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Learning Scene Geometry for Visual
Localization in Challenging Conditions

Nathan Piasco1,2, Désiré Sidibé1, Valérie Gouet-Brunet2 and Cédric Demonceaux1

Abstract— We propose a new approach for outdoor large
scale image based localization that can deal with challenging
scenarios like cross-season, cross-weather, day/night and long-
term localization. The key component of our method is a new
learned global image descriptor, that can effectively benefit from
scene geometry information during training. At test time, our
system is capable of inferring the depth map related to the
query image and use it to increase localization accuracy.

We are able to increase recall@1 performances by 2.15%
on cross-weather and long-term localization scenario and by
4.24% points on a challenging winter/summer localization
sequence versus state-of-the-art methods. Our method can also
use weakly annotated data to localize night images across a
reference dataset of daytime images.

I. INTRODUCTION

Visual-Based Localization (VBL) is a central topic in
robotics and computer vision applications [1]. It consists in
retrieving the location of a visual query according to a known
absolute reference. VBL is used in many applications such
as autonomous driving, augmented reality, robot navigation
or SLAM loop closing. In this paper, we address VBL as an
image retrieval problem where an input image is compared
to a reference pool of localized images. This image-retrieval-
like problem is two-step: descriptor computation for both the
query and the reference images and similarity association
across the descriptors. Since the reference images are asso-
ciated to a location, by ranking images according to their
similarity scores we obtain an approximate location for the
query. Numerous works have introduced image descriptors
well suited for image retrieval for localization [2], [3], [4],
[5], [6].

One of the main challenges of image-based localization
remains the mapping of images acquired under changing
conditions: cross-season images matching [7], long-term
localization [8], day to night place recognition [9], etc.
Recent approaches use complementary information in order
to address these visually challenging localization scenarios
(geometric information through point cloud [10], [11] or
depth maps [12], semantic information [13], [12], [7]).
However geometric or semantic information are not always
available, especially in robotic applications when the sensors
or the computational load on the robot are limited.

In this paper, we propose a image descriptor that learns,
from an image, the corresponding scene geometry, in order
to deal with challenging outdoor large-scale image-based
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localization scenarios. We introduce geometric information
during the training step to make our new descriptor robust to
visual changes that occur between images taken at different
times. Once trained, our system is only used on images to
construct a expressive descriptor for image retrieval. This
kind of system design is also known as side information
learning [14], as it uses geometric and radiometric informa-
tion only during the training step and just radiometric data
for the image localization. Our method is especially well-
suited for robotic long-term localization when the perceptive
sensor on the robot is limited to a camera [15], while having
access to the full scene geometry off-line [16], [17], [18].

The paper is organized as follows. In section II, we first
revisit recent works related to our method, including: state of
the art image descriptors for large scale outdoor localization,
method for localization in changing environment and side
information learning approaches. In section III, we describe
in detail our new image descriptor trained with side depth
information. We illustrate the effectiveness of the proposed
method on four challenging scenarios in section IV. Sec-
tion V finally concludes the paper.

II. RELATED WORK

Image descriptor for outdoor visual localization. Standard
image descriptors for image retrieval in the context of
image localization are usually built by combining sparse
features with an aggregation method, such as BoW or VLAD.
Specific features re-weighting scheme dedicated to image
localization have been introduced in [19]. Authors of [20]
introduce a re-ranking routine to improve the localization
performances on large-scale outdoor area. More recently, [2]
introduces NetVLAD, a convolutional neural network that
is trained to learn a well-suited image representation for
image localization. Numerous other CNN image descriptors
have been proposed in the literature [3], [4], [5], [21], [6]
and achieve state of the art results in image retrieval for
localization. Therefore we use CNN image descriptors as
base component in our system.

