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Abstract—This paper deals with the optimisation of a sequence
and its associated mismatched filter. This question has already
been addressed in the literature, by alternatively solving two
minimisation problem, one per sequence, meaning that the
optimisation is never performed on both sequences at the same
time. So, this article introduces some methods in order to optimise
jointly (i.e. simultaneously) a sequence and its filter. First, a
gradient descent is basically applied on both sequences. Second,
another algorithm studies an objective function that includes the
optimal mismatched filter that minimises the Integrated Sidelobe
Level (or the Peak-to-Sidelobe Level Ratio). Simulations show
promising results in terms of sidelobes: as expected, a joint
optimisation seems to perform better than a separate one. As
both methods behave differently, their choice will depend on the
applications.

Index Terms—Gradient descent, mismatched filter, optimisa-
tion methods, waveform design.

I. INTRODUCTION

In radar processing, the received signal is often correlated
with a filter to detect the presence of a target. If this filter is
the transmitted signal, it is identified as a matched filter, and
otherwise as a mismatched filter.

The matched filter is known for maximizing the SNR
(Signal-to-Noise Ratio) in Gaussian Noise, but it may suffer
from high sidelobes. These sidelobes can be reduced with
a mismatched filter, at a cost of some loss in processing
gain. In both cases, their design can be done considering an
optimisation problem, in which the cost function is a criterion
such as the SINR (Signal-to-Interference plus Noise Ratio),
the ISL (Integrated Sidelobe Level) or the PSLR (Peak-to-
Sidelobe Level Ratio).

optimising the matched filter output is a quite complicated
task, especially when the transmitted sequence is subject to
the constant modulus constraint, in which case the optimi-
sation problem is not convex. Thus, a lot of methods have
been reviewed in the literature [1]. Stochastic methods are
usually helpful, because their convergence is almost certain
theoretically (in the sense that, one day, a basic stochastic
algorithm will converge to the global optimum) [2]. But due
to the large dimension of the variables to optimise, they might
not be appropriate here. Among deterministic algorithms, the
gradient descent has shown interesting capabilities in similar
problems [3]. Even if it converges to a local minimum — or to
a saddle point — solutions obtained with this strategy present
remarkable sidelobes.

On the other hand, a mismatched filter is not subject to
the constant modulus constraint, so that the corresponding

optimisation problem is much simpler. It has indeed been
shown in [4] and in [5] that an optimal mismatched filter that
minimises the ISL or the PSLR can be calculated through
a convex problem. For instance, in [4], the mismatched op-
timisation problem is reformulated as an equivalent convex
quadratically constrained quadratic program (QCQP). It may
thus be possible to find a global minimum, so-to-speak an
optimal mismatched filter for a given sequence.

More recently, several approaches have been introduced in
order to optimise the pair transmitted sequence/mismatched
filter in a sequential way, alternatively solving two optimisa-
tion problems, one per sequence. For instance, Karbasi et al.
[6] considers a semi-definite programming (SDP) relaxation
of the constraint. While in [5], a cyclic algorithm is used to
study the mean-square error of the estimation of the SINR in
the frequency domain.

However, all these algorithms are cyclic, meaning that the
optimisation is never performed on both sequences at the
same time. Hence, this article deals with a joint design of
a sequence and its associated mismatched filter. Two methods
are proposed here. The first method corresponds to a classic
gradient descent, that will operate on both sequences at the
same time, like in [7]. However, constraints on the loss-in-
processing gain (due to the usage of a mismatched filter)
are introduced as a pattern. The second proposed algorithm
exploits the existence of the optimal mismatched filter in
the ISL or the PSLR sense. This optimal solution will be
inserted into the objective function, producing a signal-only
optimisation problem. This new cost function will also be
minimised with a gradient descent.

This article is organised as follows. Section II gives some
reminders on the matched filter and the mismatched filter. In
Section III, two methods are introduced for optimising jointly a
sequence and its associated mismatched filter: a direct solution,
based on a gradient descent, and an indirect one that exploits
the existence of an optimal mismatched filter under a criterion.
Some results are presented in Section IV, according to different
initialisations.

