‖∞ ≤ ‖χ‖∞/n→ 0.

�

3.2 Convergence rate.

A natural question is to evaluate the rate of convergence of [fn ≤ 0] to [f ≤ 0] stated in
Theorem 3.3. A first elementary remark is that this problem reduces to the convergence
rate of the sublevel sets of f reducing the problem to the study of the mapping:

Ψ : λ 7→ [f ≤ λ].

Notice f is continuous from Rd with values in a compact set and hence Ψ maps a real
number to a compact set of Rd.
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Proposition 3.7. One has :

dH([f ≤ 0], [fn ≤ 0]) ≤ dH([f < −‖f − fn‖∞]), [f ≤ 0]) + dH([f ≤ 0], [f ≤ ‖f − fn‖∞])

Proof of Proposition 3.7. The basic estimation

f(x)− ‖f − fn‖∞ ≤ fn(x) ≤ f(x) + ‖f − fn‖∞,

translates into the pinching of [f ≤ 0]:

[f ≤ −‖f − fn‖∞]) ⊂ [fn ≤ 0] ⊂ [f ≤ ‖f − fn‖∞].

Since one of course also has

[f ≤ −‖f − fn‖∞]) ⊂ [f ≤ 0] ⊂ [f ≤ ‖f − fn‖∞],

then by Lemma 2.3:

dH([f ≤ 0], [fn ≤ 0]) ≤ dH([f ≤ −‖f − fn‖∞]), [f ≤ ‖f − fn‖∞]).

One concludes by the triangle inequality and by Proposition 3.8. �

We now prove that Ψ is a Lipschitz map. To that end, we require stronger regularity.
A sufficient condition for (A>) and (A>) is that the 0 level set is a (at least Lipschitz)
manifold of codimension 1. By the implicit function theorem, this is true if the strong
regularity assumption S is made

(S) there are constants η and c that f is continuously differentiable on Γη and

‖∇f(x)‖ ≥ c for x ∈ Γη.

where Γη = [dΓ ≤ η] is the η tubular neighborhood of Γ.

Proposition 3.8. Assume that (S) holds, let (εn) be a sequence of non negative real con-
verging to 0 then there exist a non negative real c depending only of f and a rank n0

depending on (fn) such that for n ≥ n0

dH([f ≤ 0], [f ≤ ±εn]) ≤ cεn.

Proof of Proposition 3.8.
Step 1: preliminary remarks. Under (S), using the continuity of the gradient ∇f on the
compact set Γη, there exists δ such that

‖x− y‖ ≤ δ =⇒ ∇f(x) · ∇f(y) ≥
1

2
|∇f(y)|2.

Set ε̄ = inf(η, δ).

Since the sequence of functions g±n = f ± εn uniformly converges to f , Theorem 3.3
insures that the level sets [f ≤ ±εn] = [g±n ≤ 0] converges in the Hausdorff sense to [f ≤ 0]
and then there is a rank n0 such that [f ≤ ±εn] ⊂ Γε̄ for all n ≥ n0. In particular, by
the local inverse theorem, the level sets [f = 0] = ∂[f ≤ 0] and [f = εn] = ∂[fn ≤ εn] are
smooth for n ≥ n0. In the sequel, we assume n ≥ n0

11



Step 2: an upper bound to dH([f ≤ 0]), [f ≤ εn]). Since the level sets of f are nested:
[f ≤ 0] ⊂ [f ≤ εn]), it suffices to dominate the excess of [f ≤ εn] to [f ≤ 0]:

dH([f ≤ εn], [f ≤ 0]) = ρ([f ≤ εn], [f ≤ 0]).

Let y ∈ [f ≤ εn] such that d[f≤0](y) = ρ([f ≤ εn], [f ≤ 0]) > 0. In particular, y /∈ [f ≤ 0]
and d[f≤0](y) = dΓ(y), we therefore get

dH([f ≤ εn], [f ≤ 0]) = dΓ(y).

Consider the function

ϕ(x) =

∣∣∣∣∣ f(x)

bΓ(x)

∣∣∣∣∣ =
|f(x)|
dΓ(x)

is continuous on B̄∞ \ Γ and can be extended by continuity on the whole B̄∞ with ϕ(x) =
∂nf(x) for any x ∈ Γ. By construction, this function takes positive values. In particular,
by compactness of B̄∞ there are a constant c2 > 0 such that for all x ∈ B∞

c2dΓ(x) ≤ |f(x)|.

We conclude

dΓ(y) ≤
|f(y)|
c
≤
εn

c
.

