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essential oils are the plant extracts that have been the most studied
for their antimicrobial activity. However, in addition to their higher
cost than other plant extracts (due to their lower extractability
and yield), essential oils contain volatile compounds (frequently
unpleasant or generating off-odors) and have low water solubility.
These drawbacks often limit their use for food preservation. Since
applications of essential oils for improving food safety have been
widely reviewed by Burt2 and more recently by Hyldgaard et al.,3

essential oils are outside the scope of this review, which will instead
be focused on other plant extracts.

Plant extracts play an important role because of their nutritional,
visual (color), and taste properties; polyphenols are thus consid-
ered relevant due to their qualities.4 Most of the applications of
phenolic-rich plant extracts for food safety purposes are related
to their antioxidant activity, including the prominent example of
rosemary extract,5 which has food additive status in the Euro-
pean Union (E 392). Antioxidant rosemary extract contains more
than 900 g kg−1 of carnosic acid and carnosol, both of which are
phenolics.

In addition to these antioxidant properties, polyphenols have
also been shown to extend the shelf life of some food products
through their antimicrobial activities, and they may also act as
inhibitors of pathogenic microorganisms.6

This review will thus help the reader to identify (i) phenolic-rich
plant extracts with potential as antimicrobials, (ii) their mechanism
of action, (iii) the factors known to affect their in situ antimicrobial
activity in real food systems, and (iv) most of their potential
applications for perishable food preservation reported up to now.

NATURAL EXTRACTS/MOLECULES FOR FOOD
PRESERVATION
Edible plants: a potential source of antimicrobial molecules
Controlling microbial growth in food products has always been a
major concern for the different stakeholders in the agri-food sec-
tor. A double challenge must be considered: ensuring both food
safety and food waste reduction. In fact, microbes causing infec-
tious diseases are frequently the cause of morbidity and mortality

across the world. In addition, microbial spoilage induces the loss
of approximately a quarter of the world’s food supply, and more
than 40% of food damage occurs at the retail and consumer levels
in developed countries.7 This context has induced a rise in biocide
and antibiotic application in order to guarantee efficient control of
the microbial contamination of foods.

The emergence and spread of antibiotic resistance among
human pathogenic microorganisms are a critical challenge.
Indeed, the appearance of resistance or even multiresistance in a
large bacterial community can be induced by the routine use of
antibiotics.8 In addition to this phenomenon of antibiotic resis-
tance, the presence of antimicrobial agent residues in the environ-
ment has attracted much attention from modern consumers. Thus,
the search for natural antimicrobials that are effective against both
pathogenic and spoilage microorganisms is crucial.

Natural preservatives are considered healthier and to have an
added value arising from their bioactivity and nutritional value.
Therefore, an increasing number of food companies have made an
effort to meet the increasing consumer demand for natural food
preservatives. However, a soft transition from chemical additives to
natural alternatives is expected, particularly because of economic
and antimicrobial efficacy issues that still have to be solved.1

Plant-derived antimicrobials are promising in this context.
Indeed, plant extracts are generally considered edible based
on their traditional human consumption. In addition, plant sec-
ondary metabolites (PSMs) account for the greatest diversity
of structures (e.g. there are more than 12 000 known alkaloids,
more than 10 000 phenolic compounds and over 25 000 different
terpenoids). Different antimicrobial polyphenol subgroups, their
chemical structures and examples are presented in Fig. 1.

Antimicrobial PSMs were thus proposed as potential alternatives
to synthetic preservatives. Nevertheless, plant-derived antimicro-
bials have not been frequently applied until now. To expand the
use of plant extracts as natural preservatives, their bioactive com-
pounds could be extracted and purified by developing economic
processes preserving their activities.

Typically, extraction of phenolic compounds as a mixture and
their purification are simple to perform. The edible plant-derived
compounds remain the most favored for food use to limit concern
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regarding toxicity. Therefore, several recent studies have explored
these plants as a potential source of antimicrobial molecules. The
in vitro antimicrobial activity of the most studied edible plants
byproducts in the past decade is described in Table 1.

