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ON THE CONVERGENCE OF SMOOTH SOLUTIONS FROM
BOLTZMANN TO NAVIER-STOKES

ISABELLE GALLAGHER AND ISABELLE TRISTANI

ABSTRACT. In this work, we are interested in the link between strong solutions of the
Boltzmann and the Navier-Stokes equations. To justify this connection, our main idea is to
use information on the limit system (for instance the fact that the Navier-Stokes equations
are globally wellposed in two space dimensions or when the initial data is small). In particular
we prove that the life span of the solutions to the rescaled Boltzmann equation is bounded
from below by that of the Navier-Stokes system. We deal with general initial data in the
whole space in dimensions 2 and 3, and also with well-prepared data in the case of periodic
boundary conditions.

1. INTRODUCTION

In this paper, we are interested in the link between the Boltzmann and Navier-Stokes
equations. Before giving a — non exhaustive — presentation of past results in this context,
let us recall that standard perturbative theories prove the convergence of (smooth) solutions
of the Boltzmann equation to solutions to the fluid dynamics equations when the Knusden
number goes to zero, globally in time for small initial data or up to the singular time of the
fluid solution in periodic settings. In this paper we propose a different approach, intertwining
fluid mechanics and kinetic estimates, which enables us to prove (short-time) convergence
without any smallness at initial time, and which is valid for any initial data (ill prepared or
not) in the case of the whole space. The time of existence of the solution to the Boltzmann
equation is bounded from below by the existence time of the fluid equation as soon as the
Knusden number is small enough (depending on norms of the initial data).

The problem of deriving hydrodynamic equations from the Boltzmann equation goes back
to Hilbert [28] and can be seen as an intermediate step in the problem of deriving macroscopic
equations from microscopic ones, the final goal being to obtain a unified description of gas
dynamics including all the different scales of description. The first justifications of this
type of limit (mesoscopic to macroscopic equations) were formal and based on asymptotic
expansions, given by Hilbert [28] and Chapman-Enskog [9]. Later on, Grad introduced a new
formal method to derive hydrodynamic equations from the Boltzmann equation in [25] called
the moments method.

The first convergence proofs based on asymptotic expansions were given by Caflisch [8]
for the compressible Euler equation. The idea there was to justify the limit up to the first
singular time for the limit equation. In this setting, let us also mention the paper by La-
chowicz [29] in which more general initial data are treated and also the paper by De Masi,
Esposito and Lebowitz [15] in which roughly speaking, it is proved that in the torus, if the
Navier-Stokes equation has a smooth solution on some interval [0, 7], then there also exists
a solution to the rescaled Boltzmann equation on this interval of time. Our main theorem is
actually reminiscent of this type of result, also in the spirit of [1, 11, 21, 41]: we try to use
information on the limit system (for instance the fact that the Navier-Stokes equations are
globally wellposed in two space dimensions) to obtain results on the life span of solutions to
the rescaled Boltzmann equation. We would like to emphasize here that in our result, if the
solution to the limit equation is global (regardless of its size), then, we are able to construct
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a global solution to the Boltzmann equation, which is not the case in the aforementioned
result. Moreover, we treat both the case of the torus and of the whole space.

Let us also briefly recall some convergence proofs based on spectral analysis, in the frame-
work of strong solutions close to equilibrium introduced by Grad [24] and Ukai [44] for the
Boltzmann equation. They go back to Nishida [39] for the compressible Euler equation (this
is a local in time result) and this type of proof was also developed for the incompressible
Navier-Stokes equation by Bardos and Ukai [5] in the case of smooth global solutions in three
space dimensions, the initial velocity field being taken small. These results use the description
of the spectrum of the linearized Boltzmann equation performed by Ellis and Pinsky in [17].
In [5], Bardos and Ukai only treat the case of the whole space, with a smallness assumption
on the initial data which allows them to work with global solutions in time. In our result, no
smallness assumption is needed and we can thus treat the case of non global in time solutions
to the Navier-Stokes equation. We would also like to emphasize that Bardos and Ukai also
deal with the case of ill-prepared data but their result is not strong up to ¢ = 0 contrary
to the present work (where as in in [6] the strong convergence holds in an averaged sense in
time).

More recently, Briant in [6] and Briant, Merino-Aceituno and Mouhot in [7] obtained
convergence to equilibrium results for the rescaled Boltzmann equation uniformly in the
rescaling parameter using hypocoercivity and “enlargement methods”, that enabled them to
weaken the assumptions on the data down to Sobolev spaces with polynomial weights.

Finally, let us mention that this problem has been extensively studied in the framework
of weak solutions, the goal being to obtain solutions for the fluid models from renormalized
solutions introduced by Di Perna and Lions in [16] for the Boltzmann equation. We shall
not make an extensive presentation of this program as it is out of the realm of this study,
but let us mention that it was started by Bardos, Golse and Levermore at the beginning of
the nineties in [3, 4] and was continued by those authors, Saint-Raymond, Masmoudi, Lions
among others. We mention here a (non exhaustive) list of papers which are part of this
program: see [22, 23, 34, 35, 40].

1.1. The models. We start by introducing the Boltzmann equation which models the evo-
lution of a rarefied gas through the evolution of the density of particles f = f(t,z,v) which
depends on time ¢t € RT, position z € Q and velocity v € R? when only binary collisions are
taken into account. We take  to be the d-dimensional unit periodic box T? (in which case
the functions we shall consider will be assumed to be mean free) or the whole space R? in
dimension 2 or 3. We focus here on hard-spheres collisions and hard potentials with cutoff
interactions. The Boltzmann equation reads:

Ouf +v-Vaf = 2QU1 )

where ¢ is the Knudsen number which is the inverse of the average number of collisions for
each particle per unit time and @ is the Boltzmann collision operator. It is defined as

Qo.r)i= [ Blo—v.o) [l = g.f] dodv..

The Boltzmann collision kernel B(v — v, o) only depends on the relative velocity |v — v,| and
on the deviation angle 6 through cosf = (k,0) where k = (v — v,)/|v — vi| and (-,-) is the
usual scalar product in R%. In this paper, we shall be concerned by kernels B taking product
form in its argument as:

B(v — vy,0) = b(cos ) |v — v .
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In the latter formula, b is a non-negative measurable function satisfying the following form
of Grad’s cutoff assumption: there exist positive constants by and b; such that

/ b(cosf)do > by, b(cosh) <by VO € |0,n],
Sd-1

and v € (0,1], we are thus dealing with hard potentials interactions and the case v = 1
with constant b corresponds to hard spheres collisions. Here and below, we are using the
shorthand notations f = f(v), g« = g(vs), f' = f(v') and ¢, = g(v’,). In this expression, v', v/,
and v, v, are the velocities of a pair of particles before and after collision. More precisely
we parametrize the solutions to the conservation of momentum and energy (which are the
physical laws of elastic collisions):

v+, =0+ v,’k ,
[0 + Joe|* = [V'* + [0,

so that the pre-collisional velocities are given by

P T N , Vvl v — vy

v = o, . = —
2 2 2 2

Taking ¢ small has the effect of enhancing the role of collisions and thus when € — 0, in view
of Boltzmann H-theorem, the solution looks more and more like a local thermodynamical
equilibrium. As suggested in previous works [3], we consider the following rescaled Boltzmann
equation in which an additional dilatation of the macroscopic time scale has been done in
order to be able to reach the Navier-Stokes equation in the limit:

o, oceSit.

(1.1) oL f° + év Vi ff = é@(fi ) in Rt xQxR?.

It is a well-known fact that global equilibria of the Boltzmann equation are local Maxwellians
in velocity. In what follows, we only consider the following global normalized Maxwellian
defined by
1 P
M(v) == se 2 .
(2m)5

To relate the Boltzmann equation to the incompressible Navier-Stokes equation, we look at
equation (1.1) under the following linearization of order &:

(1.2) £tz v) = M(v) + M2 (0)g5 (£, 2, v) .

Let us recall that taking € small in this linearization corresponds to taking a small Mach
number, which enables one to get in the limit the incompressible Navier-Stokes equation.
If f¢ solves (1.1) then equivalently g° solves

1 1 1

1.3 Oyt + ~v-Vaug® = =Lg° + -T(¢5,¢°) in RT x QxRY
€ g2 5

with

Lh:=M"32(Q(M, Mzh) + Q(Mzh, M))
(14) 1 1 1 1 1
and T'(hy, hg) := %M*E(Q(Mihl,Mihg) + Q(Mzhy, M2hy)) .

In the following we shall denote by Il the orthogonal projector onto Ker L . It is well-known
that
1 1
Ker L = Span(Mﬁ,m]W%7 e ,vdM%, |v|2M§) .
Appendix B.2 collects a number of well-known results on the Cauchy problem for (1.3).
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1.2. Notation. Before stating the convergence result, let us define the functional setting we
shall be working with. For any real number ¢ > 0, the space H. (which we sometimes denote
by H® or HY(Q)) is the space of functions defined on  such that

91 = [ (©*IFOPds <o it a=RT,
Rd
or

1712, = ST ©XIF©R <00 if Q=T

tezd

where fis the Fourier transform of f in x with dual variable £ and where
(€)%= (1+1e)*.

We shall sometimes note F, f for f We also recall the definition of homogeneous Sobolev
spaces (which are Hilbert spaces for s < d/2), defined through the norms

ey = [ PIFOR A and 1By = SZ RIGE

€z

In the case when Q = T we further make the assumption that the functions under study are
mean free. Note that for mean free functions defined on T%, homogeneous and inhomogeneous
norms are equivalent. We also define W™ (or W4 or W4(Q)) the space of functions
defined on 2 such that

1Fllypeoe ==Y sup |05 f(2)] < oo,

kﬂSKxEQ

We set, for any real number &

Lk = {f = f) ] k] e L=(RY)}
endowed with the norm

11l oo = sup () f(v)]-

veRd
The following spaces will be of constant use:

(15) X% = {f = (0 /150l € L, sup 17,0l —— 0}
|v|>R —00

(note that the R — oo property included in this definition is here to ensure the continuity
property of the semi-group generated by the non homogeneous linearized Boltzmann opera-
tor [44]) and we set

£ lle == sup ()] F(0) || e -
veRd ©

Finally if X; and X5 are two function spaces, we say that a function f belongs to X; + Xo
if there are f; € X7 and fo € X5 such that f = f; + fo and we define

[fllx4x, = min[[fillx, + [ f2]lx -
f=rh+f
fi € X;
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1.3. Main result. Let us now present our main result, which states that the hydrodynam-
ical limit of (1.1) as € goes to zero is the Navier-Stokes-Fourier system associated with the
Boussinesq equation which writes
ou+u-Vu— p1Au=—-Vp
00 +u-VO — A6 =0
divu =0
Vip+6)=0.

(1.6)

In this system 6 (the temperature), p (the density) and p (the pressure) are scalar unknowns
and u (the velocity) is a d-component unknown vector field. The pressure can actually be
eliminated from the equations by applying to the momentum equation the projector P onto
the space of divergence free vector fields. This projector is bounded over HY for all ¢, and
in LL for all 1 < p < co. To define the viscosity coefficients, let us introduce the two unique
functions ® (which is a matrix function) and ¥ (which is a vectorial function) orthogonal
to Ker L such that

M= SL(M32®) = |“d|21d —v®v and M 2L(M2U) = %% - ’”j) .
The viscosity coefficients are then defined (see for instance [3]) by
1 1 1 2 1 1
Hi = MM/@:L(M?@)M? dv and 9 := d(d—i—Q)/W‘L(MQ\I})MQ dv.

Before stating our main results, let us mention that Appendix B.3 provides some useful results
on the Cauchy problem for (1.6).

Theorem 1. Let £ > d/2 and k > d/2 + v be given and consider (pi, uin, Om) in H(Q)
if Q # R? and in HY(Q)NLY(Q) if @ = R%. IfQ = T?, we furthermore assume that pi, i, Oin
are mean free. Define

2 d _

(17) Pin = d+ 2pin - d+ 29ina Uin = Puin, O = —Pin -

Let (p,u,0) be the unique solution to (1.6) associated with the initial data (piy, Uin, 0in) on a
time interval [0,T]. Set

(18) Gin(,v) = M3 (0) (@) + a(2) -0+ L (0~ Dfin))
and define on [0,T] x Q x R?
(1.9) glt,z,v) == M2 (v) (p(t, )+ ult,z) v+ %(W — Aot x)) .

o The well prepared case: Assume Q2 = T? or RY, d = 2,3. There is g > 0 such that for
all € < gg there is a unique solution g° to (1.3) in L°°(]0,T], X**) with initial data Gy, and
it satisfies

(1.10) 9 = 91l o 071, 0 = 0

Moreover, if the solution (p,u,0) to (1.6) is defined on R™, then ey depends only on the initial
data and not on T and there holds
lim ng =0.