Step 3: an upper bound to dH([f ≤ 0], [f ≤ −εn]). We deduce from the inclusion [f ≤
−εn]) ⊂ [f ≤ 0] that it holds:

dH([f ≤ −εn], [f ≤ 0]) = ρ[f ≤ 0], [f ≤ −εn]).

Let x ∈ [f ≤ 0] and y ∈ [f ≤ −εn] such that

‖x− y‖ = d(x, [f ≤ −εn]) = ρ([f ≤ 0], [f ≤ −εn]).

By construction, x ∈ [f = 0] and y ∈ [f = −εn] and these level sets are smooth. As y
minimizes the distance to x over [f ≤ −εn], the Euler-Lagrange equation implies that

x− y =
‖x− y‖
‖∇f(y)‖

∇f(y),

and we get

εn = f(x)− f(y) =

∫ 1

0

∇f(x+ t(y − x)) · (y − x) dt

=

∫ 1

0

‖x− y‖
‖∇f(y)‖

∇f(x+ t(y − x)) · ∇f(y) dt

≥
1

2

∫ 1

0

‖∇f(y)‖‖x− y‖dt

≥
c2

2
‖x− y‖ =

c2

2
dH([f ≤ −εn], [f ≤ 0]).

�
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Let us notice that (S) is not mandatory, one can get convergence when it is not satis-
fied. The idea is to straighten the surface y = f(x) in order to reach a unit slope. This
corresponds to the redistancing procedure that appears in the numerical implementation
of the level set method.

For a given continuous function ϕ on R, C1 on R∗ with ϕ′(t) > 0 for t 6= 0. We set the
assumption

(Sϕ) there are constants η and c that ϕ ◦ f is continuously differentiable on Γη and

‖∇(ϕ ◦ f)(x)‖ ≥ c for x ∈ Γη.

It is a generalization of (S) since the first condition corresponds to the case ϕ0(t) = t i.e.
(S) = (Sϕ0). Notice that ϕ is strictly increasing and [f ≤ ±εn] = [φ ◦ f ≤ ±φ(εn)], then
one deduces from Proposition 3.8 that

Theorem 3.9. Assume that (Sϕ) holds, let (εn) be a sequence of non negative real converg-
ing to 0 then there exist a non negative real c depending only of f and a rank n0 depending
on (fn) such that for n ≥ n0

dH([f ≤ 0], [f ≤ ±εn]) ≤ cϕ(εn).

Remark 3.10. Let us mention that condition (Sϕ) is also known as the Kurdyka-Lojasiewicz
inequality. A nice reference on the topic is [7] see in particular Theorem 2 and its corollar-
ies for statements similar to Proposition 3.9 where it is shown that the Lipschitz property
of Ψ from R endowed with the metric d(s, t) = |φ(t)− φ(s)| is equivalent to (Sϕ).

4 Oriented distance Expectation of random sets

4.1 Definitions

We follow the usual strategy of a parametrization based expectation as done in [17, 18].

Definition 4.1 (Oriented distance based expectation of a random compact set).
Let K be a random compact set. Let bK be the process of its oriented distance function. If
this process has an expectation E[bK ], then the oriented distance expectation of K is defined
as the compact set E[K] = [E[bK ] ≤ 0]. The oriented distance expectation of the boundary
of K is defined as the compact set E[∂K] = [E[bK ] = 0].

In order to validate this definition, one has to observe that each realization of bK is a 1-
Lipschitz function. As the set Lip(B∞, 1) of 1-Lipschitz functions is a closed convex set, its
expectation E[bK ] is also a 1-Lipschitz function. Of course, in order to obtain a computable
notion we need to use samples of the random compact set and define an oriented distance
empirical mean as follow.

Definition 4.2 (Oriented distance empirical mean of a random compact set).
If K1, . . . , Kn are n random compact sets independent identically distributed.Then the
empirical mean of the oriented distance mean is defined as

b̂n =
1

n

n∑
i=1

bKi
.

13



The oriented distance empirical mean K̂n is defined as the compact set [b̂n ≤ 0]. The
oriented distance empirical mean of the boundary ˆ∂Kn is defined as the compact set [b̂n = 0].

This definition corresponds to a plug-in estimator of the random sets based on the
oriented distance parametrization.

In the very same way, let O be a random open set and bO be the process of its oriented
distance function. If this process as an expectation E[bO], we define the oriented distance
expectation of O as E[O] = [E[bO] < 0] and the oriented distance expectation of the
boundary as E[∂O] = [E[bO] = 0]. We also define the oriented distance empirical means as
Ôn = [b̂n < 0] and ˆ∂On = [b̂n = 0] where b̂n is th empirical mean of the process bO.