Polyphenols: a diversity of antimicrobial mechanisms
of action
The OH groups of phenolic compounds interact with the cell mem-
brane of bacteria by hydrogen bonding. Importantly, the presence
of OH functional groups is relevant to the antibacterial activity
of many phenolics.57–60 Indeed, the interaction of phytochemi-
cals with bacterial cell membranes usually causes either the dis-
ruption of the membrane structure, which induces loss of cellular
content,58,61 or the delocalization of electrons (because of the dou-
ble bonds of the aromatic nucleus), which results in depolarization
of bacteria (acting as proton exchangers) and thus affects the pro-
ton motive force, reducing the pH gradient across the membrane
and the level of the ATP pool.60 This series of mechanisms initiated
by the active hydroxyl groups of phytochemicals such as phenolics
can lead to cell death. Furthermore, the relative position of the OH
group on the phenolic nucleus has been reported to influence the
antibacterial efficacy of phenolic compounds.62

The presence of alkyl groups in the aromatic nucleus generates
phenoxyl radicals63 reported to enhance the antibacterial efficacy
of phenolics and alter their distribution ratio between aqueous
and non-aqueous phases, including bacterial phases.64 The pres-
ence of an acetate moiety in the molecular structure appeared to
increase the activity of parent phenolic compounds by either the
alcohol groups as protein denaturing agents64 or by an increase
in their electronegativity due to the aldehyde groups promoting
electron transfer and reactions with membrane proteins.65 The
galloyl moiety has been reported to induce important damage
to the membrane structure, thereby enhancing the antibacte-
rial activity of epigallocatechin gallate against Gram-positive
bacteria.66 In addition to their chemical composition and struc-
ture, the lipophilic properties of phytochemicals are also involved
in their antibacterial activity.63

The antimicrobial activity of many phenolics has been observed
to increase with the elevation of their lipophilic character; this
may be directly related to their potential interactions with the
cell membrane.66 The ability to penetrate the cell membrane and
interact with cell compounds induces irreversible damage to the
cell membrane and coagulation of the cell content, affecting both
membrane and intracellular enzymes. Hydrogen-bonding descrip-
tors (H-bond donors, H-bond acceptors), polar surface area, log
P (octanol/water partition coefficient) and HOMO (highest occu-
pied molecular orbital) and LUMO (lowest unoccupied molecular
orbital) energy levels are the physicochemical parameters involved
in the capacity of bioactive molecules to permeate through lipid
membranes.67,68 Van der Waals bonding can be established when
the electron bonding energy of phenolics (acting as hydrogen
bond donors) is higher than that of membrane lipids. A high num-
ber of hydrogen bond donors leads to higher interactions with the
membrane of bacteria. Furthermore, molecules with a polar sur-
face area of greater than 140 Å squared (higher than acyl chains)
tend to interact strongly with the choline head groups of mem-
brane phospholipids.69 Strong interactions with the Caco-2 cell
model membrane have been observed for molecules with log P
values higher than 0 and less than 3,68 allowing them to get closer
to membrane surfaces and interact with them; however, such data
regarding bacterial membranes are lacking. Attraction between
two different molecules can be induced by the interaction

between their HOMO and LUMO. The difference in the HOMO and
LUMO energy levels between phenolics and lipids constitutes a
key element for bacterial membrane and phenol interactions.

The main antimicrobial mechanisms of action of polyphenols
cited in this review are summarized in Fig. 2.

Not all information on the mechanisms of the antimicrobial
action of phenolics has been acquired yet. However, these com-
ponents are considered to have many sites of action at the cellu-
lar level.70 There are at least three mechanisms on which several
authors agree: (i) modification of the permeability of cell mem-
branes, formation of cytoplasmic granules and rupture of the cyto-
plasmic membrane; (ii) changes in various intracellular functions
induced by hydrogen bonding of the phenolic compounds to
enzymes through their OH groups; and (iii) modification of fungal
morphology (cell wall rigidity and integrity losses) induced by dif-
ferent interactions with cell membranes.71