Notation: In the following, bold letters designate matrices
and vectors. (.)∗ and (.)H denote the conjugate and the
transpose conjugate operator, respectively. ◦ and ∗ designate
the Hadamard and the convolution product. (.)r denotes the
reverse operator: for a given vector a := [a1, . . . , aN ],
ar := [aN , . . . , a1]. ‖.‖2 stands for the Frobenius norm. For an
m×n matrix A, it is defined by ‖A‖22 =

∑m
i=1

∑n
j=1 |ai,j |2.
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While ‖A‖∞ = maxi,j |ai,j |.

II. REMINDER ON THE MATCHED FILTER AND THE
MISMATCHED FILTER

This section reminds some definitions on the matched filter
and the mismatched filter. It also explains how an optimal
mismatched filter can be obtained through an optimisation
problem, for a given sequence. More details are given in [4].

A. Definitions

Let s be a discrete signal containing N samples:

s = [s1, s2, . . . , sN ]T . (1)

In the following developments, sequence s belongs to the N -
dimensional torus (or hypertorus), denoted TN , which is a
non-convex set. In other words, s is subject to the constant
modulus constraint. Let αk ∈ [0, 2π[ be the phase angle of the
element sk:

sk =

{
exp(jαk)/

√
N if k ∈ J1, NK

0 otherwise.
(2)

Matched filtering consists in a comparison of the signal s
and a time-shifted version of itself, i.e., generating sequence
y of length 2N − 1 such that:

y = ΛN (s)s∗, (3)

where ΛK(s) is a matrix of size K +N − 1×K containing
delayed versions of the sequence s, such that:

ΛK(s) :=



sN 0 · · · · · · · · · · · · 0
... sN

. . .
...

s2
. . . 0

...

s1 s2 · · · sN 0 · · · 0

0 s1
. . .

... sN
. . .

...
...

. . . . . . s2
. . . 0

0 · · · 0 s1 s2 sN
... 0 s1

. . .
...

...
. . . . . . s2

0 · · · · · · · · · · · · 0 s1



. (4)

On the other hand, processing signal s with a different filter
q of length K is called mismatched filtering:

y = ΛK(s)q. (5)

A mismatched filter q is less constrained than the matched
filter, since it can take any value in CK . Moreover, its length
may also differ from N , and can be in particular chosen to
contain more elements, thus providing additional degrees of
freedom compared to the matched filter. It will be assumed
without loss of generality that K = N + 2p, p ∈ N, so that
the length of y is odd.

The matched filter is known for maximizing the SNR
(Signal-to-Noise Ratio) at the peak response. Using a mis-
matched filter implies inevitably a loss-in-processing gain
(LPG), expressed by (under a white noise hypothesis):

LPG = 10 log10

(
SNRmismatched

SNRmatched

)
= 10 log10

(
|qHs|2

(qHq)(sHs)

)
≤ 0. (6)

This loss-in-processing gain can be inserted as a convex
constraint in optimisation problems, depending on s and q, as
noticed in [4]:

LPG ≥ 10 log10(α) =⇒ qHq ≤ αsHs. (7)

B. Optimal Mismatched Filters

Several criteria have been introduced in order to measure
the performance of these filters: the Merit Factor [8], the
Integrated Sidelobe Level (ISL) or the Peak-to-Sidelobe Level
Ratio (PSLR).

1) Integrated Sidelobe Level: The ISL is defined by:

TN × CK → R+
(s, q) 7→ ISL(s, q) := yHFy, (8)

where y is defined as in (5) and F is a diagonal matrix of
order K+N − 1, defined by the vector [1, . . . , 1, 0, 1, . . . , 1],
with ones except for a 0 at the entry N + p.