4.2 Limits of the oriented distance empirical mean and application for the
random compact sets

Large Number law. We first establish the consistency of the oriented distance empirical
mean estimators. This result is crucial as it provides a way to numerically access to the
object we just defined.

Proposition 4.3 (Consistency of the empirical estimators). Let K be a random compact
set. It holds :

lim
n→+∞

‖b̂n − E[bK ]‖∞ = 0 almost surely.

Then, if moreover the function E[bK ] has the property (A),

K̂n
H−→ E[K] and ˆ∂Kn

H−→ E[∂K] almost surely.

The same properties holds also for random open sets.

Proof of Theorem 4.3. The usual law of large numbers implies pointwise convergence. As
all the functions b̂n and E[bK ] are 1-Lipschitz functions, we also obtain uniform convergence
over compact sets. Finally, the Hausdorff convergences are direct applications of Theorem
3.3. �

Central limit theorem. We now quote the central limit theorem obtained by Jankowski and
Stanberry in [17, Theorem 2-6 and Proposition 2-7].

Proposition 4.4 (Central limit theorem for the ODF). There is a centered Gaussian
random field Z with covariance

cov[Z(x), Z(y)] = E[bK(x)bK(y)] − E[bK ](x) E[bK ](y),

for any x, y ∈ B∞ such that

Zn =
√
n
(
b̂n − E[bK ]

)
⇒ Z,

in the space C(B∞,R) of continuous functions on B̄∞ endowed with the uniform convergence
topology. Moreover,

var[Z(x)− Z(y)] ≤ |x− y|2,
and the sample paths of the process Z are α-Hölder for any α ∈ (0, 1).

14



It is a direct application of the following general central limit theorem of uniformly
Lipschitz processes that relies on two classical arguments: first, an estimate of the moment
based on a combinatorial argument and second the Garsia, Rademich and Rumsay inequal-
ity [10, Theorem B.1.5] applied on B∞. We check that B∞ is regular in the sense that there
is a sequence of open set On in B∞ and a nonnegative real κ > 0 such that

∪x∈OnB(x, 1/n) ⊂ B∞ and Ld(On ∩B(x, 1/n)) ≥ κ

nd
, ∀x ∈ On,

where Ld stands for the usual Lebesgue measure on Rd.

Theorem 4.5. Let L and M be two non negative reals and d an integer. Let K be a regular
compact set K ⊂ Rd. Let f be a random process defined on K such that for all x, y ∈ K

|f(x)− f(y)| ≤ L|x− y| a.s. and |f(x)| ≤M a.s..

And let f1, . . . , fn be n independent and identically distributed random processes defined on
K with the same distribution as f .

Set f̂n = (f1 + . . . fn)/n the empirical mean. Then, there exists a centered Gaussian
random field Z with covariance

cov[Z(x), Z(y)] = E[f(x)f(y)] − E[f ](x) E[f ](y),

for any x, y ∈ K such that

Zn =
√
n
(
f̂n − E[f ]

)
D−→ Z,

in the space C(K,R) of continuous functions on K endowed with the uniform convergence
topology.

Proof of Theorem 4.5. We first prove a moment estimate, then derive tightness and finally
prove the convergence of the finite dimensional laws. Let us introduce some notations: we
define independent centered processes on K2 by

gi(x, y) = (fi(x)− E[f ](x))− (fi(y)− E[f ](y)) .

One checks that |gi(x, y)| ≤ 2L|x− y| a.s. and therefore for any k

E[gki ](x, y) ≤ (2L)k|x− y|k.

Let N ≥ 2 be an integer and CN be the set

CN = {c ∈ (N \ {1})N | c1 ≥ c2 ≥ · · · ≥ cN and c1 + c2 + · · ·+ cN = N},

that is the set of the ways to write N as a sum of integers distinct from 1. For c ∈ C, let
l(c) = max{k | ck 6= 0} be the number of non-zero terms of the sum. Since ci 6= 0 implies
ci ≥ 2, it holds l(c) ≤ N/2.

Step 1: estimating the moments. We compute

E[|Zn(x)− Zn(y)|N ] =
1

nN/2

n∑
i1,...ik=1

E[gi1 . . . gik ](x, y),

=
1

nN/2

∑
c∈CN

n∑
i1,...,ilc=1
ij 6=ikifj 6=k

lc∏
j=1

E[g
cj
ij

],
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since the processes gi are independent and centered. We check

αc,n = n−N/2
n∑

i1,...,ilc=1
ij 6=ikifj 6=k

1 = n−N/2
l(c)−1∏
i=0

(n− i) ∼
n→+∞

nl(c)−N/2,

by a basic combinatorial argument. Since for any c ∈ C one has

lc∏
j=1

E[g
cj
ij

] ≤ (2L)N |x− y|N ,

we deduce

E[|Zn(x)− Zn(y)|N ] ≤
∑
c∈CN

αc,n(2L)N |x− y|N .