In general, Gram-negative bacteria are more resistant to PSMs,
including phenolics, than Gram-positive bacteria.2,72 This dif-
ference is likely because Gram-negative bacteria possess a
cell wall linked to an outer complex membrane,73 namely, the
lipopolysaccharide envelope, which slows down the passage of
phytochemicals.74,75 Nevertheless, the appearance of lipopolysac-
charides released from the outer membrane provides evidence
that some polyphenols may also affect the outer membrane of
Gram-negative bacteria.76–78

Additional impacts were reported when Gram-positive bacteria
and fungi were considered. The first one is the modification of
intracellular pH (due to variations in the flow of ions such as H+

and K+ influencing the proton motive force), and the second one
is the blocking of energy production (interference with the energy
(ATP)-generating system).79

Condensed phenylpropanoids – tannins – may induce damage
at the cell membrane level and even inactivate metabolism by
binding to enzymes,80,81 while phenolic acids have been shown to
disrupt membrane integrity, as they cause consequent leakage of
essential intracellular constituents.10

Flavonoids are considered able to promote complex for-
mation by linking with soluble proteins located outside the
cells and within the cell walls of bacteria.82,83 Quercetin was
reported to have a significant effect on the bacterial mem-
brane by increasing the membrane permeability and disturb-
ing its potential.84 Investigations on the membrane action
of several flavonoids ((−)-epigallocatechin gallate,71 (−)-epicate
chin gallate and 3-O-octanoyl-(+)-catechin,85 as well as
2,4,2′-trihidroxy-5′-methylchalcone86) showed that these com-
pounds induce a reduction in membrane fluidity.

Furthermore, some flavonoids may act by inhibiting both energy
metabolism and DNA synthesis, as observed by Haraguchi et al.,87

and affect protein and RNA syntheses to a lesser extent. In addition
to their versatile activities, catechins exert antibacterial effects via
DNA gyrase inhibition.88

Other flavonoids, such as apigenin, have been proven to
have an inhibitory effect on the activity of DNA gyrase and
hydroxyacyl-acyl carrier protein dehydratase.83,89

Naphthoquinones (e.g. plumbagin) were found to inhibit poten-
tial efflux pumps. Interestingly, they have been shown to have
a significant antibacterial effect against Gram-negative bacteria,
whose resistance to most natural antimicrobial products is related
to efflux pumps,90 while coumarins have been reported to cause a
reduction in cell respiration.16

Recent advances in multiparameter flow cytometry offer
the opportunity to obtain high-speed information on the





Figure 2. Different sites of action of antimicrobial polyphenols at the cellular level.

mechanism of action of antimicrobials at real time at the
single-cell level.91 Flow cytometric analysis revealed that
resveratrol-trans-dihydrodimer disturbs the membrane poten-
tial and hinders DNA synthesis of microorganisms.92 Paulo et al.93

used microscopic analysis combined with flow cytometry to
determine the bacteriostatic effect of 200 mg L−1 resveratrol
(4 × minimal inhibitory concentration (MIC) for Bacillus cereus
and 2 × MIC for Staphylococcus aureus at 1–2 × 108 CFU mL−1)
against Gram-positive bacteria. Modifications in cell morphology
and DNA were observed in the presence of resveratrol; it can
thus be assumed that it interferes with the cell cycle of bacteria.
Duggirala et al.94 screened 11 natural phenolics for the inhibition
of the bacterial division protein FtsZ and identified coumarins
as promising candidates. Recently, Liu et al.31 observed that sub-
lethal treatments of Listeria monocytogenes cells with olive leaf
extract abolished flagella and thereby reduced their motility.
Other antibacterial mechanisms of action of phenolic-rich plant
extracts, such as inhibition of quorum sensing, which is involved
in pathogenesis of many food bacteria, cannot be excluded;
such an antibacterial mechanism of action was recently reported
for oregano essential oil.95 The modes of action of polyphenols
discussed earlier are diverse, and this can be advantageous for
their application as natural antimicrobial agents. However, further
studies in this field are needed to obtain the rationale for their
utilization as antimicrobial food additives. For instance, transcrip-
tomic analysis of microbial cells treated with sublethal doses of
plant phenolics or plant extracts should be performed to identify
genes whose expression would be modified. For instance, quanti-
tative polymerase chain reaction (qPCR) analysis of the expression
of genes in Escherichia coli O157:H7 following treatment with cran-
berry concentrate allowed observation of the downregulation of
genes coding for bacterial membrane and cell wall constituent
synthesis.96