S 9”Loo(R+,XM)
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o The ill prepared case: Assume Q =R?, d =2,3. For all initial data gy, in X% satisfying

pin(z) = /Rd gin(m,v)M%(’u) dv, up(z) = /Rd U gin(x, 0) M

Oua) = 5 [ (0 = Diala,0) M (0) o,

there is g9 > 0 such that for all e < gg there is a unique solution g° to (1.3) in L>([0,T], X**)
with initial data gin. It satisfies for all p > 2/(d — 1)

NI

(v) dv,

(1.11) o 19" = 9l o 011,00 0 o e s 1ty ayy = O
Moreover, if the solution (p,u,0) to (1.6) is defined on R™, then gy depends only on the initial
data and not on T and there holds

lim =0.

e—0

Notice that the last assumption (that the solution (p, u,6) to (1.6) is defined on RT) always

holds when d = 2 and is also known to hold for small data in dimension 3 or without any

smallness assumption in some cases (see examples in [12] in the periodic case, [13] in the
whole space for instance): see Appendix B.3 for more on (1.6).

lg° - QHLoo(w,xe,k)Jer(RtL?”“(W£’°°+H£)(Rd))

Remark 1.1. We choose initial data for (1.3) which does not depend on e, but it is easy
to modify the proof if the initial data is a family depending on €, as long as it is compact
in X6k,

Remark 1.2. In the case of R?, we have made the additional assumption that our initial
data lie in L*(Q). Actually, it would be enough to suppose that pi, i, O are in L'(Q).

Remark 1.3. Let us mention that if we work with smooth data, we can obtain a rate of
1
convergence of €2 in (1.10) and (1.11) — which is probably not the optimal rate.

Remark 1.4. As noted in [36], the original solution to the Boltzmann equation, constructed
as f(t,x,v) = M(v) + 5M%(v)g€(t,x,v), is nonnegative under our assumptions, as soon as
the initial data is nonnegative (which is an assumption that can be made in the statement of
Theorem 1).

The proof of the theorem mainly relies on a fixed point argument, which enables us to prove
that the equation satisfied by the difference h® between the solution ¢° of the Boltzmann
equation and its expected limit g does have a solution (which is arbitrarily small) as long as g
exists. In order to develop this fixed point argument, we have to filter the unknown h® by
some well chosen exponential function which depends on the solution of the Navier-Stokes-
Fourier equation. This enables us to obtain a contraction estimate. Let us also point out
that the analysis of the operators that appear in the equation on A€ is akin to the one made
by Bardos and Ukai [5] and it relies heavily on the Ellis and Pinsky decomposition [17]. In
the case of ill-prepared data, the fixed point argument needs some adjusting. Indeed the
linear propagator consists in two classes of operators, one of which vanishes identically when
applied to well-prepared case, and in general decays to zero in an averaged sense in time due
to dispersive properties. Consequently, we choose to apply the fixed point theorem not to h®
but to the difference between h* and those dispersive-type remainder terms. This induces
some additional terms to estimate, which turn out to be harmless thanks to their dispersive
nature.

Acknowledgments. The authors thank Francois Golse for his valuable advice, as well as the

anonymous referee for a very careful reading of the manuscript. The second author thanks
the ANR EFI: ANR-17-CE40-0030.



2. MAIN STEPS OF THE PROOF OF THEOREM 1

2.1. Main reductions. Given g, € X%F, the classical Cauchy theory on the Boltzmann
equation recalled in Appendix B.2 states that there is a time 7° and a unique solution g©
in C°([0, T¢], X“*) to (1.3) associated with the data gi,. The proof of Theorem 1 consists in
proving that the life span of ¢° is actually at least that of the limit system (1.6) by proving
the convergence result (1.10). Our proof is based on a classical fixed point argument, of the
following type.

Lemma 2.1. Let X be a Banach space, let L be a continuous linear map from X to X, and

let B be a bilinear map from X x X to X. Let us define
I£]] := sup [|Lz| and [B]:= sup [|B(z,y)].
llz[=1 lzll=llyl=1
If || L]] < 1, then for any xo in X such that
(1 - [£l)?
[zollx <
4| B|

the equation

x=ux9+ Lz + B(z,x)
— £
2(|B]|

has a unique solution in the ball of center 0 and radius and there is a constant Cy

such that
]l < Collzol| -

We are now going to give a formulation of the problem which falls within this framework.
To this end, let us introduce the integral formulation of (1.3)

(2.1) 9°(t) = U (t)gin + T°(t) (9%, o)

1 1

where U¢(t) denotes the semi-group associated with ——v -V, + < L (see [44, 5] as well as
£ €

Appendix A) and where

t
(22) V(i) = [ U= O (). () af

with I' defined in (1.4). It follows from the results and notations recalled in Appendix A (in
particular Remark A.5) that given gy, € X%* of the form (1.8) the function g defined in (1.9)
satisfies

(2.3) 9(t) =U(t)gin + ¥(t)(9,9) ,

where as explained in the rest of the paper, the operators U(t) and ¥(t) (defined respec-
tively in Remarks A.2 and A.5) are in some sense the limiting operators of U¢(t) and We(t).
Formulation (2.3) is thus a way to reformulate the fluid equation in a kinetic fashion.

It will be useful in the following to assume that g;, and g, are as smooth and decaying as
necessary in z. So we consider families (p],, u;", 01 ),c(0,1) in the Schwartz class S;, as well

as (9&)776(0,1) and (gﬁl)ne(ojl) related by
(24) () = M) (B (x) + A () v+ L (of? — DA ()
with (pi,u; ,6]) defined by notation (1.7), with

2(v)dv,

pi"n(x):/ gﬁl(x,v)M%(v)dv, u?n(a:):/ vg! (z,v)M?2(v)dv
Rd Rd
Mz (v)dv

(2.5) 1
i) = 5 [ (0P = Dy, M) do.
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and such that

(2.6) vne(0,1), g0 €Sew and H5ﬂl|le,k7+ 16 ller <,
with 6 :==¢! —gin and 6. :=g! — Gin.

If Q = R?, we furthermore assume, recalling that (pin, uin, fin) belong to H: N L1, that

(2.7) 10 ll2cs < 7.
Thanks to the stability of the Navier-Stokes-Fourier equation recalled in Appendix B.3 we
know that

(2.8) g"(t) == U)gi, + ¥ (t) (9", g")
satisfies
(2.9) 71713% Hg” - QHLoo([o,T],XM) =0,

uniformly in 7" if the solution g is global. Moreover setting

(2.10) ¢ =g" + 65, §°N(t) = US(t)d]

there holds

(2.11) g="(t) = US(t)g, + W= (t) (97" — 057, g% — &) .

Thanks to (2.7) and the continuity of U¢(t) recalled in Lemma 3.1 we know that
(2.12) 1657 | oo (et x08) S 1

hence with (2.9) it is enough to prove the convergence results (1.10) and (1.11) with ¢ and g
respectively replaced by ¢=" and ¢" (the parameter n will be converging to zero uniformly
in €). Indeed we have the following inequality

19° = gll oo 0,77, x0%) < NO= || oo mt xek) + |9 = 97l Loo (0,77, x0%) + 1957 = 7| Loo (0,17, x0:%)

which is uniform in time if g, (and hence also g; if n is small enough, thanks to Proposi-
tion B.5) generates a global solution to the limit system. In order to achieve this goal let us
now write the equation satisfied by ¢*" — ¢g"7. Our plan is to conclude thanks to Lemma 2.1,
however there are two difficulties in this strategy. First, linear terms appear in the equation
on ¢g=" — ¢g". whose operator norms are of the order of norms of ¢” which are not small —
those linear operators therefore do not satisfy the assumptions of Lemma 2.1. In order to
circumvent this difficulty we shall introduce weighted Sobolev spaces, where the weight is ex-
ponentially small in ¢7 in order for the linear operator to become a contraction. The second
difficulty in the ill-prepared case is that the linear propagator U¢ — U acting on the initial
data can be decomposed into several orthogonal operators (as explained in Appendix A),
some of which vanish in the well-prepared case only, and are dispersive (but not small in the
energy space) in the ill-prepared case. These terms need to be removed from ¢="7 — ¢ if one
is to apply the fixed point lemma in the energy space. All these reductions are carried out
in the following lemma, where we prepare the problem so as to apply Lemma 2.1.

Lemma 2.2. Let r > 4 and A > 0 be given. With the notation introduced in Lemma A.1
Remark A.2 set

3(t) == Ugigp ()i + U (t)gil,  and  677(t) := U*(t) (gl — g) — 6" (1)
Finally set
§5777 = g77 _’_56777
and define h" as the solution of the equation

(2.13) () = DX() + L(ORFT(E) + 5(8) (R, hy")



where (dropping the dependence on n on the operators to simplify) we have written

D5 (1) := e~ o llg= @)y, dt’ De(¢)

De(t) := 65" + (US(t) = U ()G, + (95 () — ¥ (1)) (9", 9")
1- _
+ 20 () (g7 + 50—, 5°) 4+ (1) (677 — 297, 6°7)
L5 (H)h = 205 () (" — 657, h)  with

1 t t ||1=¢, my||r "
WS () (hy, ho) i= — / e M T Nk A" 72 (4 — YT (hy, ho)(H) dt' and
0

£

(2.14)

1 t|=e,m (4|7 ’ t _ t =e,m (|| 7
B (1) (ha, ha) 1= LMo 17 / o2 S IgE ) 7 .
€ 0

x US(t —t")['(hy, he)(t)) dt’.

Then to prove Theorem 1, it is enough to prove the following convergence results: In the
well-prepared case, for A large enough

=0

lim lim Hh

A 2 117 HLoo ([0,7],X k) =

and in the ill-prepared case for all p > 2/(d — 1) and for X large enough

lim lim Hh =0,

777

n—0e—0 "L°°([OvT]7X‘*”“)+L”(R+7L$°’k(WZ’°°+H£)(Rd)))
where the convergence is uniform in T if gﬂl gives rise to a global unique solution.
Proof. Let us set, with notation (2.8) and (2.10),

REN = = — gl
which satisfies the following system in integral form, due to (2.8) and (2.11)
(2.15) RE(t) = D (t) + L5 ()RS + WE(£) (RS, hSM)
where B
De(t) = U(t)(gif, — Gim) + (U°(t) = Ut ))Q’L WE ()65, 657)
=2 (t)(g", 65") + (T (t) — (1)) (9", g")
LE(t)h == 2% (t)(g" — 65", h) .

The conclusion of Theorem 1 will be deduced from the fact that A" converges to zero
in L>°([0, T, X**) (resp. in the space L ([0, T], X“*) 4+ LP(R*, Lo>* (WH 4+ HL)(RY)) in the
well-prepared case (resp. in the ill-prepared case).

In order to apply Lemma 2.1, we would need the linear operator £¢ appearing in (2.15)
to be a contraction in L>([0,T], X%*), and the term D?(t) to be small in L>([0, T], X**).
It turns out that in the R2-case, to reach this goal, we have to introduce a weight in time
(note that in the references mentioned above in this context, only the three-dimensional case

is treated, in which case it is not necessary to introduce that weight). We thus introduce a
function yq(t) defined by

1 if Q=T d=2,3, or R,
1 if Q=R2.

For a given T" > 0 we define the associate weighted in time space

C={F = ftw0) ) f € L2 txalt), X}

Vit e R+, xa(t) == {
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endowed with the norm
£l ek := sup x| fE)]le -
T t€[0,T

In order to apply Lemma 2.1, we then need the term 56(75) to be small in Xf’k. Concerning

this fact, it turns out that the first term appearing in D¢(t) namely U® (t)(g! — @), which is
small (in fact zero) in the well-prepared case since g = g/, contains in the case of ill-prepared

data, a part which is not small in Xzé’k but in a different space: that is
e,
07" (t) = Ugisp () g + U (t) g5l -

This is stated (among other estimates on 0°") in the following lemma, which is proved in
Section 3.3.