The ISL can be considered as an objective function of an
optimisation problem, called in this article (PISL):

(PISL)

{
minq ISL(s, q)

s.t. sHq = sHs,
(9)

that can be solved analytically, using Lagrangian multipliers
[9]:

qISL(s) =

(
sHs

) (
ΛK(s)HFΛK(s)

)−1
s

sH (ΛK(s)HFΛK(s))
−1
s

. (10)

This last definition means that, for a given sequence s, there
exists a unique and optimal filter qISL(s) that minimises the
ISL. Note here that this analytic solution does not guarantee
an acceptable loss-in-processing gain. If the LPG is added as
a second constraint in the constrained optimisation problem
(PISL), then the new problem cannot be solved analytically
anymore to our knowledge.

2) Peak-to-Sidelobe Level Ratio: The PSLR is expressed
by:

TN × CK → R+

(s, q) 7→ PSLR(s, q) :=
‖Fy‖2∞
|sHq|

. (11)

Similarly, consider the following optimisation problem:{
minq PSLR(s, q)

s.t. sHq = sHs.
(12)
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This optimisation problem is equivalent to the following
QCQP (Quadratically Constrained Quadratic Program) [4]:

(PPSLR)


minq,t t

s.t. sHq = sHs
qHλHN+p+i(s)λN+p+i(s)q ≤ t

for |i| ≥ 1,

(13)

where λk(s) is the k-th row of the matrix ΛK(s). The
previous optimisation problem is convex, because the cost
function and all the constraints are. Hence, a global solution
can be computed, denoted here by qPSLR(s), using any convex
optimisation method such as the interior point method for
instance [10]. Note here that since the constraint on the LPG is
quadratic and convex, it can easily be added to the optimisation
problem (PPSLR), the resulting problem still providing a
global solution.

III. JOINT OPTIMISATION ALGORITHMS

The previous section pointed out that, for a given sequence,
there exists an optimal mismatched filter, whatever norm is
considered. As mentioned in the introduction, some papers
(see [5], [6] for instance) have dealt with an optimisation of
the sequence and its associated mismatched filter, but in a
sequential way: two optimisation problems are considered, one
for each sequence (while the other is set as a constant), see
Table I. It enables to apply the property of existence of an
optimal mismatched filter, but it does not imply at all that the
obtained pair is optimal.

Hence, in this section, two algorithms are introduced in
order to optimise jointly a sequence and its associated mis-
matched filter. First, a gradient descent is applied on both
sequences, on a cost function that includes a pattern. This
pattern allows to control in particular the loss-in-processing
gain and the sidelobe level. Second, a modified version of
the cost function is considered. It exploits the existence of an
optimal mismatched filter, in the PSLR or the ISL sense. A
constraint can be added in order to adjust the LPG.

A. Direct Joint Optimisation

This section proposes to jointly optimise a transmitted
sequence and its associated mismatched filter, via a gradient
descent on s and q. A similar method has already been
proposed in [7] using the PSLR as a cost function: however,
constraints are managed through some penalty coefficients that
have to be determined empirically. Here, the sidelobe level
and the loss-in-processing gain are handled through a user-
defined objective pattern, inserted in the cost function. It seems
reasonable to put these sidelobes as low as possible but, in
practice, the convergence speed is affected. It is in fact more
reliable to consider a feasible pattern an algorithm can reached,
and then adjust the former (e.g., a reduction of the sidelobe
level) if necessary.

As said in Section II, for a sequence s of length N and its
associated mismatched filter q of length N+2p, the processing
output is of length 2N+2p−1. And so should be the pattern,
here denoted by g. An example of pattern is given in Fig. 1.
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Figure 1. Some patterns. An amplified loss of 5 dB is authorized.

The modified optimisation problem, that includes the pat-
tern, is the following:

min
s,q

E1(s, q) :=

2N+2p−1∑
k=1

(
|yk/gk|2ρ − 1

)2
,

s ∈ TN , q ∈ CK ,

(14)

and where y is defined as in Section II. This optimisation
problem searches for couple (s, q) that provides the closest
output to the pattern.