USES OF ANTIMICROBIAL PLANT
POLYPHENOLS IN FOODS
Antimicrobial activity of plant polyphenols in foods
The food use of plant extracts has been shown to be promising,
and some of these extracts already possess a generally recognized

as safe (GRAS) status. A comprehensive document regarding
the use of phytochemicals as food preservatives has been devel-
oped by the International Life Sciences Institute-Europe:97 it is
focused on their effective identification and characterization.
However, the recent increase in natural preservative use has
induced changes in European legislation (EC/1334/2008)98 imple-
mented in January 2011. These changes include new statements
for natural extracts and treatments used for their preparation. At
the same time, there is a need to highlight processes that are more
environmentally friendly than the usual methods. In the Code of
Federal Regulations, Title 21, the Food and Drug Administration
(FDA)99 defines safe natural additives for food use according
to the following statements: (i) they are used in the minimum
quantity required to produce their intended physical or technical
effect and in accordance with all the good manufacturing practice
principles; (ii) in the appropriate forms (plant parts, fluid and
solid extracts, concentrates, absolutes, oils, gums, balsams, resins,
oleoresins, waxes, and distillates), they can be used alone or in
combination with flavoring substances and GRAS adjuvants in
food. Many plant-derived products have thus been proposed as
food ingredients or supplements, and they take an interesting
place in the market among other healthy products.

Beverages (water- and tea-based drinks, yogurts and smoothies)
are the most common foods fortified with polyphenols.100

In addition to their antioxidant activity, a great deal of effort has
recently been made to include polyphenols in natural functional
ingredients as food antimicrobial preservatives.101

Plants synthesize polyphenols in response to stress because
of their self-defense from diseases mainly induced by microor-
ganisms. That is why they are considered a promising source of
antimicrobials with healthy features. Many natural phenolics that
are widespread in nature, especially those that are extracted from
edible plants and that have proven antimicrobial activities, could
be used as potential food preservatives.9,19,102–104

The antibacterial activity of three pure compounds naturally
occurring in plants, caffeic acid, p-coumaric acid, and rutin, in dif-
ferent food products was tested by Stojkovic et al.104 Amounts of
p-coumaric and caffeic acids above 0.1 g L−1 completely inhibited
Staphylococcus aureus growth in chicken soup, and after 72 h, no
cell survival was observed in samples treated with greater than



0.9 g L−1 rutin and stored at either 25 or 4 ∘C. Phenolic compounds
have a relevant role in the visual appearance (pigmentation and
browning), taste (astringency) and odor (aromas) of plant-derived
products.105,106 Interestingly, sensory evaluation for overall accep-
tance revealed that compared to those of the control samples,
the sensory features of chicken soup and pork meat exposed to
p-coumaric acid and caffeic acid were well appreciated.104

The antibacterial effect of gallic acid combined with caffeic acid,
rutin and quercetin against Escherichia coli was investigated in a
meat model system at 4 ∘C. This combination of phenolics at a
concentration of 100 or 200 mg L−1 was bactericidal after 14 or
21 days of incubation. Such a synergistic effect makes it possible to
enhance the activity of the polyphenols and reduce their effective
concentration.107

The antimicrobial potency of pinosylvin was evaluated in differ-
ent food systems:19 25–200 mg kg−1 pinosylvin caused a decrease
of 2–4 log of Enterobacteriaceae in fermenting sauerkraut. The
antimicrobial activity of pinosylvin (140 mg kg−1) against Listeria
monocytogenes inoculated in fresh gravlax was higher at 8 ∘C than
at 20 ∘C. Saccharomyces cerevisiae inoculated in strawberry jam
was completely eliminated by 300 mg kg−1 pinosylvin. However,
75 mg L−1 pinosylvin was sufficient to completely inhibit Staphylo-
coccus aureus growth in culture media, while 200 mg L−1 pinosylvin
had no effect in milk.