Lemma 2.3. Let p € (1,00] and Q = R, There exist a constant C such that for alln € (0,1)
and all € € (0,1),

(2.16) 157" 2o ey < O
Moreover there is a constant C such that for alln € (0,1) and all € € (0,1)
(217) |U O gillen < O™

where o is the rate of decay defined in (A.3), and for all n € (0,1) there is a constant C,
such that for all € € (0,1)
e\ 7t C
(218)  NUgp®ghlpmigee < Cy(1A(5) T ) and ([Ugip(B)glllex < 7id
4

In particular 8" satisfies for all n € (0,1)

gl_l)% Hgsmuxfo’k < 077 and il_I}%) ”gsmHLp(R+7L3°’k(W£»°°+H£)(Rd)) =0, Vpe (2/(d - 1)7 OO) :

Returning to the proof of Lemma 2.2, let us set
B = R 5 g = g 4 5,
and notice that h=" satisfies the following system in integral form
(2.19) h=M(t) = De(t) + LE(t)h™" + W (t) (RS, h5"T)
with
D(t) := 67" + (U(t) = U (1)) g, + (¥ (1) — (1)) (", ")
£ 2w (1) (97 + 55— 55 W (1) (577 — 247, 5°7)

LE(t)h =2V (t)(g>" — 0%, h) with We(¢)(hy, ho) := 1/t Us(t —t")D(hy, ho)(t') dt’ .
€Jo

In order to apply Lemma 2.1, we need L° to be a contraction, so we introduce a modified
space, in the spirit of [13], in the following way. Since ¢” and & " belong to L>°([0,T], X©F),
then for all 2 < r < oo, there holds

(2.20) =" :=08"+g" € L"([0,T], X**)

with a norm depending on T'. Moreover as recalled in Proposition B.5, if the unique solution
to (1.6) is global in time then in particular

(2.21) g"e L"(RY, X5 vr >4,
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So thanks to (2.16) we can fix r € (4,00) from now on and define for all A > 0

1570 = e (- [ 17Ot

The quantity appearing in the exponential is finite thanks to (2.16) and (2.21). The pa-
rameter A\ > 0 will be fixed, and tuned later for £° to become a contraction. Then hi’n
satisfies

h3"(t) = D5(t) + LAY (t) + 25(8) (R, hY")
with the notation (2.14). This concludes the proof of the lemma. O

2.2. End of the proof of Theorem 1. The following results, together with Lemma 2.1,
are the key to the proof of Theorem 1. They will be proved in the next sections.

Proposition 2.4. Under the assumptions of Theorem 1, there is a constant C such that for
allT >0,n>0and A >0

lim”ﬁ)\ h”xék<0()\ +7]>||h||Xék

e—0

Proposition 2.5. Under the assumptions of Theorem 1, there is a constant C such that for
allT>0,1n>0,e>0and X\>0

T
|50 £l < Cexp (A [ 1870 g de) 13l gl Foll -

Proposition 2.6. Under the assumptions of Theorem 1, there holds uniformly in A > 0 (and
uniformly in T if g gives rise to a global unique solution)

rlllin ilm | D5 ( )“ng =0.

Assuming those results to be true, let us apply Lemma 2.1 to Equation (2.13) and X = X;:’k,
with xg = D5, £ = L5 and B = ®5. Proposition 2.5, (2.16) along with (2.21) ensure that ®§
is a bounded bilinear operator over X;’k, uniformly in T if g gives rise to a global unique
solution. Moreover choosing A large enough, € small enough (depending on 7, and on T
except if g/ gives rise to a global unique solution) and 7 small enough uniformly in the

other parameters, Proposition 2.4 ensures that L5 is a contraction in Xfi’k. Finally thanks to
Proposition 2.6 the assumption of Lemma 2.1 on Df is satisfied as soon as € and 7 are small
enough. There is therefore a unique solution to (2.13) in Xé’k, which satisfies, uniformly in T'
if g gives rise to a global unique solution,

2.22 lim li & =0.
(222) 1y Il =0
Thanks to Lemma 2.2, this ends the proof of Theorem 1. O

To conclude it remains to prove Propositions 2.4 to 2.6 as well as Lemma 2.3. Note that
the proofs of Propositions 2.4 to 2.6 are conducted to obtain estimates uniform in 7", and this
information is actually only useful in the case of global solutions (which is, for example, always
the case in dimension 2). Note also that, here and in what follows, we have denoted by A < B
if there exists a universal constant C' (in particular independent of the parameters T, e, A, )
such that A < CB.

Before going into the proofs of Propositions 2.4 to 2.6, we are going to state lemmas about
continuity properties of U¢(t) and W*(¢) in the next section that are useful in the rest of the

paper.
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3. ESTIMATES ON U*®(t) AND W°(t)

Let us mention that some of the following results (Lemmas 3.1, 3.2 and 3.7) have already
been proved in some cases (see [5]) but for the sake of completeness, we write the main steps
of the proofs in this paper, especially because the R?-case is not always clearly treated in
previous works. The conclusions of the following lemmas hold for Q = T? or R¢ with d = 2,3
unless otherwise specified.

3.1. Estimates on U®(t).

Lemma 3.1. Let £ > 0 and k > d/2 be given. Then for all € > 0, the operator US(t) is a
strongly continuous semigroup on X°* and there is a constant C such that for all ¢ € (0,1)
and allt >0

(3.1) 1U=()

Proof. For the generation of the semigroup, we refer for example to [44, 20]. Concerning the
estimate on U¢(t), following Grad’s decomposition [24], we start by spliting the operator L
defined in (1.4) as

e < Cllflew, ¥ FeXH.

Lh = —-v(v)h+ Kh,

where the collision frequency v is defined through
(3.2) v(v) = / b(cos 0)|v — vi|" M (vy) do dv,
RdxSd—1

and satisfies for some constants 0 < vy < v,

v(1+1v]7) <v(v) <uv(l+ |v]7).
The operator K is bounded from H.YL? to X*° and from X% to X%*! for any j > 0
(see [44]). Then, denoting

1 1
A® = = (ev-Vgy+rv(v)) and Bf:= A+ ?K,

we use the Duhamel formula to decompose U¢(t) as follows:
t
€ / € 1
(3.3) Us(t) = e + / Y S KUS() dt
0 9
Moreover, the semigroup e*4” is explicitly given by

tAsy _ —v(v) 5 .t
(3.4) e h=e h(:c vg,v>,

tA®

so e satisfies

E ot
e hllx < e |h]x
for X = HYL? or X = X% for j > 0. From this and the fact that K is bounded from H!L?

to X*0 and from X% to X%7*! for any j > 0, we deduce that there exists a constant C' such
that

e —vy5 c [ o= ey '
U0l < U+ 5 [ T Uy ar
and thus

(3.5) (U @#) fllLoom+,x) < [Ifllx + ClIU(@) fll oo (rt v

for (X,Y) = (X% HLL2) or (X,Y) = (X%, X%~1) for any j > 1. Reiterating the process,
we obtain that

(3.6) 1O (&) fll Lo e x00) SIS

ek + 1US() fll oo e+ 112 12) -
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It now remains to estimate U®(t)f in HLL2. Taking the Fourier transform in x we have for
all ¢ thanks to (A.1) in Lemma A.1
4
Z + U (t) with

(3.7)
t

05(1,€) =0 (82,5§> wnd 0%(1.6) = 0F (. =¢)
and for 1 < j <4

05(.9) = x ()50 py et
with
1
56 1= () = iy L 16?8 + Ol

Denoting /3 := min; §;/2 and recalling that « is the rate of decay defined in (A.3), we obtain
the following bound:

10°(t©)llsz 1z S e8P o702
From this and using that £ > d/2, we deduce that
1T fll oo mt,merzy S Wfllaerz S flle

which allows us to conclude the proof thanks to (3.6). O

We now state a lemma which provides decay estimates on éUe(t) on the orthogonal
of Ker L.

Lemma 3.2. Let £ > 0. We denote We(t) := LUS(t)(I —II1). We then have the following
estimates: there exists o > 0 such that

Tl Fllaers if Q=19
W) fllmere < Ll||f||H€L2 if Q=R?,
(||f||H€L2 + [ fll2ry) if 0 =R,

I 4
t§<

Proof. We use again (3.7) and we recall that

Pieor - ) =<lel (7 (&

&)+ leipaetn)

Using results from Lemma A.1 on le and Pj2, denoting S := min; 3;/2, we obtain the
following bound:

o~ 1 _,t
(33) 21,1315 S I€le™ PPt 4 —emoc

where « is the rate of decay defined in (A.3). From this we shall deduce a bound in H.L?2,
arguing differently according to the definition of 2. We first notice that for any ¢ > 0,
1 t e 0%

(3.9) —e Y2

e The case of T¢. Since & € Z¢, we have
t

Ele PPt < e



14 ISABELLE GALLAGHER AND ISABELLE TRISTANI

We can thus deduce from (3.8) that for o := min(a B)/Q > 0, and for any f = f(v) € L2,

Wt €)
Since the operator U®(t) commutes with z derivatwes, we obtain that for any f = f(z,v)
in H L2,

fot

W) fllers S ! 1/ ez -

e The case of R%. Note that
-BIE*5
_ 2 e 2
(3.10) VE>0, [ge Pl < —T
This together with (3.8) and (3.9) gives directly that

1
W) fllaere < T [ fllger -
2

Finally let us prove the last estimate. We can suppose that ¢ 2 1. Then using (3.8) and (3.9),
we write that for any function f

W) g2 12

< [, (e + 2Ya+ Pl 1 de
—at

_oBle2 ) T —oBtlel?
sA;m%Qmﬁuﬂa»%y%+/‘m%” 2P| e, 2 e+ S F g
=L+1+1I.
We treat I; using (3.10) and a change of variable: since ¢ 2 1 then
1 _Br1e]2 ~
nsq [ e a Hf\l%mo
1

S 1122y S
i+ #(t )
The term I is handled just by using a change of variable and we obtain (since t 2 1)
1
< -
B S g Wl ﬂ)

The decay in time of I3 is even better, so in the end, we get that for any ¢ > 0, there holds

1
W) lmgzz S g (Mllezs + 17 zazs) -
tz(t)4

Lemma 3.2 is proved. O

We now give some estimates on the different parts of U¢(¢) from the decomposition given

n (A.1).

Lemma 3.3. Let Q = R%. Fiz £ >0 and k > 1 and consider f in X** N L2LL. Then with
the notation introduced in Remark A.2 there holds for all € € (0,1)

sw(wﬂW%ﬁw+Wﬂ+WW»ﬂm>SWMVWMQQ-

t>0
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Remark 3.4. We need f to be in L2LL in order to estimate the terms Ugisp(t) and U(t)only.
Indeed, the decay in time of those terms comes from the decay of the heat flow and thus
requires a loss of integrability in space.

Proof. Let us start with the terms (Ugy,(t) + U(t))f. We focus on large times ¢ 2 1, the case
of small times ¢ < 1 can be treated in an easier way just using the continuity of the heat flow
in HS. We remark that given the form of Ugisp(t) and U(t), we just need to estimate

et )],

[l et )0

oo,k
mellLs

with a; € R (and can be 0) and 3; > 0. We have
1 Btlel? ot po (€ ’2
G ) Dl
swmw%/<@%fwmﬂ%”?ﬁ(é0ff%
v R2

s L ()7t

Then, using that Pjo(f /|€]) is bounded from L2 into LY™* uniformly in ¢ from Lemma A.1
and the fact that LS° LIPS L%, we obtain:

2
fx_l <e—ﬁjt|§26iajtglp() i f)
| i)l

_A. 2, - 2,
s/@WeMMmaﬁsjjkuﬁﬂkWKm%ww
R2 R2 JR2

Using now the decay properties of the heat flow and bounding || f||¢,—1 % by || f

2
_ CB41E12 il EN 1
H;xl <e Bitle]? giat Pj(,)(m)f) S S M2z + 17176)
Ok

Let us now estimate the last remainder term ||U*(¢)f||¢. From (A.3), one can prove (see
the proof of Lemma 6.2 in [5]) that

—at
(3.11) U () fllex S e 2| fllew
and thus

ok, We get:

1
O NUF) flleg S Nl VEST.
We then notice that for ¢ 2 1,

1
1 _gt t2 _,t
t2e %2 <eg—e "2 <S¢

to deduce that )
2| U (@t) fllew Sellfller VEZ L.

Lemma 3.3 is proved. O

Lemma 3.5. Fiz £ >0, k > d/2 and consider f in X**. Then with the notation introduced
in Remark A.2 there holds

(3.12) sw(@Hmmw—m@m—UWw—wmﬂm)swwh

t>0
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If moreover f € XLk there holds:

313)  sup (@) - Uyl) - U0 = U) ] ) S ell e
and if f € XU is a well-prepared data in the sense of (A.8), then

. 1 er _
(3.14) il_I)I(l)ilZlg (<t>2 H(U (t) U(t))fHM) =0.