Localization in challenging condition. In order to deal
with visual changes in images taken at different times, [22]
uses a combination of handcrafted and learned descriptors.
[23] introduces temporal consistency by using a sequence of
images, while in our proposal we use only one image as input
for our descriptor. In [24], authors synthesize new images to
match the appearance of reference images, for instance they
synthesized daytime images from night images. Numerous
works [25], [8], [7] enhance their visual descriptors by
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Fig. 1. Image descriptors training with auxiliary depth data (our
work): two encoders are used for extracting deep features map from the
main image modality and the auxiliary reconstructed depth map (inferred
from our deep decoder). These features are used to create intermediate
descriptors that are finally concatenated in one final image descriptor.

adding semantic information. Although semantic represen-
tation is robust for long term localization, it may be costly
to obtain. Other methods rely on geometric information like
point clouds [10], [11], or 3D structures [9]. Geometric
information has the advantage of remaining more stable
across time comparing to visual information but is not always
available. That is why we decide to use depth information
as side information in combination with radiometric data to
learn a powerful image descriptor.

Learning with side information. Recent work from [26]
casts the side information learning problem as a domain
adaptation problem, where source domain includes multiples
modalities and the target domain is composed of a single
modality. Another successful method have been introduced
in [14]: authors train a deep neural network to hallucinate
features from a depth map only presented during the training
process to improve objects detection in images. The closest
work to ours, presented in [27], uses recreated thermal
images to improve pedestrian detection on standard images
only. Our system, inspired by [27], learns how to produce
depth maps from images to enhance the description of these
images.

III. METHOD

A. Overview

We design a new global image description for the task of
image-based localization. We first extract dense feature maps
from an input image with a convolutional neural network
encoder (EI ). These feature maps are subsequently used to
build a compact representation of the scene (dI ). State-of-
the-art features aggregation methods can be used to construct
the image descriptor, such as MAC [5] or NetVLAD [2]. We
enhance this standard image descriptor with side depth map
information that is only available during the training process.
To do so, a deep fully convolutional neural network decoder
(DG) is used to reconstruct the corresponding depth map
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Fig. 2. Hallucination network for image descriptors learning: we
train an hallucination network, inspired from [14], for the task of global
image description. Unlike the proposed method (see figure 1), hallucination
network reproduces feature maps that would have been obtained by a
network trained with depth map rather than the depth map itself.

according to the input image. The reconstructed depth is then
used to extract a global depth map descriptor. We follow the
same procedure used before: we extract deep feature maps
with an encoder (ED) before building the descriptor (dD).
Finally, the image descriptor and the depth map descriptor
are L2 normalized to be concatenated into a single global
descriptor. Figure 1 summarizes the whole process of our
method. Once trained with geometric and radiometric in-
formation, the proposed method is used on images only, to
create a descriptor tuned for image localization.

B. Training routine

Trainable parameters are θI the weights of encoder and
descriptor {EI , dI}, θD the weights of the encoder and
descriptor {ED, dD} and θG the weights of the decoder used
for depth map generation.

For training our system, we follow standard procedure
of descriptor learning based on triplet margin losses [2].
A triplet {qim, q+im, q

−
im} is composed of an anchor image

qim, a positive example q+im representing the same scene as
the anchor and an unrelated negative example q−im. The first
triplet loss acting on {EI , dI} is:

LfθI (qim, q
+
im, q

−
im) = max

(
λ+

∥∥fθI (qim)− fθI (q+im)
∥∥
2

−
∥∥fθI (qim)− fθI (q−im)

∥∥
2
, 0
)
, (1)

where fθI (xim) is the global descriptor of image xim and λ
an hyper-parameter controlling the margin between positive
and negative examples. fθI can be written as:

fθI (xim) = dI(EI(xim)), (2)

where EI(xim) represents the deep feature maps extracted
by the decoder and dI the function used to build the final
descriptor from the feature.

We train the depth map encoder and descriptor {ED, dD}
in a same manner, with the triplet loss of equation (1),
LfθD (q̂depth, q̂

+
depth, q̂

−
depth), where fθD (xdepth) is the global



descriptor of depth map xdepth and x̂depth is the recon-
structed depth map of image xim by the decoder DG:

x̂depth = DG(EI(xim)). (3)

Decoder DG uses the deep representation of image xim
computed by encoder EI in order to reconstruct the scene
geometry. Notice that even if the encoder EI is not especially
trained for depth map reconstruction, its intern representation
is rich enough to be used by the decoder DG for the task of
depth map inference. We choose to use the features already
computed by the first encoder EI instead of introducing
another encoder for saving computational resources.