Numerous in vitro studies have been performed in microbio-
logical culture media to assess the antimicrobial activity of plant
extracts, but far fewer studies have addressed their application to
food products. The lower antimicrobial efficacy of plant extracts in
real foods may be the reason for this imbalance of information.72

The presence of the glycosyl groups of flavonoids contained in
the crude extracts is partially responsible for the reduction in
their activity against a wide range of bacteria reported in several
studies.90–92,108,109,110

In situ evaluation of the antimicrobial activity of plant extracts
is crucial for food use because of interactions of their bioactive
compounds with food components, most likely reducing their
effectiveness. However, in vitro screening remains a first step to
identify the antimicrobial potential of plants. An antimicrobial effi-
cacy similar to that in in vitro cultures could be achieved by adding
higher amounts of plant extract to foods.58 Two-fold, ten-fold,
50-fold, and 25–100-fold higher plant extract concentrations were
necessary to have the same antimicrobial effect in skimmed milk
(from 0.6 g kg−1 to 10 g kg−1 for rosemary extract),111 in pork liver
sausage (from 5 to 50 mL kg−1 for rosemary extract against Liste-
ria monocytogenes),112 and in soft cheese (from 0.04 to 2.5 mL kg−1

for a mixture of rosemary, sage and citrus extracts against Lis-
teria monocytogenes),113 respectively, as in in vitro trials.2,114 For
instance, Miceli et al.115 observed that a ten-fold increase in the
quantity of Borago officinalis (from 10 to 100 g L−1) and Brassica
juncea (from 3.1 to 31 g L−1) aqueous extracts was necessary to
achieve an antimicrobial effect in meat, fish, and vegetables. This
variance can result from the interactions that occur in food systems
between hydrophobic bioactive constituents of plant extracts and
major food ingredients such as fat and proteins. Based on their
hydrophilic character, other phytochemicals behave differently in
food products. The dose of phenolics applied for food preservation
should be set with sensory considerations and not based solely on
in situ antimicrobial efficacy. To be accepted as food preservatives,
phenolic-rich plant extracts should not strongly impart their typ-
ical color and flavor to foods. Ideally, the plant extract is chosen
according to culinary associations already existing in consumer

behaviors (e.g. rosemary for meat,112 thyme for vegetable and
chicken soups60).

In food matrices rich in fat, a lipid coating that wraps the microor-
ganisms and protects them from antimicrobials can form.71 Uhart
et al.116 reported that spices inactivate Salmonella Typhimurium
DT104 under in vitro conditions, whereas a decrease in their inhibi-
tion efficacy was observed when the spices were included in com-
plex food matrices (e.g. ground beef ). Similarly, green and jasmine
tea did not significantly reduce Listeria monocytogenes, Staphylo-
coccus aureus or total bacterial counts in ground beef.117

In addition, compared to culture media, many foodstuffs have a
reduced water content, which may limit the transport of antimicro-
bials into the microbial cells.71 Other potential causes include mod-
ifications in the solubility and charge of phenolics and variations in
the cell envelope of target bacteria. The known interaction of many
polyphenols with proteins might result in polyphenol–protein
complexation (as reviewed by Papadopoulou and Frazier118) and
thus limit the action of active polyphenolic compounds against
microbial cells. Food-mimicking matrices prepared by dispersing
proteins and/or fat in liquid media can help estimate the min-
imum concentrations inhibiting or killing microorganisms (min-
imum inhibitory concentrations (MICs) or minimum bactericidal
concentrations (MBCs) for bacteria, respectively) in food systems.

The physiological state of target microorganisms in foods is
also likely an important factor affecting the in situ efficiency of
many antimicrobials: most in vitro antimicrobial activity assays
are performed with microorganisms in an optimal environment
without any limiting substrates to allow their exponential growth,
which is not the case in real foods.

Some phenolic-containing aqueous plant extracts that have
exhibited a broad antimicrobial spectrum (among those that were
non-toxic and had a relatively limited odor and taste) and that
have already been used for direct incorporation in foods or in food
packaging materials in the past 15 years are listed in Table 2.