Proof of Lemma 3.5. We shall prove simultaneously estimates (3.12) and (3.13). Using the
notation introduced in Appendix A, we consider 1 < j < 4 and we want to estimate the

terms <t>%HUJ5m(t)f||gk for 1 <m < 2 as well as (tﬁHU;g(t)fHM We restrict ourselves to

the case Q = RY, the case of the torus can be treated similarly. We start with U5 (t). We
first consider small times ¢ < 1. We have

U5 () £117 &

| fur ()
<L
IR

where we used, as in the proof of Lemma 3.3, the fact that P)(¢/|¢]) is bounded from L7

into Ly>" uniformly in £ to get the last inequality. Using (A.2) in Lemma A.1 and the
"/J(E\il
_ 1’

Lok

S 1’2 7 () Fie

~

T 1)2\)13]0(,;) @* e, )|

2| el
e ¢

2

dg

LSk

_1) H 57 HL2al5

inequality |e® — 1| < |alel®l for any a € R, we now bound from above the term ‘e

(3.15) )((glf‘)e_ﬁﬂ'“f|2 etvj(;m - 1‘ S X(f)e_ijtlwﬂfﬁ NER
and

316) (e gy (B e g < .
This gives, for any ¢t > 0,

GOSN e S W7z and U OFI7) S 1117, e -
| 2 gyt
Using that L™ < L2, we get:
UG fllew S 1 fllere and  [|U71(8) fllep S ell fllevre, VEST.

Now for large times ¢ 2 1, we notice that using (A.2) in Lemma A.1, we can write
iNE \51) —BytlEl? | st (el /2 1’ < X(%>e—%t|f\2t%€|gy3 <e
K

so that as previously

1
t2||US (t)
We are thus able to conclude that
1 1
OzUH @) fllerx SN fllex and  (O2|U7 O fllex Sellfllesre, VE=0.

VE> 1.
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For U5 (t) f ek, we consider ¢ < 1 and we write
U5, () £117 &
B e L
S/Rdxcfl) g+ 05D oo Hp (€. |§|)<g> Fi,- )H L de-

In view of the definition of P; in (A.4) and the fact that le (&/1€]) and Pf(f) are bounded

from L2 into Ly™* uniformly in |¢| < & from Lemma A.1, we deduce that

<€‘§|>Hp ( & ]g\)@yﬂg’.)‘ Lk S (Em)H Gy HL2 :

Using again (A.2), we have as long as €|§| < k

Look

'vj(alﬁ\)

o~ 265tIEP+2t < e Bitlel |

Since x(g|¢|/k)e2|€]? < 1 and x(c|¢]/k)e2[€]? < €2[€]?, we can bound U5 (#) fllex as

U5 fller S Nflle and  [[Usp() fllen S el fllegir, VES T

For large times ¢t 2 1, we have

HUS W12, < &2 / te[2e= 1R () Fle, |3 de

which implies that

1
U5 fllex S ellfller, YEZ1
and thus

O U0 ek S IFllex and B2 [USOflles S el flesie, ¥ 0.

Finally, for ||UJ€6i (t)fll¢,x, we proceed in the same way using the inequalities

(3.17) ’X<SE|)—1‘§1 and ‘X(slﬁ\)_1’§s\€l

to get

1 1
WU flew S N flew and  O2UZE flew S ellfllesre ¥t >0.
This proves (3.12)-(3.13).

Let us now consider f a well-prepared data. To prove (3.14) we use the decomposition (A.1),
and we notice on the one hand (see Remark A.2) that

Uso=Usy, Ujy=Usyp and U = Usy+ Uy
and on the other hand that from (A.7), if f is a well-prepared data, then
Udisp(t).f = 0.
This proves (3.14), up to the fact that

lim sup sup ((t) 2 U= (t) f

e—0 t>0

2 =0.
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We thus estimate this last remainder term |[U%#(¢) f||¢.x. The estimate for large times has al-
ready been obtained at the end of the proof of Lemma 3.3. For small times, in [5, Lemma 6.2],
the authors notice that

U(1)f = U0 (0) = %) [F (1a — x () S Pi(e€) ) Fuf (6)]
j=1

so since f belongs to Ker L, we have

S (CRC)Rt (f‘fl)fj o)zt

(3.18) Ut () f = US()

with notation (A.4). The X%F-norm of the first term in the right-hand side of (3.18) is
simply estimated using (3.17). The terms coming from the second part of the right-hand side
of (3.18) are estimated as the terms Ufm for 1 <j<4and1<m < 2. In conclusion, we
obtain

U (@) fllew S ell fllevan VEST.
Lemma 3.5 is proved. O

The following corollary is an immediate consequence of Lemmas 3.3 and 3.5 along with
the triangular inequality.

Corollary 3.6. Let @ =R2. Fiz £ >0 and k > 1 and consider f in X** NL2LL. Then there
holds for all € € (0,1)

1
sup 2Tl p S N llew + 1 lz2rs -

3.2. Estimates on U°(t). Let us now give some estimates on the bilinear operator We(¢).
We also state some specific estimates in the case of R?, which is different due to the presence
of the weight in time in the definition of Xfw’k, when one of the two variables is §*"7 which
is defined in (2.10) (see Lemma 3.8). Finally, to end this section, we give another specific
estimate on We(t) when one of the two variables is 0" (defined in Lemma 2.2) in the case
of R?, d = 2,3, which will be useful to treat ill-prepared data.

Lemma 3.7. Let £ > d/2, k > d/2 + v be given. Then V&(t) is a bilinear symmetric contin-
uous map from Cy([0, T], X4F) x Cy([0, T, X4F) to Cy([0, T, X4*), and there is a constant C
such that for all’ T > 0 and all € > 0,

(3.19) 195 @1, Sl e < Ol el foll e,V ro fo € X725

Proof. As in (3.3), we decompose ¥¢(t) into two parts:
U= (t)(f1, f2)

t t pt—t

= % /0 e(t_t/)Agr(fl,fZ)(t/)dt/+é /0 /0 e“‘t’”)AEg%KUE(T)Hfl,f2)<t’> dr dt’
t

= SN (1)(f1, f2) + 512/0 O KGE () (f, fo) dt

As in the argument leading to (3.5) in the proof of Lemma 3.5, using properties of K, we
have that

(3.20) @) (Frs )l e S Z M=) (Frs Sl e + 5@ (1 Sy,
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where we have defined
Vi i={f = ft.2,0) ) £ € Ly (Oxal), HLLD }
endowed with the norm

[£llye. == sup xa@f Ol gers -
T efo,1]

Estimates on ¥S1(t). Let 0 < j < k be given. We first use the explicit form of et4” given
by (3.4) in order to deduce that

1 ) 1t —V(v)% / /
=) (f1, f2)lleg < ¢ 2 |L(fr, f2) ) e dt

9

Ly
We have
1O (@) (f1, f2)lle,g
< sup 1/t e O F ) W)V f2) () e
(3.21) veRrd € Jo ¢

1 ¢ —v(v =4
<, fo) et | - / O () at
T 0

€
S fHVflr(fh fQ)HX;{v’“ )
Using (B.5), we immediately have that
-1
I T £l < Wl gl ol
From this, we conclude that for any 0 < j < k,

195 O (1 f)lLags < CellFill g ol e

Estimates on WE(t) in yf;. Recalling that Il is the orthogonal projector onto Ker L and
using a weak formulation of the collision operator I', it can be shown (see for instance [45])
thanks to physical laws of elastic collisions that

HLL(f1, f2) =0 VY fi1, fo

so we are going to be able to use Lemma 3.2. Let us start with the case when € is not R?
and let us define

Lge

B : _md _
(3.22) Xo(t) '—{ L =T, d=29

T tE@) Tt if Q=R3.
We then estimate ||¥=(t)(f1, fg)Hyé using the fact that thanks to (B.5)-(B.6)

t
19 (frs f2) || e 12 5/0 xa(t =) @) lexll f2E) e dt’

t
~ / /
S [ Ralt=O)d Nl ol S Nl g1l

since Ygq is integrable over RT. Note that the e dependence has been dealt with thanks to
Lemma 3.2.

To conclude it remains to deal with the case when = R2. Arguing in a similar fashion
we have

1
2t — ) (t')

t
1
WE(t)(f1, f2)llye. Ssup(t 4/ dt'|| f1ll ver |l f2l pen s
1= (#)( My, t20<> APa— 11l e [ f2ll e

=
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so let us prove that

N

t 1 1,
ot oot "

is uniformly bounded in ¢ > 0. We define

1 [T 1 dt’
I(t,s,T):= (t)% / T T T
s (t—=t)z{t—t)2 (t')2
and let us write I(¢,0,t) = I(¢,0,t/2) + I(t,t/2,t) and estimate both terms separately. The
second one is the easiest since

t (t)T dt’ ¢ 1 dt’
I(t7t/2,t):ﬁ .t /1,15/ pe! Fu
(= t)EE—t)E ()F T UL (E—)E(t—t)E (1)
so that
1 1
I(t,t/2,1) S ||+ T 0.
()2 |3 {1 || s

As to the first term we start by assuming that ¢ < 1, then

t/2 dt/
160,42 % [
0 t—t

On the other hand if ¢ > 1 then using the fact that when 0 < ¢ <¢/2then1 <t/2 <t—t' <t
we have

< 0.

1
<f>4 1 g 11 1
(t—t)z(t—1t)2 (t—t)z(t—t)4
SO
160,42 5 || g
Oalls [ 7|1
The proof is complete. O

Lemma 3.8. Let Q =R?, (> 1 and k > 1 +~. For any f € L®(R*, X*), there holds
tim [0 (0) (57, 1)y S 0l e
where we recall that 05" is defined in (2.10).

Proof. Following the proof of Lemma 3.7, and in particular (3.20), it is enough to esti-
mate [[WEL(£) (657, f)]| per and [[WE () (557, F)llye - Let us notice that using Corollary 3.6 we
find that

1 U
(N6 llew + 16 21) S

(323) 157 les S T

N

from (2.6)-(2.7). For the estimate of W= (£)(6%", f)|| ,e, we notice that if 0 < ¢’ < ¢/2, then
there holds t/2 <t —t' <t from which we deduce that

If t/2 <t <t, we have
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In all cases, we can thus write the following bound for 0 < j < k:

(6T (), )|k

g ! —v(v tiél -1 7/ 1 £,n / /
< sup e 222y (u)r () () () T[T, f) ()| e dt
veR2 € Jo ’

!

I =
< 2|~ (65", h) - / e S () dt!
€Jo

foo»k L

S el T h)|| e -
Using (B.5) and (3.23), we have that
H’/_lr((sama h)”;(fék S Hdg’nH;{gf HfHLoo(RJr,XM) N 77Hf”Loo(R+,XM) .