The final image descriptor is trained with the triplet
loss LFθI ,θD (qim, q

+
im, q

−
im), where FθI ,θD (xim) denotes the

concatenation of image descriptor and depth map descriptor:
FθI ,θD (xim) = [fθI (xim), fθD (x̂depth)] .

In order to train the depth map generator, we use a simple
L1 loss function:

LθG = ‖xdepth − x̂depth‖1 . (4)

The whole system is trained according to the following
constraints:

(θI , θD) := arg min
θI ,θD

[
LfθI + LfθD + LFθI ,θD

]
, (5)

(θG) := argmin
θG

[LθG ] . (6)

We use two different optimizers: one updating θI and θD
weights regarding constraint (5) and the other updating θG
weights regarding constraint (6). Because decoder DG relies
on feature maps computed by encoder EI (see equation (3)),
at each optimization step on θI we need to update decoder
weights θG to take in account possible changes in the image
features. We finally train our entire system, by alternating
between the optimization of weights {θI , θD} and {θG} until
convergence.

C. Hallucination network for image description

We compare our method of side information learning
with a state-of-the-art approach system, named hallucina-
tion network [14]. The hallucination network is originally
designed for object detection and classification in images. We
adapt the work of [14] to create an image descriptor system
that benefits from depth map side modality during training.
Like our proposal, the trained hallucination network is used
on images only and produce a global descriptor for image
localization. The system is presented in figure 2. The main
difference with our proposal is that the hallucination network
reproduces feature maps that would have been obtained by
a network trained with depth map rather than the deep map
itself. We refer readers to [14] for more information about
the hallucination network.

D. Advantages and drawbacks

One advantage of the hallucination network over our
proposal is that it does not require a decoder network,
resulting on a architecture lighter than ours. However, it
needs a pre-training step, where image encoder and depth
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Fig. 3. Examples of test images : we evaluate our proposal on four
challenging localization sequences. The number under the query set name
indicates the amount of query images to compare against the 1688 reference
images.

map encoder are trained separately from each other before
a final optimization step with the hallucination part of the
system. Our system do not need such initialization. Training
the hallucination network requires more complex data than
the proposed method. Indeed, it needs to gather triplets
of image, and depth map pairs, which require to know
the absolute position of the data [2], [6], or to use costly
algorithms like Structure from Motion (SfM) [28], [5], [3].

One advantage of our method over the hallucination
approach is that we have two unrelated objectives during
training: learning a efficient image representation for lo-
calization and learning how to reconstruct scene geometry
from an image. It means we can train several parts of our
system separately, with different source of data. Especially,
we can improve the scene geometry reconstruction task
with non localized {image, depth map} pairs. These weakly
annotated data are easier to gather than triplet, as we only
need calibrated system capable of sensing radiometric and
geometric modalities at the same time. We will show in
practice how this can be exploited to fine tune the decoder
part to deal with complex localization scenarios in part IV-C.

IV. EXPERIMENTS

A. Dataset

We have tested our new method on the Oxford Robotcar
public dataset [17]. This is a common dataset used for image-
based localization [10] and loop closure algorithm involving
neural networks training [24].

Training data. We use the temporal redundancy present in
the dataset to build the images triplets to train our CNN.
We build 400 triplets using three runs acquired at dates:
2015-05-19, 2015-08-28 and 2015-11-10. We se-
lected an area of the city different from the one used for train-
ing our networks for validation. Depth modality is extracted
from the lidar point cloud dataset of Oxford Robotcar. When
re-projected in the image frame coordinate, it produces a
sparse depth map. Since deep convolutional neural networks
require dense data as input, we pre-process these sparse



modality maps with inpainting algorithm from [29] in order
to make them dense.

Testing data. We propose four testing scenarios on the
same spatial area (different from the area used for training
and validation). The reference dataset is composed of 1688
images taken every 5 meters along a path of 2 km, when the
weather was overcast. The four query sets are:

• Sunny/Overcast: queries have been acquired during a
sunny day.