Stability of plant polyphenols
Polyphenol stability is a crucial property for application in food
systems and is a function of several factors, such as size, chemical
structure, water solubility and polarity. Recently, nutrition has
become a tool to promote human health, and maximal knowledge
of the effects of treatment processes is essential for maintaining
the functions of plant biomolecules not only as food preservatives
but also as compounds of nutritional interest.72

For the application of phenolic compounds for food preserva-
tion, they have to be stable until the expiration date of the prod-
uct to which they were added. However, polyphenols are relatively
unstable when directly applied in foods. The stability of such com-
pounds in food systems can be attributed to a series of stabilities:
physical, chemical, colloidal, and biological, which are correlated
with each other.159

Co-extrusion of a linear low density polyethylene (LLDPE)-based
film blended with grape seed extract (10 g kg−1) in a twin-screw
extruder with a barrel temperature ranging from 160 to 190 ∘C
resulted in a strong reduction in the antimicrobial activity of
the extract.160 Conversely, a polyethylene-based film blended
with pomegranate peel extract (15 g kg−1) and produced by the
same process demonstrated good antimicrobial activity in another
work.161

Polyphenol stability in solution depends on environmental fac-
tors (e.g. pH, electrolyte composition, and presence of oxidants).
The instability of phenolic compounds can occur at pH 1–11,







favorable for oxidative degradation, complex formation and
reactions with other phenols, amino acids, proteins, and metal
ions.162,163 However, pH changes may induce new structures and
colors of phenolics (the red wine pigment malvidin 3-glucoside
may change from red at pH 1 to colorless at pH 4–5, to purple at
pH 6–7, and to yellow at pH 7–8 163).

The OH groups located on the benzene ring of phenolic com-
pounds are often involved in responses to pH variations. Ultra-
violet spectral monitoring allowed Friedman and Jurgens163 to
observe that in contrast to caffeic, chlorogenic and gallic acids
(with two or three OH groups attached to the benzene ring), con-
jugated non-phenolic aromatic acids such as trans-cinnamic acid
without any OH groups are stable at high pH (pH 11).

Other structural criteria play a role in promoting the complex-
ation of phenolics with other solutes at high pH values and thus
induce their instability. For instance, more complex phenolics with
multiring aromatic structures such as catechin, epigallocatechin,
and rutin have ionized and resonance forms that are more resis-
tant to degradation by pH than monocyclic compounds.163 The
number of OH groups located on the benzene ring can indicate
the ability of phenolics to form quinone oxidation products. Fer-
ulic acid with no more than one OH group is stable at high pH (pH
7–11), whereas caffeic acid is unstable to pH variations because
of the two adjacent phenolic OH groups on the benzene ring.163

Not only the number of OH groups but also their presence on
the same or separate aromatic rings and their position (meta- or
ortho-position) affect the ability of phenolics to interact with each
other via conjugation or quinone formation. The spatial arrange-
ment of OH groups is reported to influence the stabilities to pH
variations.163,164

The phenolic acids caffeic acid, chlorogenic acid, and gallic acid
have been found to be irreversibly affected by high pH values.163

Conversely, an acidic pH had no effect on chlorogenic acid stability
after inclusion in apple juice. Other phenolics, such as (−)-catechin,
(−)-epigallocatechin, ferulic acid, rutin, and trans-cinnamic acid,
may resist pH-induced degradation.163 Concerning anthocyanins,
it is well known that variations in pH significantly influence their
stability and color.163

Curcumin is primarily used as a food additive (coloring agent:
E100 (i)), but it is increasingly considered a multifunctional
bioactive molecule. Interestingly, glycosylated165 or amino
acid-conjugated166 curcumin have shown similar antibacterial,
antioxidant and antimutagenic activities as pure curcumin, so such
chemical modifications did not affect the earlier mentioned bioac-
tive properties of curcumin. However, microcapsules of curcumin
(prepared with gelatin and porous starch by the spray-drying
method) have better solubility and stability than free curcumin
along with similar antibacterial and antifungal activities.167

Colloidal stability is defined as the ability of polyphenols to
maintain a homogeneous dispersion in food matrices under var-
ious storage conditions. The stability of polyphenols added to
complex food matrices can be predicted based on information
on various interactions that can occur with surrounding compo-
nents present in foods. Repulsive forces among charged groups
may prevent polymerization and aggregation of these active com-
pounds. Through the choice of the appropriate formulation of
phenolic extracts, the formed electrostatic repulsive forces may
thus increase the stability of the system once incorporated into the
foods.