From this, we are able to conclude for the first part of the estimate.
As to the estimate in yﬁo, we proceed as in the proof of Lemma 3.7 to deduce that

[t 1 1
OGPy, Ssup @) [
t>0 0 (t—t)2(t—1t)2 (t')2
and the result follows directly as above. Lemma 3.8 is proved. g

Lemma 3.9. Let @ = R?, d = 2,3, ¢ > d/2 and k> d/2+~. For any f € Xfi’k, for
any n > 0, there exists Cy > 0, independent of T', such that

< 1
12537, 1)l e < e 11y

£
T

At || fll poo e+ xe.ky 5

Proof. Recall that by definition
B

)

" = Ugisp ()95, + UF(t) g5,
Defining
(3.24) 57() = Usip(O)gh and 857(8) := U (t)g],

we shall study separately the contributions of \Ilg(t)(gi’?, ) and U= (£)(85", f). Following the
proof of Lemma 3.7, it is enough to estimate [|®!(£)(6°7, f)| er and [ @€ (£) (657, f)||y:er.
T

Step 1: estimates in y‘g. We separate the analysis according the different cases for Q.

o The case of R2.  We first focus on the estimate of || ¥=(¢)(5;", Mlye . We use the
estimate (B.4) and the second estimate coming from Lemma 3.2. We have

t
- 1 1 — 1
Ue(t 58777, ¢ S sup(t 411/ | P R 0 ]I pp—
(@) (017 Hllye, tzo() ; (t—t’)%H 1 ()] ooyt )3 1] e,
and thus thanks to Lemma 2.3, estimate (2.18)
- | 11
NEOG lys, < Cretsup(F [ L s

> >0 o (t—1t)z (¢)z (t') >

< Cyezsup Lt 0,0 f]| yer

>0 o

Al

with

ST

o111,
L(t,s5,7) = {t) / et

It thus remains to verify that I;(¢,0,¢) is uniformly bounded in time. First, we notice that

t / t /

1 1 ST 71§1'
t/2 (t—t)2 ()2 ¢z Jy2 (t—t)2
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Then, if t < 1,

1 t/2 dtl
0

tzJo ()2~
Finally if t 2> 1,
1 otar 1 2 oar
Il(t70at/2)§1/ 1+1/ 3517
ts Jo (t)z t1J1  (t)4

from which we are able to conclude. B
We now turn to the estimate of ||¥¢(¢)(dy", )lye . We use the third estimate given by
Lemma 3.2 and Lemma 2.3, estimate (2.17), combined with (3.11) and (B.5)-(B.6) to get

t
—<€ 1 1
WE(4) (55", f erﬂsupt4/
H ()( 2 )Hyoo t20<> 0 (t—t/)%@—t/)%

t/
€2 At | £ e = sup I5(£,0,1) 1|
o tZO oo

where

N

T 1 tl
I5(t, s, 1) := (t) / e Y2 dt.
? s (t—t)2(t—t')2

First, let us notice that if t < 1, then

| ot
I5(t,0,t) ,<V/ — e "2dt
0o (t—1t)2
and thus, using Young’s inequality,
- 1 _atl 2
IQ(t7O7t)§ 1| 3 He ° 3563
t21lzg (o.1)) Li
Similarly, when ¢ 2 1, we have
_ t/2 1 VA . v
I5(1,0,/2) S e rd S| | ||, se
0o (t—tha(t—t)2 ta(t)2 || 2 Ly
t
Finally
t
1 —at 1 ot
Bt/ 5 [ L e | o el
t/2 (t—1t)2(t—1t)2 t2(t)2 ||, 3 Ly
t

e The case of R3. The strategy of the proof is similar to the case of R? so we skip the details.
For the term || W= (¢)(5,", f)Hy%, we notice that Lemma 2.3, estimate (2.18) implies that

VI

<& €
I3 () ez < Co (5)

It is thus enough to check that the following integral is uniformly bounded in time

t 1 | 1
/ (7 —dt' = J1(0,t), with Ji(s,t) = / (
0 s

- dat' .
t—1)3 ()2 t—1)z ()2

We have

1 (Y2 ar 1t dt
J1(0,4/2) < / <1 oand Ji(t/2,6) < / A<y,
0 t

t2 (thz ~ t3 Jijp (t— )z "~

which yields the result. In order to estimate || U= (¢)(d,", )Hy§ , we just have to bound

¢ 1 ot
/ : e G = 50,4
0 (t—t)2(t—t)1
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Using Young’s inequality, we have:

1

2
1 3 583 :
t2(t)4

J5(0,8) S

|
9
S

3

L}

Step 2: estimates in X;:’j. As in the proof of Lemma 3.7 (see estimate (3.21)) and of
Lemma 3.8 for the R2-case, we have for any 0 < j < k and any t € [0, T

NGIOTREGICR I
Selvr @ p)|

XhF
<EM
S ello ekl Nl oe o2y, x00) < Cn el fllzoe o1, xe8y -
using Lemma 2.3 and this concludes the proof of Lemma 3.9. U

3.3. Proof of Lemma 2.3. Recalling the notation (3.24) we note that the results on d5"
follow directly from the properties on US recalled in Appendix A, namely Lemma A.l.
Turning to gi’", we remark that we can proceed similarly as in the proof of Lemma 3.3 using
the heat flow to obtain

(3.25) 165" S .

{t)

.

1
ek S Y (lginllee + g llzzry) <
4

Next, to prove the dispersion estimate
d—1

_ e\ 3
5 e < Co(1A () 7))
1857 gy < C(1 (£
recall that in Fourier variables, the terms inside U, disp (8, ) are of the form

exp (m\g% . 5t|§]2)P0<é|> with a,8 >0

and where PO(%) can be expressed as a finite sum of functions of the form

¢
Po(é‘)ﬁ = a(é‘)b(v)/c(v)ﬁ(g,v) dv

where a is a smooth function on the sphere, and b and ¢ are in L># for all 8 > 0. It follows
that

Uty a0, 0)] S )| [ e ersital(&) 7t ae

with
F.g(t, &) = /c(v)e'gtﬂQ@\in(f,v) dv .

But by [44] and classical dispersive estimates on the wave operator in d space dimensions (it
is here that we use the fact that Q = R?) we know that

| / e“'fﬂalf'ia(é)f@(t,g) de| < (1+ i)%l(llﬂﬂllu + 190 1ne)

and the result follows by continuity of the heat flow. Concerning the term coming from U deisp(t),
we can proceed as in the proof of Lemma 3.3 and just use the continuity of the heat flow
in H: to get

105 Ml < Nlgimlles S 1

as previously. Lemma 2.3 is proved. 0
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4. PROOF OF PROPOSITIONS 2.4, 2.5 AND 2.6

4.1. Proof of Proposition 2.4. The first steps of the proof follow the ones of Lemma 3.7:
first, we split the operator L defined in (1.4) into two parts as in (3.3), which provides the
decomposition (4.1). The last two steps are then devoted to the analysis of the terms of this
decomposition.

Step 1. From the decomposition (3.3), we deduce that for any A > 0, with notation (2.14),

Li(t)h 2/ (t— t’)AEF( _5EM h)( ) )‘ftt’ Hgs,n(t//)uzkdt// dt/

t—t
/ / eli=¥ T S BUS(N)T(5™" — 5= ) (1) M I8 g gy

= LS (Oh+ L ()h.
Performing a change of variables, one can notice that

1 t / €
= / A K LS (¢ hdt .
0

e2

L3P (th =

Exactly as we obtained (3.6), we are then able to prove that

k
(4.1) 1L @Al e S > Hﬁi’l(t)hllxqz;j + L5 (B Allye
j=0

where we recall that
Vp = {f = f(te,0) ) € L1 om(xal), HLLE) |
In the two next steps, we are going to estimate respectively the quantities HEi(t)th%
and ||£§’1(t)h||Xj{,j for 0 < j < k.
Step 2. Let us prove that

1
(4.2) YA> 0, L5y S (r 1) 1A e

As in the proof of Lemma 3.7, we are going to be able to use results from Lemma 3.2 since

O I(f1, f2) =0 YV fi, fa.

e The case of T?, d = 2,3. With the definition of L5 given in (2.14), the first estimate from
Lemma 3.2 and (B.5) we get

—o(t—t')
Hﬁi(t)humm 5/ =
T v 0 t

)2
t

t O'(t l) t -,
e _ e, ($1\||T 7
< / e M T A (gEn (|| g+ 85 o) A | -
0 (t—t’)§ T

M T ) G2 — 8) 0 e )

1 1
When A > 0, writing — + — = 1 with 1 <’ < 4/3 (since 7 > 4 by definition) gives thanks
roor
0 (2.12)
e—at
! t2

—ot

5O g5 S (Jle 1Mot e

(5

The estimate (4.2) follows.

I

S
t2

Ly Li

s
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e The case of R3. From the third estimate in Lemma 3.2 combined with (B.5)-(B.6), we

have:
1

t3 ()3

W) iz S 5 (I legze + 1 zacs)

We use that from (B.6), we also have:
ITCfs f2) 2y S N fallexllf2llen -

1 1
We can thus conclude as in the case of the torus, we write — + — = 1 with 1 <" < 4/3,
[ roor
then ¢ — t~2 ()~ 1 is in L' (R*) and we obtain (4.2).

e The case of R2. We start by noticing that for any t € R, we have thanks to (B.5)-(B.6)
and (3.23):

(43)  Vhe X" 0O 1)|pgs + DO W)l g20s S 116 lexl

Bllew S —rliblle
t)2
We also recall that the space Xfik involves a weight in time, namely yo(t) = <t)i The

part involving g*" is treated using (B.5) and the third estimate in Lemma 3.2. For the part
with 05", we use (B.5), (4.3) and the second estimate given in Lemma 3.2, we deduce

! 1
L5(t)h <
IR0 s N/o (t—t)3(t —t')3

t

1

+/17lnmmm$w'
0 (t—t’)Z <t’>2

_ t =M (|7 "o
L I O

t /
1 _ tose,m (1|7 "o dt
s / T 1€ Mo 177N 4t 1G5 ek —— Il e
0o (t—th2({t—1t)2 (t')= T

[ Ly
0k .
0 (t—t)E({t—t)z (K)T T

1 1
By Hélder’s inequality, writing — + — =1 with 1 < r’ < 4/3, we have
roor

O LSO 12

(4.4) [ 7En (o) |7 1
5 He )\j;f/ llg=( )Hl,kdUHEE,??”&k’ . HhH_Xz{’k [1(t,0,t)7“/ +77 HhH‘XT{’k 1'2(t’0’t)
t/
with .
v 1 1
L(t,s,7) = (t)T / S 7 dt’

s (t=t)zt-t)2 ()7

and

IS

T 1 1
I(t,s,7) = (t) / - - dt.
s (E=t)2(t—t)2 (')
Let us now show that I;(¢,0,t) is uniformly bounded in ¢ > 0. We first notice that
¢ 1 1
I1(t,0,t/2) 5/ s - dt’.
02 (1) () (1)

If t <1, we can write the following bound:

1
h@ﬁiﬁ)ﬁ/
0

~

dat’




26 ISABELLE GALLAGHER AND ISABELLE TRISTANI

because ' < 2 and if t = 1, we have:

1

r!

()«

Il(ta 07 t/2) S

< 00

5

{t)

L3 LA
since ' > 1. On the other hand, we also have that

o0 dt/
Il(t,t/Q,t)g/ L <o
0 (-3 1)T

because 1’ € (1,2). Concerning Iy, let us also write I5(¢,0,t) = I2(¢,0,t/2) + I2(t,t/2,t) and
estimate both terms separately. The second one is the easiest since

t 1 / t / t/2 g4
t)4 dt 1 dt 1 dt
IQ(tvt/2at):/ <1> 1 3 5/ 1 1 51/ r Sl
t/2 (t—t)2(t—1t)2 (t)s t2 (t—1t)2 (t)2 tzJo (¥)2
where we used the fact that t/2 < ¢’ <t. For the first term, we start by assuming that ¢ < 1,
then

t/2 dt/
It,O,t2§/
(0425 [ o

On the other hand if ¢ 2 1 then using the fact that when 0 < ¢ <¢/2 then t/2 <t —t <t
we have

< 00

B0t s s [T <
taJo (t)a
Coming back to (4.4), we thus conclude to (4.2).
Step 3. Let us conclude the proof of Proposition 2.4. Due to (4.1), it remains to esti-
mate ||£i’1(t)h|\xj{,j for 0 < j < k given, and to prove it converges to zero. The proof is

tA®

similar to the one of Lemma 3.7: we use the explicit form of e given by (3.4) in order to

deduce that
XI5 ®)hlle;

t ’
2 [ O F I 5o )¢ e T g
€ Jo x

< xa(t) ‘

LOQJ
v

e The case of T¢, d = 2,3 and R3. As in the proof of Lemma 3.7 (see (3.21)), we obtain
that for all A >0

15 @hleg < el ' TG = 67, h) | e

Using (B.5), we have that

(45) [T @ — 8, 1)l e < 1T — 07 ooz Il s
From this, we conclude that for any 0 < j < k,

71 —
1£5 (t)h||X1€,j < Cellg™" — 587”||L°°([0,T},vak)HhHXq{!k :
Thanks to Lemma 2.3-(2.16) and (2.12), recalling that =" = ¢" + 6", we deduce that
1
123" DRl e.s < Ce(lg" o0 o1y, x00) + C) 1Pl e

e The case of R2. We have xq(t) = <t>i. Exactly as in the proof of Lemma 3.8, we can
write the following bound for 0 < j < k:

OFNLT Ohlles S el TG = 657 h)| yer -
T
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As previously, we conclude that for any 0 < j < k,
1
1£5 (Ol s < Ce(llg"|l o o7, x00) + C)||h||X§,k :
this concludes the proof of Proposition 2.4. Il

4.2. Proof of Proposition 2.5. The proof of Proposition 2.5 is an immediate consequence

t15e, AYIES !
of the computations leading to Lemma 3.7, bounding the exponential o2 o 175 ()7 dt
by 1. ]

4.3. Proof of Proposition 2.6. Let us write

4
2 [tigEm (¢ 7 .
DS = M IOl ™ e

v DL(t) == 65" + (Us(t) —=U®1))gt
DE2(t) = (U5(t) — (1)) (9", 9").
DE3(t) == 205 (1) (g" + %35’”,55’") :
DHA(t) == =208 (1) (057,57 + U (1) (057 — 297, 5°7) .