• Long-term: queries have been acquired 7 months after
the reference images under similar weather conditions.

• Winter/Summer: queries have been acquired during a
snowy day.

• Night/Day: queries have been acquired at night, result-
ing in radical visual changes compared to the reference
images.

Query examples are presented in figure 3.

Evaluation metric. For a given query, the reference images
are ranked according to the cosine similarity score computed
over their descriptors. To evaluate the localization perfor-
mances, we consider two evaluation metrics:

a) Recall @N: we plot the percentage of well localized
queries regarding the number N of returned candidates. A
query is considered well localized if one of the top N
retrieved images lies inside the 25m radius of the ground
truth query position.

b) Top-1 recall @D: We compute the distance between
the top ranked returned database image position and the
query ground truth position, and report the percentage of
queries located under a threshold D (from 15 to 50 meters),
like in [30]. This metric qualifies the accuracy of the local-
ization system.

B. Implementation details

Our proposal is implemented by using Pytorch as deep
learning framework, ADAM stochastic gradient descent al-
gorithm for the CNN training with learning rate set to 1e-4,
weight decay to 1e-3 and λ in triplet loss equal to 0.1. We
use batch size between 10 and 25 triplets depending of the
size of the system to train, convergence occurs rapidly and
takes around 30 to 50 epochs. We perform both positive and
negative hard mining, as in [5]. Images and depth maps are
re-sized to 224× 224 pixels before training and testing.

Encoder architectures. We test the fully convolutional part
of Alexnet and Resnet18 architectures for features extraction.
The size of the final features block is 256 × 13 × 13
for Alexnet and 512 × 7 × 7 for Resnet. Initial weights
are the ones obtained by training the whole network on
ImageNet dataset. We always use Alexnet encoder to extract
features from raw depth map, reconstructed depth map, or
hallucinated depth map. Indeed the quality of our depth map
is usually very low, we have found that using deeper network
does not significantly improve localization results.

Descriptor architectures. We test the two state-of-the-art
image descriptors MAC [5] and NetVLAD [2]. MAC is a
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Fig. 4. Resnet18 (R) versus truncated Resnet18 (Rt) in combination
with NetVLAD pooling: we show the importance of the spatial resolution
of the deep feature maps of the encoder used with NetVLAD layer. The
truncated version of Resnet18, more than two times lighter than the complete
one, achieves much better localization results.

simple global pooling method that takes the maximum of
each feature map from the encoder output. NetVLAD is
a trainable pooling layer that mimics VLAD aggregation
method. For all the experiments, we set the number of
NetVLAD clusters to 64. Finally, both MAC and NetVLAD
descriptors are L2 normalized.

Decoder architecture. The decoder used in our proposal is
based on Unet architecture and inspired by network generator
from [31]. Dimension up-sampling is performed through
inverse-convolutions layers. Decoder weights are initialized
randomly.

C. Results

Baselines. We compare our method with two state-of-the-art
baselines:

a) RGB only (RGB): simple networks composed of
encoder + descriptor trained with only images, without side
depth maps information. We evaluate 4 variants of networks,
by combining Alexnet (A) or Resnet (R) encoder with MAC
or NetVLAD descriptor pooling.

b) RGB with Depth side information (RGBtD): net-
works that use pairs of aligned image and depth map during
training step and images only at test time. We compare
our proposal with our version of hallucination network [14]
(hall). We follow training procedure of [14] to train the
hallucination network, whereas our proposal is trained as
explained in III-B.