Biological stability includes the ability of polyphenols to pre-
serve their antioxidant and antimicrobial properties after process-
ing and for long-term storage under the same conditions. Room

or refrigerated temperatures are the environmental conditions
in which polyphenol activities are usually evaluated. To preserve
their bioactivity, polyphenols can be freeze-dried. Many bioac-
tive molecules can undergo chemical degradation, isomerization
or polymerization during harsh food processes such as baking,
steaming and extrusion, thereby possibly inducing a loss of their
activities.101

When incorporated into food matrices, phenolic compounds
may be subjected to temperature variations. The matrix nature
is the most influential factor in the thermal stability of botanical
compounds in foods. Normally, phenolic compounds with higher
melting temperatures are more stable to heat processing, but the
effect of heat can be more pronounced in the presence of other
food ingredients. A pure aqueous solution of chlorogenic acid
(207–209 ∘C melting temperature) has been found to be stable
to heat treatment (1 h at 90 ∘C)163, while the loss (leaching out or
decomposition) of chlorogenic acid heated (30 min at 100 ∘C or
18 min at 121 and 204 ∘C) in the presence of food constituents
was reported by other authors.168,169 Heat-treated (100 ∘C, 15 min)
drumstick leaf extracts showed a significant decrease in their
antioxidant activity compared to that of untreated samples. In
contrast, the antioxidant activity of carrot tuber extract was not
affected by the same heat treatment.170 In some cases, heat treat-
ment (105 ∘C, 20 min) induced the formation of new molecules,
which either reduce, preserve or even improve the antimicrobial
activity of different plant extracts.171,172 For instance, new pheno-
lics with low molecular weights were found in heated grape seed
extracts.173 However, it was reported that the polyphenol con-
tent of foods decreases in response to thermal processing and
long-term storage.174,175 The thermal stability of polyphenols in
apple juice was studied by Spanos et al.176 and van der Sluis et al.177

Cinnamic acid, procyanidin and quercetin contents have been
found to decrease when apple juice was stored at room tempera-
ture. Compared to freeze-dried grape seeds, grape seeds that were
heat-dried at 100 and 140 ∘C exhibited 18.6% and 32.6% decreases
in total polyphenols, respectively.178 Heating at 60 ∘C or above for
8 h dramatically reduced the procyanidin and anthocyanin con-
tents in freeze-dried grape pomace.179

Some studies have suggested heat-stable plant extracts
that could be used as food preservatives, such as cinnamon
in cookies;180 Garcinia extract;181 grape, amla, and drumstick
leaf extracts182 in biscuits; and mango fiber concentrate (with
16.1 mg g−1 of soluble polyphenols) in bread and cookies.183

Successful food product development is deeply based on the
nature of the interactions that may occur between the ingredi-
ents of food.101 A strong interaction between grape seed pro-
cyanidins and proteins leads to the formation of protein–tannin
aggregates. The molecular weight and polymerization degree of
procyanidins increase this aggregation.184 Carvalho et al.185 indi-
cated that this type of binding is influenced by the protein prop-
erties (molecular size, hydrophobicity and structural flexibility), the
polyphenol properties (degree of polymerization, extent of galloy-
lation, structural flexibility) and environmental factors (tempera-
ture, pH, ionic strength, presence of organic solvents and presence
of carbohydrates). Since the astringent taste of polyphenol-rich
fruits and vegetables,106 haze in beverages186 and the bioavailabil-
ity reduction in both food protein and polyphenols118,187 depend
on tannin–protein interactions, these interactions are the most
studied polyphenol–protein interactions. Some studies have used
bovine serum albumin, while others used 𝛼-lactalbumin.188

The storage of polyphenols for a long time under specific
environmental conditions such as high temperature and light



exposure could seriously affect their chemical and physical stabil-
ities. With respect to long-term storage, two phenomena must be
considered in food systems: (i) the polyphenol components may
be altered by oxidation, and (ii) the physical structure of polyphe-
nols may be influenced by polymerization. Normally, oxidative
damage is hardly a problem in practice, but it can be minimized
by protection from light and air using an inert atmosphere as a
preventive measure to maintain the effective biological activity of
compounds.