In order to apply a gradient descent, a gradient computation
of the cost function is needed, which can be done numerically
with finite differences. Otherwise, for sequence s, notice that
the considered partial derivatives are computed with respect to
the phase αk of each element sk, so that the constant modulus
property is respected:

∂E1

∂αk
= −2ρ=[sk ((γ ◦ y) ∗ q)k], k ∈ J1, NK (15)

where γk = (|yk/gk|2ρ−1) |yk/gk|2ρ−1 (1/g2k). While for the
mismatched filter, Wirtinger derivatives are used:

∂E1

∂qk
= ρ ((γ ◦ y) ∗ sr) , k ∈ J1, 2N + 2p− 1K (16)

After convergence of the steepest descent step, the pattern
may be slightly adjusted (reduction of 1 dB of the sidelobes
for instance). The whole procedure is summarized in Table II.

B. Indirect Joint Optimisation

An iterative algorithm is also proposed in this section. It
takes advantage of the existence of an optimal mismatched
filter that minimises the PSLR or the ISL, as explained in
Section II. Only the latter is detailed in this section, even
though the following procedure can easily be extended for
the PSLR.

For a joint optimisation, the optimisation problem (PISL)
becomes:

(P
(2)
ISL)


min
s,q

E2(s, q) := ‖FΛK(s)q‖22

s.t. sHq = sHs

s ∈ TN , q ∈ CK .

(17)

Notice that the only difference is on the optimisation variables,
with the addition of s. Since sequence s belongs to an
hypertorus, which is a non-convex set, this problem cannot be
freely solved globally, contrary to the original problem (PISL).
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Separating both optimisation variables gives the following
problem:

(P
(3)
ISL)


min
s

min
q
E2(s, q) = ‖FΛK(s)q‖22

s.t. sHq = sHs

s ∈ TN , q ∈ CK .

(18)

In this expression, (PISL) can be identified. As mentioned
earlier, there exists a global solution that can be computed, de-
noted qISL(s) — its explicit defintion is defined in Section II.
Remark that qISL(s) can also be computed through a QCQP.
This solution is put into the objective function, becoming a
function of a sequence-only variable:

(P
(4)
ISL)

{
min
s
E3(s) := E2(s, qISL(s))

s ∈ TN .
(19)

As such, the definition of the mismatched filter is therefore
inherent, given the expression of cost function E3. At the end
of the day, the proposed algorithm is actually akin to a simple
minimisation problem, that can be solved using a gradient
descent for instance. Notice that a numerical computation of
the derivative requires to consider an optimisation problem
(PISL) for each phase αk...

The algorithm is summarized in Table III. Remind that it can
easily be extended to an optimisation of the PSLR criterion,
and/or with constraints on the loss-in-processing gain.

IV. RESULTS

This section presents some results obtained with the pre-
vious described algorithms. Drawn sequences are of length
N = 64. Different initialisations are compared.

To solve all the QCQP, the CVX package has been used.
CVX is a package for specifying and solving convex programs
[10].

In the following results, different pairs sequence/filter have
been considered, obtained through different strategies. They
will denoted as follows:
• “Matched opt.”: an optimisation of the matched filter has

been performed, like in [3].
• “Direct opt.”: a direct joint optimisation with a gradient

descent, described in Section III-A.
• “Indirect opt.”: an indirect joint optimisation, proposed in

III-B.

A. First Results

Figure 2 illustrates the usefulness of a joint optimisation.
It compares a sequential algorithm with a joint one, proposed
in the previous section. Therefore, we have first considered
a random sequence, optimised it in the sense of a matched
filter, and then computed its optimal mismatched filter in
the PSLR sense. Second we have used this sequence as
the initialisation sequence for the proposed joint optimisation
algorithm. Whatever method, the pair sequence/mismatched
filter provided by the proposed joint optimisation algorithm
outperforms the results provided by the separated optimisation,
of around 10 dB.

Table I
A CYCLIC ALGORITHM

Algorithm Cyclic optimisation with a gradient descent

Given Initial sequence s
Initial mismatched filter q

Repeat 1. Gradient descent search on s, q fixed (see below)
2. Computation of qPSLR(s), optimal solution of (PPSLR)

Until A stopping criterion is satisfied.