Truncated Resnet. We experimented that NetVLAD
descriptor combined with Resnet architecture, RGB +
NetVLAD (R), does not perform well. NetVLAD can be
view as a pooling method that acts on local deep features
densely extracted from the input image. We argue that the
spatial resolution of the features block obtained with Resnet
encoder is too low compared to the other architecture (for
instance 13×13 for Alexnet compared to 7×7 for Resnet for
an 224× 224 input image). We propose a truncated version
of Resnet encoder (Rt), created by drooping the end of the
network after the 13th convolutional layer. Thus we obtain a
feature block with greater spatial resolution: 256× 14× 14
compared to 512×7×7. Recall results on the Sunny/Overcast
query set for both architectures are presented in figure 4. As
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Fig. 5. Comparison of our method versus hallucination network and networks trained with only images: our method (-o-) is superior in almost
every scenario facing hallucination network (-x-). It also beats, with a significant margin, networks trained with only images (--). NetVLAD descriptors
(blue and cyan curves) are superior to MAC (red and magenta curves), specially in terms of accuracy (Recall@D curve). Night/day dataset remains the
most challenging one. Curves best viewed in colors.

TABLE I
RESULTS TOP-1 RECALL @D: MAC (A) & NETVLAD (RT).

Methods
Sunny Long-term Winter All

@15 @25 @50 @15 @25 @50 @15 @25 @50 @15 @25 @50

RGB
MAC 46.7 56.3 60.9 51.8 62.5 71.0 38.4 42.0 47.3 45.6 53.6 59.7
NetVLAD 67.4 76.6 80.5 63.4 76.3 80.4 57.1 61.6 66.1 62.6 71.5 75.6

Mean (all RGB) 56.8 65.3 69.4 57.8 68.7 75.2 48.2 51.8 56.9 54.3 61.9 67.2

Our
MAC 55.9 64.0 67.8 55.8 67.0 73.7 42.0 51.8 55.4 51.2 60.9 65.6
NetVLAD 64.0 72.4 76.6 64.3 77.2 83.5 60.7 67.0 67.9 63.0 72.2 76,0

Mean (all our) 58.7 67.3 71.1 59.4 71.0 76.6 50.0 56.0 59.4 56.0 64.8 69.0

the truncated version of Resnet encoder clearly dominates
the full one, we use the truncated version for the following
experiments.

Discussion. Localization results on the four query sets
are presented in figure 5. Both methods trained with auxiliary
depth information (hall and our) perform on average better
than the RGB baseline. This shows that the geometric clues
given during the training process can be efficiently used for
the task of image-only retrieval for localization. Compare
to hallucination network, our method shows better results,
both in term of recall and precision. We report results for
the hallucination network only with encoder Alexnet as we
were not able to obtain stable training when using a deeper
architecture.

We also report on table I localization performances for
the 3 daytime datasets (sunny, long-term and winter). We
obtain our best localization results by combining truncated
Resnet encoder with NetVLAD descriptor. However, for all
combination of encode/decoder, our method increases the
localization precision compare to the RGB baseline. This
demonstrate the generalization capability of our method: we
can either use lightweight architecture for online embedded

localization or rely on greedier models to increase the
overall localization precision. Our method only decreases
the localization performances compare to the baseline when
using Resnet+NetVLAD on the Sunny/Overcast query set.
This is certainly because the training data are visually similar
to the queries present in this scenario. It will be interesting
to introduce attention mechanism to balance the relative
importance of image and depth modality to overcome this
limitation.

Our method shows the best localization improvement on
the Winter/Summer query set. Standard image descriptors are
confused by local changes caused by the snow on the scene
whereas our descriptor remains confident by reconstructing
the geometric structure of the scene. Similar results should be
intended regarding Night/Day query set (figure 5-d), however
our proposal is not able to improve localization accuracy
for this particular scenario. We investigate the night to day
localization problem in the following.

Night to day localization. Night to day localization is
an extremely challenging problem: the best RGB baseline
achieves less than 13% recall@1. This can be explained
by the huge difference in visual appearance between night
and daytime images, as illustrated in figure 3. Our system
should be able to improve the RGB baseline relying on the
learned scene geometry, which remains the same during day
and night. Unfortunately, we use training data exclusively
composed of daytime images, thus making the decoder
unable to reconstruct a depth map from an image taken at
night. The last line of figure 6 shows the poor quality of
decoder output after initial training. In order to improve the
decoder’s performances, we propose to use weakly annotated
data to fine tune the decoder part of our system. We collect



TABLE II
CONTRIBUTION OF THE DEPTH INFORMATION DURING TRAINING.