Since l(c) − N/2 ≤ 0, all the sequences αc,n are bounded and there exists a constant
(depending on N) such that :

E[|Zn(x)− Zn(y)|N ] ≤ C(N)|x− y|N .

Step 2: obtaining tightness. In order to derive the tightness, we precise the properties of
the map ω 7→ C(ω). To that end, we use Garsia, Rademich and Rumsay inequality. Since
Zn is continuous, there exists a universal constant c > 0 such that

|Zn(ω, x)− Zn(ω, y)| ≤ c|x− y|(β−2d)/δ

(∫
B2

∞

|Zn(ω, η)− Zn(ω, ξ)|δ

|η − ξ|β

)1/δ

.

We set

C(ω) = cδ
∫
B2

∞

|Zn(η)− Zn(ξ)|δ

|η − ξ|β
.

Since by Fubini’s theorem for positive functions,

E [C] =

∫
B2

∞

E[|Zn(η)− Zn(ξ)|δ]
|η − ξ|β

≤ C(δ)

∫
B2

∞

|η − ξ|δ−β,

for any integer δ > d. Therefore, now if δ > β then the right hand side is finite and
therefore the random variable C(ω) has a finite expectation E [C] < +∞. We fix ε > 0.
For δ > β > 2d, Markov inequality implies that

P

[
C >

E[C]

ε

]
≤ ε.

Now we consider the set Kε of continuous functions ϕ such that

|ϕ(x)− ϕ(y)| ≤

(
E[C]

ε

)1/δ

|x− y|(β−2d)/δ and |ϕ(x)| ≤M.

Since (β−2d)/δ > 0, the set Kε is compact in C(K,R) by Ascoli’s theorem. Since Zn(ω, .) ∈
Kε if C(ω) ≤ E[C]/ε and owing to the Markov inequality, we have proven that the sequence
(Zn) is tight in C(K,R).

Step 3: Conclusion. The convergence of the finite-dimensional distributions is guaranteed
by the classical central limit theorem. As (Zn) is tight in C(K,R), we deduce that Zn
converges in distribution to Z in the space C(K,R) (see for instance [6]).

�
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4.3 On confidence neighborhood

In practical computations, the limit sets E[K] and E[∂K] are approximated through a
numerical realization of a term of the sequences K̂n and ˆ∂Kn obtained by a sampling
method like Monte Carlo. Two distinct sources of errors then appear: the first one is a
deterministic one connected to the computation of each of the realizations of the random
sets Ki, the second one is a stochastic one due to the Monte-Carlo method. Since there are
usually no convergence estimates for shape optimization problem, we shall only consider
the second source of error and assume for a while that the sets are exactly known. Given
a threshold pmin ∈ (0, 1), we aim at compute sets V such that P[E[K] ⊂ V ] ≥ pmin.

A basic error estimate is given by the following remark: the triangle inequality

b̂n(x)− ‖b̂n − E[bK ]‖∞ ≤ E[bK ](x) ≤ b̂n + ‖b̂n − E[bK ]‖∞,

valid for each x ∈ B∞ translates to inclusions for level sets

∀n, [b̂n(x) ≤ −‖b̂n − E[bK ]‖∞] ⊂ E[K] ⊂ [b̂n(x) ≤ ‖b̂n − E[bK ]‖∞].

which pinch the target set E[K] between two sublevel sets [b̂n ± ‖b̂n − E[bK ]‖∞] where the
function b̂n is computable. Assuming that EK satisfies (Sϕ) holds for some function ϕ, the
inclusions

[E[bK ](x) ≤ −2‖b̂n − E[bK ]‖∞] ⊂ [b̂n(x) ≤ −‖b̂n − E[bK ]‖∞]

[b̂n(x) ≤ ‖b̂n − E[bK ]‖∞] ⊂ [E[bK ](x) ≤ 2‖b̂n − E[bK ]‖∞]

provide, by the pinching Lemma 2.3 and Theorem 3.9, the estimate

dH(K̂n] , E[K]) ≤ C ϕ(‖b̂n − E[bK ]‖∞).

This allows to translates an information of the residual ‖b̂n−E[bK ]‖∞ into an information of
the set. Of course, we have no direct access to this quantity but the central limit theorem
provides the asymptotic approximation Z/

√
n where Z is a zero mean Gaussian field of

variance var(bK). In particular, Z is a continuous process by Proposition 4.4, hence the
random variable SZ = supx∈B∞ |Z(x)| is well defined.