We shall prove that
Vje[l,4], lmlim D], ok = =0,

n—0¢e—0

uniformly in 7" if g! generates a global solution.
The result on D=! follows from Lemma 3.5. Indeed, recalling that by definition
0" =U(t) (g, —gm) =9 " and &7 = Uiy (D)gih + U (1)g],
we have
DoY(t) = (U(t) — Udip(t) — U (1) = U (1)) gih, + U(1) (951, — Gin)

and we conclude that
lim | D= yex = 0

e—0

from the fact that
Ut) (g, — gin) =0,
which comes from (A.5) and (A.6) and thanks to (2.4)-(2.5) which imply that gl = U(0)g;!.

Now let us concentrate on D2, the control of which follows from the following lemma.

Lemma 4.1. Let { > d/2 and k > d/2 +~ be given and consider a function g solving the
limit system on [0, T] with initial data in X°* then

lim [[9*(%)(g,9) — ¥ (£)(g, 9)l ye =0,
e—0 T
uniformly in T if g is a global solution.

Proof of Lemma 4.1. A large part of the proof is dedicated to the case Q@ = R? which is the
most intricate one. Then, we conclude the proof by describing the slight changes that need
to be made to address the other cases.

e The case of R%. We recall that yq(t) = (t)i. We start with the decomposition (A.9) and
we deal with each term in succession, the most delicate one being U5, for j € {1,2}. So let
us set j € {1,2}. Defining

Ht,t )= 75 (PO ) ()P0t
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an integration by parts in time provides (recalling that «; > 0)

c € ! ey / /
we 060 © = o | e o iyt ar

~ Hy(t4.6) + I (1,0,0).

The first term on the right-hand side may be split into two parts:

t o - ~
/ ¢SS0 Hy (1, ¢, €) dt! = HY(t,€) + H2(t,€)
0

i ||

.ot
Hj(t,x):=F;" <€B]/ '
ZOéj 0

H} (t,2) = F, ! (.5 / eiealel 550~ “'5‘2131(‘ oot (g,g><t’,5>dt’>-
0

ZOzj

with

H;(t,t',€) dt’> and

Since le (¢/]€]) is bounded from L2 into Ly° * uniformly in ¢ from Lemma A.1, we have

t 2
<e 20 =B t—t)€? 1 ¢12||I T / /
e [ ([ e P F ¢y ot ) e

Using now Holder’s inequality in time, we infer that for all ¢ < 1

= 2
1@ S 22 [ (P00 O]}y d < 2

[HG]

from Lemma B.7-(7). For the case t 2 1, we write

1
I HOL!

t/2 t—t! t—t ?
<& /R ()% (/0 (=€)} b DI IS el e (2, €) dt') *

2
t
+ &2 / (€)% ( / e—ﬁj“—t’)'f2|§|2t’iw<t’,§>dt') de
R2 t/2

where to simplify notation we have set

Then we use Young’s inequality in time as well as the fact that t%\g ]éefﬁjt‘£|2 is uniformly
bounded to obtain
2

/2 1 1 21—t/ 2t—t' 1
/RZ<5>2£ (/0 (t — )7 |¢|2e BT e Bl 5T g2 |y (¢, €) dt’> dé
S [ @™ol de
< |lehn(t,€) HLgLQ (e

by Minkowski’s inequality. Similarly

2
t
20 —Bi(t—t) 2§ / / < |43 2
/RQ<§> (/t/Q |€’€ ’ 13 4’&"71@75) dt) dgw Ht4’fhl(tvf)HL%Lg(@y)7
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from which we conclude, using Lemma B.9-(7), that
1
t1 | H (6)les S e

Concerning H J2(75), again since le (¢/1€]) is bounded from L2 into L™* uniformly in &, there
holds

t / 2 =~ 2
EHOIA /R (& ( / e U 0uT (g, 9) (¢, €)1 dt’) d.

0
For t < 1, we separate low and high frequencies. We use again Young’s inequality in time:
defining for simplicity

Y2(t, §) = Hatf(gag)(tag)HL% :
there holds

t 1 3. (44 _1 = 2
EHOI /IE » ( /0 glze B 72 ]|0,T (9, 9) (¢, 6| 1 dt’) dg

t / 2 -~ 2
+52 /|£|>1<§>2£ </0 ’£|€75](t7t)‘£| |§‘71H8t’]-_‘(gvg)(t/7g)HL% dt/> df

S 52(“|£\‘%72(t,£)Hi2L§ + e Ol 200 -

From Minkowski’s inequality followed by the Sobolev embedding L%(Rz) c H _%(RQ), we
have

1€~z (t S)H S ler 2a(t, €)H

S |72 (12) I

12

“r.a\»:-

, T

which is bounded from Lemma B.9-(77), as well as va (t,€) HL2L2 (-1 from Lemma B.7-(i7).

We now focus on the case t 2 1, separating again the integral 1nto low and high frequencies
and separating times in (0,¢/2) and in (¢/2,¢): there holds

1

= HOL
l
2

2/\

2
o Bi(t=t") ‘5|272(t £) dt) d¢

) t/2 2y, 1 ’
55 )ilg|2e PR )=y (¢ £) b | dE

S

v L t—t/ 2t—t' 2
te /|£21<£> 2 (/0 (t—t/)Ze_BJTe_Bﬂf‘ T|£||£|_172(t,,£) dt/> dg

2
t / )
he /IE<1 <//2 e PR e g 2 Ty (¢, €) dt’> d¢
= t

2
¢ , .
+&2 /|§>1<§>25 (//2 e’ﬁj(tft)\£|2|§H€’71t/4,}/2(t/7€) dt/> de = Iy + I+ Is + L.
2 t

For I, we introduce 1/2 < b < 3/4. From the Cauchy-Schwarz inequality in time and using
the fact that ti\ﬂ%e_ﬂfﬂs‘z is uniformly bounded, we get:

L@ F I,y SENOF I,
L7 H, L7L

toiT t—T
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using again the Sobolev embedding Lg(]RQ) — H 7%(]1%2). We deduce that I; < &2 from
Lemma B.9-(ii). The second term can be bounded as follows using Young’s inequality in

time, as well as the fact that tie=Bit is uniformly bounded:
o0
_ 2
I2 5 52 / / <£>2(€ 1)7%<t/7 5) df dt/ 5 62“72(757 g)HL2L2((§)Z*1)
0 JR? the
and thus I < 2 from Lemma B.9-(ii). For I3, we use first Young’s inequality in time to get

_1,1 2
hse [ [le -ttt 4.
R2 Lt’

Then, again from Minkowski’s inequality and the Sobolev embedding L%(Rz) — H _%(RQ),
we obtain

3
hsf(/th axwngQSﬂWEﬂwwwwﬂ
0 x

I LY,

so that I3 < €2 still from Lemma B.9-(47). For the last term I4, we use Young’s inequality in
time to obtain:

9 B ) )
nse [ [ @b der S 0t Ol

and thus Iy < e? from Lemma B.9-(ii).
Now let us turn to the two other contributions in (4.6). There holds

] Hf\ (‘H (t,t, &)+ ‘e“’:\ﬂ i A(t,0 5)‘)
‘P1<\g|) (9,9)(¢, 5)‘ 4 g e Pitlel ‘P1<’€|)f(g 200, g)‘
o <‘P1(g|) (9,9)(t, 5)‘ + e~ Pitlel ‘Pl(

= ¢ (|, 0)] + 21 | (0, 6)])

So0.9))

We have for any ¢ < 1, still using that le (£/1€]) is bounded from L2 into LY
1,01 < sum 0 [ ©]P) (1) Flo . ae

< [P (5wl

S Ol rzey »

dg

Look:

and this quantity in uniformly bounded in time from Lemma B.7-(¢). In the case when ¢ 2 1,
we simply write

o
BIE 0175 S In (O3 g0

which is uniformly bounded in time thanks to Lemma B.9-(i7i). Then, similarly, we write
that

L _B.4€12 7 1 _9283.:t|£]2
eSO, S tb [ e IR %a0,6) de.
R
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Using the fact that t2 |€|e—2B3tlE * i uniformly bounded, we obtain
1 B lel o _
e 00 S [ 17 @306 de

SN 0O D)y + 0,072

from which we deduce, using again the Sobolev embedding Ls (R?) — H -3 (R?), that

1. _3.4¢12 2
t2||e (0, €) |17 M), z)|

4+ ||71(t,€)HigOLg<<e>é> '

o]
t

The last inequality yields the expected result thanks to Lemma B.9-(i1).

The terms ‘If]g, ey and U5, for 1 < j < 4 are dealt with in a similar, though easier way.

Indeed for ¥ jg we simply notice that thanks to (3.17)
= €lg -
5540090 < [x (1) 1| [ eme-0isPig |21 ()T 00w )]

S R A T I

and the same estimates as above (see the term H ]1) provide

[55() (9.9 e S €

The term W5, is directly estimated by (3.16):

R e et P Gy P I

So again
Hllljl(t)(gag)foék <eg.
Finally W7, is controlled in the same way thanks to the fact that sz(f ) is bounded from L2

into L3* uniformly in |€| < K so there also holds
152(6)(9, 9)]] e S e

To end the proof of the proposition it remains to estimate We%(¢)(g, g) but this again is an
easy matter. Indeed, Lemma B.7-(7) and estimate (3.11) imply that

[0 () (g, 9)]| e S &

o The cases of R® and T®. We recall that in those cases, yq(t) = 1. All the terms can
be treated using the same estimate as in the R? case for + < 1 — note that the Sobolev

embedding L%(R2) — H_%(]R2) must be replaced by the use of Lemma B.7-(i7).

e The case of T2. We also have xq(t) = 1 here. As previously, the terms \Iljg, W) and U5,
for 1 < j < 4 can be treated exactly in the same way as for the small times case t < 1 in
the R? case. Concerning WS, for j € {1,2}, the term H]1 can still be handled using the same
estimate as in the R? case for t < 1 as well as the remaining terms H;(t) and H;(0). The
only difference lies in the treatment of HJ2 due to the special case of £ = 0. Using Young’s
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inequality in time for the non-zero frequencies, we have

[ZHGI
‘ 2
Sy </ e T () dt’)
¢ezd 0
¢ 2 t 2
s ([uwoa) +2 3 (@ ([ B g g ar
0 £e74\{0} 0
¢ 2 t
<e? (/ 72(t’,0)dt/> +et Y <€>2(e_1)/7§(t@€)dt’-
0 eez\ {0} 0

For the first term in the right-hand side, we notice that
2t 0) S 11F5 H(v2) (D)l s

t 2
g? (/ y2(t',0) dt’> <e?
0

from Lemma B.8. The second term is also bounded by 2 thanks to Lemma B.7-(ii), and
this concludes the proof of Lemma 4.1. O

which implies

Now let us turn to D53, It vanishes in the well-prepared case and we control it thanks to
Lemma 3.9 in the ill-prepared case. The latter implies that for all n € (0,1)

lim H\I/E(t) (g” + %35”7, SE’”) ‘

e—0

=0.

0k
XT

Indeed, in both the R? and R? cases, we have that ¢" € X%k from Proposition B.5 and also
that lim._, ||5€’n||Xe,k < C, from Lemma 2.3.

Finally, in the cases Q = T? d = 2,3 and Q = R3 (where xq(t) = 1), D** is very easily
estimated thanks to the continuity bounds provided in Lemma 3.7, along with (2.12), (2.16)
and the fact that ¢” is uniformly bounded in time in X%*. Concerning the case Q = R?, we

have to be more careful since 6" is not bounded in ngk. The result is a consequence of
Lemma 3.8 combined with (2.9), (2.12) and (2.16).

This ends the proof of Proposition 2.6. U

APPENDIX A. SPECTRAL DECOMPOSITION FOR THE LINEARIZED BOLTZMANN OPERATOR

In this section we present a crucial spectral decomposition result for the semigroup U®(t)

associated with the operator
B = 8—12(—51) Ve + L),
recalling that
Lg=M"2(Q(M, M?>g) + Q(M2g,M)) .