Table II
A DIRECT JOINT OPTIMISATION ALGORITHM

Algorithm Direct joint optimisation with a gradient descent

Given Initial sequence s
Initial mismatched filter q

Repeat 1. Gradient descent search
— Computation of ∇αE1, ∇qE1

— Search of the best step µ
— Update of s : sk = sk e

−jµ(∇αE1)k , k ∈ J1, NK
— Update of q : qk = qk − µ(∇qE1)k), k ∈ J1,KK
— Repeat until convergence

2. Readjustment of the pattern g
Until A stopping criterion is satisfied.

Table III
AN INDIRECT JOINT OPTIMISATION ALGORITHM

Algorithm Indirect joint optimisation based on a gradient descent

Given Initial sequence s
Repeat 1. Gradient descent search

— Computation of the gradient vector ∇αE3

— Search of the best step µ
— Update of s : sk = sk e

−jµ(∇αE3)k , k ∈ J1, NK
Until A stopping criterion is satisfied.

A comparison of both optimisation methods described in
this article is represented in Figure 3. A loss-in-processing gain
of 1 dB has been allowed. In terms of PSLR, a direct gradient
descent seems more appropriate (PSLR = −58 dB). However,
note that this pattern-based method cannot easily been adapted
to provide good ISL sequences. In that aspect, the second
proposed method provides very interesting performance in
terms of ISL, with very low sidelobes near the mainlobe, at
the expense of relatively higher sidelobes at the end of the
sequences (yet at a very acceptable level, around -40 dB, at
most).

B. On the Influence of the Initialisation

It has already been mentioned that, theoretically, a gradient
descent converges to the closest local minimum (at least to
the closest saddle point). In this regard, the initialisation
is quite important, because it influences the sidelobe level
of the obtained pair sequence/filter. Two initialisations are
thus compared in this section: the first one was a random
initialisation (see the previous paragraph), while the second
one uses as initialisation a sequence already optimised in the
PSLR sense. Results are presented Figure 4.

Starting from the random sequence drawn in Section IV-A,
an optimisation of its matched filter is performed, such as in
[3]. The obtained sequence is used as an initialisation for both
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Figure 2. Separated Optimisation vs. Joint Optimisation
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Figure 3. Comparison of Joint Optimisation Methods
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Figure 4. Joint Optimisation, Starting from a “Flat” Sequence

proposed methods. In addition to low sidelobes, it is interesting
to look at their distributions, according to the method. A direct
optimisation of the PSLR gives — as expected — a uniform
distribution, with sidelobes at −58 dB, improved by 8 dB with
the other init. On the other hand, the indirect optimisation
over the ISL provides incredibly good results, with sidelobes
around the mainlobe reaching levels as low as −90 dB while
the sidelobes at the edges are still acceptable, around -50 dB.
To our knowledge, such sidelobes level have not been reached
in the literature. The particular shape obtained in this ISL case
may besides be very interesting in radar applications, as it
may improve the detection of close and small targets that are
usually hidden in strong clutter.

V. CONCLUSION

In this article, several algorithms have been introduced, in
order to design jointly a sequence and its mismatched filter.
Unlike methods described in the literature, the optimisation
process is performed simultaneously on both sequences, and
not alternatively. Simulations have highlighted really promis-
ing results on the sidelobes, better than cyclic algorithms:
• In terms of sidelobe levels, obtained results are quite

satisfying, even with small sequences.
• According to the algorithm, their distribution is different.

A joint direct optimisation of the PSLR provides — as
expected, because of the chosen pattern — a mismatched
filter output with a flat profile. While an indirect joint
optimisation over the ISL shows amazingly low levels
around the mainlobe.

Ongoing works will be focused on:
• applying other methods instead of a gradient descent;
• the initialisation choice for the mismatched filter;
• an extension of these algorithms for a set of sequences

(and their associated set of mismatched filters);
• comparing output levels with some lower bounds on the

correlation sidelobe level of sets of sequences, such as
Welch or Levenshtein bounds. Note that, for a single
sequence, these bounds are equal to 0 (-∞ dB), which
leaves some possibility to reach even lower sidelobe
levels with joint optimisation methods.
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