Proposition 4.6 (Convergence rate for the plug-in estimator). If EK satisfies (Sϕ) holds
for some function ϕ and P(SZ ≤M) ≥ α then

P

(
dH( K̂n , E[K]) ≤ C ϕ(

M
√
n

)

)
≥ α.

In [17], the authors define a confidence neighborhood based on the law of sup. However,
it is very rare to be able to analytically determine this law and extremely difficulty to
numerically determine its quantiles.

5 Application to the Bernoulli free boundary problem.

As a first application of the tools build in the previous section, we consider the exterior
Bernoulli free boundary problem.
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Presentation of the Bernoulli free boundary problem. Let K be a compact regular domain in
RN and let λ a positive real number. The problem of finding a domain D and a function
u such that the capacitary potential of K in D defined ad the solution of

−∆u = 0 in D \K
u = 1 on K
u = 0 on ∂D

(4)

satisfies the overdetermination condition

|∇u| = λ on ∂D, (5)

is called the exterior Bernoulli free boundary problem. Notice that this overdetermination
condition means that for any x ∈ ∂D

lim
y∈Ω,y→x

|∇u(y)| = λ.

Existence of a solution has been established by Beurling [5] more than fifty years ago.
Contemporary existence proofs are based on variational methods in the sense of shape
optimization, the regularity of the free boundary has been studied by Alt and Cafarelli
in [3]. If the inner boundary is convex, uniqueness of the solution has been shown by
Tepper [23]. For general compact sets K, there may exist more than one solution to the
free boundary value problem. But, there are classes of compact sets K such that the free
boundary problem has a unique solution. The largest one is the star shaped domains.
Tepper [23, 24] has also shown that if the inner boundary is starlike, then so is the outer
boundary. Another interesting class is the one of convex domains. in [16][Theorem 2-1],
Henrot and Shahgholian proved that, if K is convex, the free boundary problem admits
exactly one solution (Ω, u) and moreover this Ω is convex. A nice introduction lecture is
[13].

Properties of the exterior Bernoulli free boundary problem. Consider Sc the space of compact
domains in RN that are star-shaped with respect to the origin and So the space of open
domains that are star-shaped with respect to the origin. We define the map B : Sc ×
(0,+∞) → So that maps a convex compact set K to the closure of the unique domain Ω
solution of the exterior Bernoulli free boundary problem (4). We shall describe now the
properties of the application B gathering results of [14, Theorem 2-2,Theorem 3-1].

Proposition 5.1 (Properties of the map). The map B is continuous and moreover:

1. increasing with respect to inclusion: let K1 and K2 be two compact sets with K1 ⊂ K2

then for any Q > 0, B(K1, Q) ⊂ B(K2, Q).

2. non increasing with respect to the constant: let Q1 and Q2 be two non negative real
numbers with Q1 ≤ Q2, then for any K, B(K,Q2) ⊂ B(K,Q1) with B(K,Q2) 6=
B(K,Q1).

As a consequence, the map B is measurable and given a random compact set K, one
defines a random open set as D = B(K). We have already considered notion of expectation
based on parametrization and the Vorobe’v expectation for this free boundary problem in
[11].
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An semi-analytic case. Let us consider the case where K is a random disk of radius r
centered at the origin. Then, the domain D is a also a random annulus centered at the
origin and of outer radius fd(r) where the function fd is defined as:

f2(r) =
1

λW (λr)
while f3(r) =

λr +
√
λ2r2 + 4λr

2λ
,

where W is the inverse of x 7→ xex. The oriented distance function to D is then explicitely
known:

bD(x) = |x| − fd(r) if |x| > (r + fd(r))/2 and r − |x| else.

If one can write an analytic expression of the expectation of the distance function, it is
not very explicit. In order to go further, we have to do simulations even for such a simple
case. Figure 1 present the simulation obtained with 10 000 samples with the inner radius
r = 1 + 0.3α where α is random variable following the uniform law on [−1/2, 1/2] and a
centered Gaussian law of variance 0.3. In red, we present the characteristic function of the
empirical mean of the domain and in blue the empirical mean of the distance function.

Figure 1: The expected distance function and expected domain: centered uniform (left),
centered Gaussian of variance 0.3 (right).

Conclusion. For more general inner boundary, one has no analytic expression for the dis-
tance function and numerical scheme are mandatory. This requires precise analysis and is
out of scope of this paper, it will be presented in a work in preparation.
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[20] G. Matheron. Ensembles fermés aléatoires, ensembles semi-markoviens et polyèdres
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