Query
set

Network Top-1 recall@D Recall@N
Name #Param. @15 @30 @50 @1 @5

Sunny/
Overcast

RGB + MAC 2.5M 46.7 56.7 60.9 56.3 76.6
RGB+ + MAC 7.9M 51.0 61.0 66.7 60.1 79.3
RGBtD + MAC 7.9M 55.9 64.4 67.8 64.0 80.5

Long-
term

RGB + MAC 2.5M 51.8 65.2 71.0 62.5 84.4
RGB+ + MAC 7.9M 54.5 68.3 72.3 67.0 82.6
RGBtD + MAC 7.9M 55.8 69.2 73.7 67.0 86.2

Winter/
Summer

RGB + MAC 2.5M 38.4 43.0 47.3 42.0 62.5
RGB+ + MAC 7.9M 36.6 42.0 43.0 41.1 56.3
RGBtD + MAC 7.9M 42.0 51.8 55.4 51.8 67.0

1000 pairs of image and depth map acquired at night and
retrain only decoder weights θG using loss of equation (4).
Figure 6 presents the qualitative amelioration on the inferred
depth map after the fine tuning. Such post-processing trick
cannot be used to improve standard RGB image descriptors,
because we need to know the location of the night data.
For instance, we use a night run from the Robotcar dataset
with a low quality GPS signal, that makes impossible the
automatic creation of triplets that are essential for training a
deep image descriptor. We show in figure 7 that we are able
to nearly multiply by two the localization performances by
only fine tuning a small part of our system. Our best network
achieves 23% recall@1 against 13% recall@1 for the best
RGB baseline.

Contribution of the depth information. In this paragraph,
we investigate the impact on localization performances pro-
vided by the side geometry information on our method. To
ensure a fair comparison in terms of number of trainable
parameters, we introduce RGB+ network that has the same
architecture as our proposed method. We train RGB+ with
images only to compare the localization results against our
method that uses side depth information. For training RGB+,
we simply remove the loss introduced in equation (3), and
make the weights of the decoder trainable when optimizing
triplets losses constraints. Results of this experiment with
encoder architecture Alexnet are presented in table II.

Increasing the size of the system results in a better local-
ization on the two easiest query sets. Surprisingly RGB+

system decreases localization performances on the winter
queries compared to RGB. The system has probably over-
fitted on the training data that are visually close to queries of
“Sunny” set and “Long-term” set, but quiet different from the
queries of “Winter” set (see figure 3). Our RGBtD + MAC
system always produces higher localization results facing
RGB+ + MAC, which shows that the side depth information
provided during training is wisely used to describe the image
location.

V. CONCLUSION

We have introduced a new competitive global image
descriptor designed for image-based localization under chal-
lenging conditions. Our descriptor handle visual changes be-
tween images by learning the geometry of the scene. Strength
of our method remains in the fact that it needs geometric

Input images

Ground
truth depth

maps

Decoder
outputs

(after fine
tuning)

Decoder
outputs

(without fine
tuning)

Fig. 6. Effect of fine tuning with night images on decoder output:.
Decoder trained with daylight images is unable to reconstruct the scene
geometry (bottom line). Fine tuning the network with less than 1000 pairs
{image, depth map} acquired by night highly improves appearance of the
generated depth maps. Maps best viewed in color.
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Fig. 7. Results on Night/Day query set after fine tuning: we are able to
drastically improve localization performance for the Night/Day challenging
scenario by only fine tuning the decoder part of our network with weakly
annotated data. Curves best viewed in color.

information only during the learning procedure. Our trained
descriptor is then used on images only. Experiments show
that our proposal is much more efficient than state-of-the-art
localization methods [2], [5], including methods based on
side information learning [14]. Our descriptor performs espe-
cially well for challenging cross-season localization scenario,
therefore it can be used to solve long-term place recognition
problem. We additionally obtain encouraging results for night
to day image retrieval.

In a future work we will investigate the use of other modal-
ities as side information sources, like the reflectance factor
provided by lidars. We also want to study the generalization
capability of our system, by considering a different image-
based localization task like direct pose regression [32].
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