This theory is a key point to study the limits of U¢(t) and W¢(¢) as € goes to 0. We start by
recalling a result from [17] in which a Fourier analysis in  on the semigroup U! is carried
out. Roughly speaking, this result shows that the spectrum of the whole linearized operator
can be seen as a perturbation of the homogeneous one.

Denoting F, the Fourier transform in z € R% (resp. = € T9) with & € R (resp. ¢ € Z9)
its dual variable, we write

US(t) = F, LU () F
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where U¢ is the semigroup associated with the operator
~ 1 ~
€ .__ .
B = 6—2(—%{-1}4—[/).

In the following we denote by x a fixed, compactly supported function of the interval (—1,1),

equal to one on [—3, 3].

Lemma A.1 ([17]). Let k > d/2 be given. There exists k > 0 such that one can write

Z Ua Uaﬁ )

with Ug(t €)= ( 2,5§> and ﬁeﬂ(t,f) = ﬁﬁ(g%,sf),

where for 1 < j <4,

(A1)

0,16 = x (1) ey g)
with Aj € C*(B(0, k)) satisfying
Xj(€) = dajle] = BilEl® +;(l€) as €] =0,
(A.2) a1 >0, ax>0, az=a4=0, p;>0,
v (l€]) = OIEl®)  and  ;([€]) < BilefP/2 for €] < &,

and

po = (i) +iar () + e,

with P}' bounded linear operators on L? with operator norms uniform for |¢| < k. We also

have that P;(§/[§]) is bounded from L2 into LK uniformly in €. Moreover, if j # n, then
we have that P]QP}B = 0. We also have that the orthogonal projector 11y, onto Ker L satisfies

4
_Npo( S
m‘Eﬂ%Q
j_
and is independent of £/|€|. Finally Ut satisfies
(A.3) 1Tl 22 < Cem@

for some positive constants C' and « independent of t and &.

Proof. The decomposition of U¢(t) follows that of U(t): we recall that according to [17], one
can write

UMt,€) = U;(t.€) + U(t,€),

7=1
where for 1 < j <4,

0.6 = x (1) ey g)

and \;(§) € C are the eigenvalues of B Bl with associated eigenprojections P;(€) on L2, satisfy-
ing the properties stated in the lemma. The properties of the projectors come from [17,5]. O

Remark A.2. Denoting

(A.4) ~(|§)—g%®)+mﬁ@>
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for 1 < j < 4 we can further split (7]5 (t) into four parts (a main part and three remainder

terms):
_ eff
where

05y (1) o= crulél el po( £

€]
0356 = (x(1) 1) el ol (£
) ¢ a ez s 4 iCEIED
e G ()}

Ot,€) = x ()9S B (e ).

In the following we set
Udisp = Uto + Ug -

One can notice that Usg := U3, and Uy := Uj, do not depend on € since az = aqy = 0. We
set

U :=Usy+ Uy
It is proved in [5] — and in this paper (see Lemma 3.5) — that the operator U(t) is a limit
of U%(t).

Proposition A.3. We have that U(0) is the projection on the subset of Ker L consisting of
functions f satisfying divuy = 0 and also py + 07 = 0 where we recall that

o oo =5 (7() + () )=

and with the notations

pr(x)= [ flz,0)M
Rd

D=
[SIE

(v)dv, uys(z) —/Rdvf(x,v)M (v)dv,

O5a) = | (ol =)o)t

N[

(v)dv.

We also have

(A.6) U f=U@)U0)f, Yt>0, VfeXbk
and
(A.7) divuy =0 andpf+0f—0:>P0<é’) =0 forj=1,2.

Proof. The first part of the proof can be deduced from the form of the projectors P (£/[£])
and PY(&/|€]) given in [17]. We point out that many authors in previous works have omitted
some factor that was present in [17], for the sake of clarity, we thus recall that

() F©) = o5 (= 1+ gl —)art [ (=14 5002 =) artfao

and also the fact that P{(£/|¢|) is a projection onto the (d — 1)-dimensional space spanned
by v — (v . %)% for any £. The second part of the proposition directly comes the forms
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of U(t) and U(0) and from the results of Lemma A.1 on projectors. For completeness, we
here also recall the exact formulas for the projectors P and PY:

10,2(é‘)f(§)
g (g o alor - o)t [ (g o Gl - )t o

In this paper, we call well-prepared data this class of functions f that write:

Fla,0) = M3) (@) + up(a) -0+ S (0l — dos())

(A.8)
with  divuy =0 and py+60;=0.

Lemma A.4. The following decomposition holds

= 24: TE 4 e
j=1
with
B0, ) = /0 Ot — )T (f(E), £(2)) dt
and
(A.9) W = U5, + WS + U5, + 05,

where denoting F(t) :== T (f(t), f(t))

€ | el B el ¢ p2 £ N
Fo (Woo(O)(f, 1)) (€) /0 67} () P

() -1) /Ot efoalél =5

EEN [ ioslelt=t gy mtlep? ( () D T
= (0 flem e (O g () o

-(t—t’)\£|2|5|p.1 § F(t')dt',
T\l

-
/~
S
.M
[k ==
—~
~
S~—
—
-
~
N—
~_
—
I
N—
Il

=x(5) /Ote““j'f'tffwt’)ﬁl?ﬂtt>”i“s|£2p2<sf> () dt'.
Proof. Recall that
1 (> / / !
VE)(f, f) = /U( DT (F(E), £(2)) dt’.

Following the decomposition of U¢(t, £) in (A.1), we can split the Fourier transform of W& (¢)(h, h)
into five parts:

4 t
Fo (05 (1) Zl/ Ot — ) B (') dt +1/ Ot — ) B () dt’ .
= e € Jo

Remark that
=T(f,f) € (Ker L)*.
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From that, since for 1 < j < 4, P]Q (&/1€]) is a projection onto a subspace of Ker L, we deduce
that

PP = elel(P} (i) + €lelPF (cle) ) F = el (et 1) . Vi<,

It implies that

( 8

—~

t)(f, ) ()

1 t \El) ~
u/ X(de i€ 8,0+ G by By g
€ Jo

K

k}
M%
I

t
Bt —tYF(t)dt

+
| =
%

I
Pﬂ>J> ™

t €
/ (SN et om0 5 g by (e, £ Py ar
RPN ~
+= | UF@t—tF(t)adt
€Jo
4
=Y WS()(f, f) + TE(L ) -
j=1
The rest of the proof follows from the decomposition given in Remark A.2. O

Remark A.5. Let us notice that as in Remark A.2 there holds
and we set
U= W3y + Wy

It is proved in [5] that given G, € X%* of the form (1.8), the function g defined in (1.9)
satisfies

g(t) =U(t)gin + ¥(t)(g.9) -

APPENDIX B. RESULTS ON THE CAUCHY PROBLEM FOR THE BOLTZMANN AND
NAVIER-STOKES-FOURIER EQUATIONS

B.1. Functional spaces. The spaces L=([0,T], H*(R%)) and L>([0, T], H*(T%)) are defined
through their norms (see [14])

ooy = [ (€% sup IO de

te[0,T)
and
2 o 2s n 2
Hf||~oo([07T]’Hs(Td)) T Z <§> tESE‘(l)I;} ‘f(hé)‘ :
¢ezd ’
Let us now recall two elementary inequalities
(B'l) ve> d/2, Hf1f2||igoHl 5 HfluitooHleQ”itooH@ )
and
(B.2) VE>d/2,Ym =0, |fifellmam S fillamlfallge + [ fillgell f2llzm

as well as the classical product rule

(B.3) V@we<—gg>,s+t>0,uﬁhn

e d S Il 1 fall e -
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We also define the space L2((v)¥) through
191Bs o = [ LH@P @™ do.
B.2. Results on the Boltzmann equation.

B.2.1. The Cauchy problem. The Cauchy problem for the classical Boltzmann equation (equa-
tion (1.1) with ¢ = 1) has been widely studied in the last decades. Let us perform a very
brief review of the results concerning the Cauchy theory of this equation in our framework of
strong solutions in a close to equilibrium regime. Those results are based on a careful study
of the associate linearized problems around equilibrium. Such studies started with Grad [24]
and Ukai [44] who developed Cauchy theories in X** type spaces (see (1.5)), proving the
following type of result (see [44, 5, 20] for example).

Proposition B.1. Let £ > d/2 and k > d/2 +~ be given. For any initial data gy, € X"
there is a time T > 0 and a unique solution g to (1.1) with e = 1, in the space C([0,T]; X“*).
This solution is global if the initial data is small enough.

It has then been extended to spaces of the type H, f;v thanks to hypocoercivity methods (see
for example the paper by Mouhot-Neumann [37]). More recently, thanks to an “enlargement
argument”, Gualdani, Mischler and Mouhot in [26] were able to develop a Cauchy theory
in general spaces, namely in Lebesgue spaces in both variables  and v with polynomial or
stretched exponential weights instead of the classical weight prescribed by the Maxwellian
equilibrium. We also refer the reader to the review [45] by Ukai and Yang in which several
results are presented.

The study of the case € = 1 is justified by rescaling or changes of physical units. However,
if one wants to capture the hydrodynamical limit of the Boltzmann equation, one has to
take into account the Knudsen number and obtain explicit estimates with respect to it for
equation (1.3). The analysis of the latter has been developed in [27, 6] by Guo and Briant in
spaces of type H. ﬁﬂ,. In the spirit of the work [26], Briant, Merino-Aceituno and Mouhot in [7]
have extended the range of validity of the theory to larger spaces with polynomial weights
with no assumption on the derivatives in the velocity variable (note that by polynomial
weights, we mean that in the linearization (1.2), the weight M 1/2 ig replaced by the inverse
of a polynomial function of type (v)?).

B.2.2. Nonlinear estimates on the Boltzmann collision operator. We here give simple esti-
mates on the Boltzmann collision operator I' defined in (1.4). Lemma B.2 is taken from [45,
Proposition 2.1.2].

Lemma B.2. For f; = fi1(v) and fa = fa(v), there holds

IT(frs f)llee S fillzzyn folle + 1 fllzz | f2ll 2 oy -
Lemma B.3. If fi = fi(v) and fa = fa(v) grow polynomially in v, then for any k > 0,

T(M?2 f1, M2 f5) € Lok

Proof. From the definition of the collision operator I' in (1.4), we have:

N

M-
2

(M3 fy, M3 fy) = / b(cos 0) o — vs [ (MLFLM' £+ M. fs M'J]
Rdx§d—1

- M*fl*MfQ - M*fQ*Mfl) dv, do .
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Then, we use that M'M, = M M, to get
1 1
’F(MthMQfQ)’

1
S [ bleostlo = ML (LI VB + el + el ]) dow o
.

Finally, since (v') + (v.) < (v)(vs) and fi, fo are polynomial in v, we obtain a bound of the
form

(W D(ME fr, M3 f)] < (0)FM3 ()7 [ M, (0,) dv, < C

d
for some ¢ > 0. The lemma follows. : O
Lemma B.4. We have, for £ > d/2 and k > d/2 + ~,

(B.4) ITCf1s f e S 1fill poorypece | follek »

(B.5) IT(frs fo)llmerz S v T f2)llxer S Ifallerll f2llen

and

(B.6) IT(frs f)llzar S W fallexll falle -

Proof. Let us recall that v X%F < HYL2. Then, we write
W' fo)lles = sup (@)D f2)lzg (0))
We recall that

DU ) = 5 (QUufr. ) + Qoo sf) = 2 (Ti(fr. f2) + Tl f2))

By symmetry, we focus on the first term I'1(f1, f2). We then split the collision operator @
into two parts (the gain and loss terms):

1
Do) = gt [ Weoslo = v sl fion fy dodo

R x§d~1
1
_ 7M*1 / b(cos 0)|v — vy |7 s frx dvs do i fo
2 RE xSd—1
=T (f1, f2) = T1 (f1, f2) -

We also use the notation
U (fis fo) = w7 ' QY (ufi, pfo) and T7(f1, fo) = n™'Q (ufr, pufo) -

Using the quadratic form of those terms and the fact that they are local in x, we notice that

ITEC ) llme S TF (e 12l

As a consequence, we get

IT1(frs f)lmere S HFT(HleWIMOa ||f2HH§;)HLgo,H + HFI(HﬁHWﬁm, ||f2||H£)HL3o,k—w

S ||f1||Lg°’ka’°° ”fQHLio’kHﬁ :

The other estimates are taken from [44, Lemma 4.5.1]. O

B.3. Results on the limit equation.



39

B.3.1. The Navier-Stokes-Fourier system. The results used in this paper are summarized in
the following statement, elements of proofs are given below. Note that we make no attempt at
exhaustivity in this presentation, nor do we state the optimal results present in the literature
(we refer among other references to [10, 2, 30, 31] for more on the subject).

Proposition B.5. Let £ > d/2 —1. Given (pin, Uin, Oin) in HY(Q), there is a unique mazimal
time T* > 0 and a unique solution (p,u,0) to (1.6) in L°>°([0,T], H*(Q))N L ([0, T], H*+1(Q))
for all times T < T*. It satisfies

(B.7)

H(/%U79)||Ew([o,T],H%71(Q))
and if € > d/2 — 1

(o, u, 9)||Loo([o,T],Hl(Q)) +1[(Vp, Vu, vQ)HLZ([O,T],HZ(Q))
2
2 (jo1,H2 ()

+1(Vp, Vu, Vo) || S N (in, tin, Oin) [ ¢

2 (jo,11,H% () H3 ()’

B.8
(B.8) S /(i tins O ¢ % exp C| V|

Moreover if d = 2 then T* = 0o, and if (pin, Uin, Oin) lies in H'N LY () then for any t >0,

[(p, u, 9)(75)”L4(Q) S T V2<g<
q
e a a 2 1 9
H(D p, D%, D 0)(t)HLQ(Q)SW’ Va e N, ‘a‘§£7

with D = «/—A. Similarly if d = 3, if T* = co and if (pin, Uin, Oin) lies in H'N LY(2) then
for any t > 0,
1
(s w, ) O frersy S —1
(t)a

Furthermore if d = 3, there is a constant ¢ > 0 such that if

then T* = oco.

Finally (1.6) is stable in the sense that if (pin, Uin, Oin) in HY(Q) generates a unique solution
on [0, T) then there is ¢ > 0 (independent of T if (pin, Uin,Oin) generates a global solution)
such that any initial data in a ball of HK(Q) centered at (pin, Win, Oin) and of radius ¢ also
generates a unique solution on [0,T].

Sketch of proof. Let us start by considering the Navier-Stokes system. It is known since [18,
10] that given u;, in H*(Q) with £ > 3~ 1, there is a unique maximal time 7 > 0 and a unique

associate solution u to the Navier-Stokes equations in L>([0, 77, HY Q)N L2([0, T], H1(Q))
for all times T < T* (see [14] for the case of L>([0,T], H*(Q)) N L2([0, T], H*+1(9))) satisfy-

ing (B.7)-(B.8). Moreover, the solution w is global in time if u;, is small in Hgfl(Q), and it
satisfies in that case

] + [V < luinll ;g

oo (R+,HE (@) L2 (Rt HE1(0)) "

On the other hand if d = 2 then global existence and uniqueness in L>®(R*, L2(Q)) N
L*(R*, HY(Q)) (where the space H'(f) is the homogeneous Sobolev space) holds uncon-
ditionnally (see [33]).

Let us turn to the time decay properties. In the periodic case the mean free assumption
implies that global solutions have exponential decay in time so let us consider the whole space
case. In two space dimensions it is proved in [47] (see also [43]) that if the initial data lies
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in L2 N L' (R?) (whatever its size) then the solution decays in H*(R?) as <t>7%, and moreover
for any ¢ > 0 and for all @ € N2 such that |a| < ¢,

1
o 2 <=
The time decay in three space dimensions is due to the fact that any global solution in H 3 (Q),

regardless of the size of the initial data, decays to zero in large times in H2 () (see [19]). On
the other hand it is known ([42]) that some Leray-type [32] weak solutions associated with L?
initial data decay in H® with the rate <t>_%, so weak strong uniqueness gives the result. The
stability of solutions for short times is an easy computation, for large times it follows from

the fact that large solutions become small in large times (see [19, 47]).

Finally it is an easy matter to prove that the temperature 6 and the density p, which solve
a linear transport-diffusion equation, enjoy the same properties as u. ]

B.3.2. The limit equation. Let us start by noticing that if (p, u, 8) belongs to L>([0, T, H(2))
and if V(p, u,6) belongs to L%([0,T], H*(Q)), then clearly

g(t,x,v) = M%(v)(p(t, z) +u(t,r) v+ %(‘U‘Q —d)f(t,z))

belongs to L>®([0,T], X“*) and Vg belongs to L*([0,T], X**) for all k > 0. Similarly all the
results stated in Proposition B.5 are easily extended to g in the space X%¥. Moreover it will
be useful in the following to remark that g is of the following form:

d+2

(B.9) g(t.z,0) = gplt, 2)G,(v) M2 (v)
p=1

where gp(v) is polynomial in v.

In what follows, when it is not mentioned, the Lebesgue norms in time (denoted LY) are
taken on R if the solutions of (1.6) are global in time or in [0,7] for any T < T* if T* is
the maximal time of existence of solutions.

The following statement is an immediate consequence of Proposition B.5.
Lemma B.6. Let Q = T or R? with d = 2,3, and set £ > d/2—1 Forany 1 <p<d+2,
there holds
(i) gp € L¥°HY,
(ii) Vg, € LIH',
(iii) g, € L2ZHY if Q = T from the Poincaré inequality.
Moreover if Q = R? then for any 1 < p < 4 and any t > 1, there holds

1
lgp(t, Mee S ——, V2<g< o
(t)' "

and
1

2
W, VCVGN, ]a\gﬁ

ID%gp(t, )12 S

The properties recalled above on the Navier-Stokes equations imply in particular the fol-
lowing results. In the rest of this section we consider ¢ > d/2. We define

n(t.€) = [T, 96|, and 2(t,€) := 101 (g,9)(¢,€)ll2

Let us prove the following lemma.

Lemma B.7. Let Q =T or R? for d = 2,3. There holds
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(i) m € LELE((6)") and |T(g,9)llex € L,
4.1
(ii) v2 € LFLE((€)Y) and Fy'ye € LiHy 2 if d = 3.
Proof. For (i), using the form of g given in (B.9) together with Lemma B.2, we remark that

d+2
(B.10) 7168 = [IT9, 9 O S D 1Fel9p90) (5],
p,q=1
and similarly,
d+2 d+2
B.11) |0 9)Oller S > 1(0000) )1 1T 2G5, M2G) oo S D 11 (9p90) () 1120
p,q=1 p,q=1

from Lemma B.3. So to prove (i), it is enough to prove that g,g, € L H* for any p and q.
And this is actually immediate using (B.1) and the fact that every g, is in EfoHZ from
Lemma B.6. The second part is then obvious since g,g, € f),?OH ¢ implies that 9pYq € L°H £
Now let us turn to (¢i). From
d+2

(B.12) Hﬁtf(g,g)(t,é)HL% S D 1Fa((919p)90) (2, €)]

p,q=1

it is enough to prove estimates on (9;g,)g, for any p and ¢. Using the equation satisfied by g,
and recalling that P is the Leray projector onto divergence free vector fields we find that

d+2 d+2
Z 1(0e9p)9qll e < Z (HAgpquHf—l + [[P(gp - vyr)quHf—l) .
p,q=1 p,q,r=1

On the one hand we have
1Agpgqll re-1
(B.13) S VgV gal e + 1Vgpgall e
SIVollae Vgl ze + 1V apll gl Vgl zre-1 + 1V gpll el gg | e
where we used (B.2) to get the second inequality. We conclude for this term using that for

any p, we have g, € Li°H* and Vg, € L?H*. Then, the terms of the form P(g, - Vg,)g, are
treated crudely bounding the H~! norm by the H¢ one. We thus have

1P(gp - Var)gallzre-1 S Ngp - Varlzzaellgall oo mre
S ng”LgOHfHVngLfHengHLgOHE )

which ends the first part of the proof. To prove the second one we start by noticing that
thanks to (B.3)

||Agp9q||L§ 1 S IV Vadl 15 1+ I Vgpgall 4
t

2
H, t H,
S Vol HngH

t

which is bounded thanks to Lemma B.6. Slmﬂarly
. < . .
P (g Vgr)quLtgH; S 1P (gp VQT)HL?L%HQQHLﬁH%

LS’H2
+ IVl Hfllgq!\

1 L1
12 iz Linf

1

2
S vaT”L%Hz% |’9pHL§H;H9qHL§H; ’

which is also bounded thanks to Lemma B.6. O

Lemma B.8. Let Q = T?, then F, '(72) € L{,.
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Proof. As previously, it is enough to get estimates on norms of (0¢g,)gq for any p, ¢. First,
using the Cauchy-Schwarz inequality, we have:

1Pegp)9allzy , S 110egplirz a2, -
t,x t,x t,x

Moreover, since Q = T2, we have that gq € L%’m for any ¢ from Lemma B.6. Concerning
the Lix—norm of d:gp, as above we use the fact that we can replace a control on 0;g, by
a control on Ag, and on P(g, - Vg,). The term Ag, is clearly in L? since Vg, € L?H*

t,x
with ¢ > d/2 = 1 from Lemma B.6. The terms P(g, - Vg,) can be treated as follows since H*
is an algebra:

PGy sz, S NapVorllzzne S Ngpllzge eIVl e
The lemma follows. 0
Lemma B.9. Let Q = R%. Then, for any 1 < p,q < 4 there holds
(i) For any b <1/2, {t)’|¢[1 € LFLE((€)") and |€[n € LELE(@Z),
(i4) For any b < 1/2, (t)bys € L?Lg((@g_l), for any b < 3/4, () F 1 (y2) € L%Lg% and for
any b < 1/2, (0°F; (1) € Li,.

4
(iii) For any b <1, ()1 € LPLE((€)") and F; ' (m) € L°Li.

Proof. Similarly to above, it is enough to get estimates on g,Vg, for (i), on (9:gp)g, for (i7)
and on gpg, for (iii) for any p and g. The proof mainly relies on Lemma B.6.

For the point (i), since H’ is an algebra, we have for any p, ¢:
16)° 05V g2 0
! 2 2 % N2 2 2
< /0 1gp (s ) eIV gq (2 )| 5e dzt+/1 (O Ngp(t, M7l IVgq(t, )l e dit
=11 + I5.

The term /[; is finite since for any p, we have g, € LfoHZ and Vg, € L%HZ from Lemma B.6.
For I, from Lemma B.6, we have:

o 5 (sup (0 V4 3210 ) (sup(®) g (03

which is finite since b < 1/2, from which we can conclude. For the second part of (i), using
that H? is an algebra and Holder’s inequality in time, we can write that for any p, g:

||ng9q”L;§leZ S ||9p||L§H¢ ||V9q||L$H¢

which gives the result still using Lemma B.6.

Concerning (i), we use the same strategy keeping in mind that norms on 0;g, can be
controled by the same norms on Ag, and P(g, - Vg,). Moreover, for any 1 < p, ¢, < 4, using
the second inequality of (B.13), we have

/1 % (1 Agp(t, ) gq(ts Mzpe—s + IP(gp - Vgr)gqg(t, ) I3pe—r) dt
5/1 <t>2b(“V9pH?{H||V9q!|?qe + IVl 3 IV gqlFre—1 + 1V gpl 3¢l g 3¢

o g el gl e 1V v 13 )t
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So recalling that from Lemma B.6, for any p,

1 1
IVopliGe € Li o Nlgp(®)IIe S 0} and  [[Vgp(t) e < ek

we get the result as soon as b < 1/2. For the second part of (i), still using Lemma B.6, we
notice that thanks to Hélder’s inequality, for ¢ 2 1,

and

1
12gp94]1% 4 < 1001172119011 74 < VG0l 7re——

(t)2
IP(gp - Vor)gall? 4 < IP(gp - Vr)I? s llgalZs

S IVGllTallgpllZsllgqll7s
1
N HVng%ﬂif

(t)2

Consequently, for any b < 3/4, we have

For

and

4
(t)" (Orgp)gq € L7 (RT, L) .
the last part of (ii), we notice that

6°118gp9qll 3 S IV gpll a1 (8)° |9l 1

from Lemma B.6, we have (t)°||g,||+ € L} as soon as b < 1/2. Similarly,
I40°B (g Vool 5 S 110220 Von)] 5 116 20ull
< I¥grlz, | %pHLs 1462 all 5.

which is also bounded if b < 1/2 from Lemma B.6.

Finally, the first part of (¢i7) is clear from Lemma B.6 and the second one comes from the
Hoélder inequality

ngquLg < llgpllz2ll9qll L4

which is uniformly bounded in time from Lemma B.6. This concludes the proof of Lemma B.9.
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