Reducing sugars189 or different carbohydrates190 (e.g. trehalose)
are commonly used as antioxidants in foods. Komes et al.190

showed that due to its glass transition property, trehalose can
retain and preserve hydrophobic phenolic compounds of fresh
fruits during dehydration processes.

Other phytochemicals and antioxidants intentionally introduced
to a food system may help to stabilize polyphenols.72 Vitamin C
added to processed yellow passion fruit exerted a protective effect
on plant chemicals.191 Red clover leaf extracts were demonstrated
to make anthocyanins more stable when added to muscadine
wines during storage (20 and 37 ∘C for 9 weeks).192 Lecithin addi-
tion to tea catechin solution at acidic pH and room temperature
has the ability to protect tea catechins from oxidative damage.193

High-performance liquid chromatography (HPLC) coupled with
mass spectrometry (MS) analysis is usually used to assess the
stability of polyphenols (e.g. molecular structure and quantity).194

Quantitative structure–activity relationship (QSAR) studies
can be used to predict and determine the extract formulations
that would be more stable in different food matrices. Indeed,
the QSAR approach has already been used to determine the
structure–reactivity and structure–antimicrobial activity relation-
ships of phenols under different conditions by evaluating different
parameters.195 In this way, QSAR analysis can provide information
on how interactions between phenolics or with other molecules
(proteins, lipids, oxygen, etc.) modulate their antimicrobial activity.

Release of plant polyphenols from active edible coatings or
packaging materials to foods in direct contact
To alleviate the deficiencies in using plant phenolic compounds
in foods, polyphenols can be added to the immediate zone
of foods in direct contact through slow release from edible coat-
ings or packaging materials. Such systems could maintain an
efficient concentration of antimicrobial plant phenolics in the
superficial zone of foods over time. This approach could be advan-
tageous for foods such as raw muscle foods (fish fillets, meat
pieces) or some fruit and vegetables for which most microbial con-
tamination occurs in their superficial zone. One advantage of edi-
ble coatings or food-contact packaging materials with antimicro-
bial plant phenolics over their direct spraying is their controlled
release over time. Various studies on the use of active films and edi-
ble coatings to deliver antimicrobial agents to the surface of a
wide range of foods in contact (fruit, vegetables, and meat prod-
ucts) have been conducted.196,197 The delivery of phenolic com-
pounds from edible coatings is mainly described as a sequence
of material transfer movement starting with diffusion, followed by
desorption from the film’s or coating’s surface, sorption of the com-
pounds at the interface and finally sorption into the food.198–203 It
has been acknowledged that the delivery rate of bioactive com-
pounds from films or edible coatings to food is faster when the
release is a consequence of their swelling or dissolution, which
is conditioned by the nature of the food matrix in direct contact
and the polymer matrix of film or coating.200 Furthermore, the

time and temperature of contact,204 the polymer matrix (promot-
ing or no interaction) with phenolics via functional groups,199,201,203

the properties (chemical structure and polarity)200 of the phe-
nolic compounds (migrating substances), and their contents in
the edible films have been reported to affect the migration rate
through coatings to foods in contact.198,199,202,205 Additionally, the
microstructure of the polymer matrix206 and the way in which the
phenolic compounds are oriented with respect to the food based
on their hydrophilic or hydrophobic properties strongly affect their
migration and thus their effectiveness in protecting foods in con-
tact. Edible coating or active packaging design should thus exploit
the possibility of tuning the physicochemical interactions between
antimicrobial plant phenolics and the polymers, which are the
main components of edible coatings/packaging materials, to con-
trol their release kinetics. Another potential advantage of edible
coatings/packaging materials incorporating antimicrobial plant
phenolics is their increased stability to oxidation in these poly-
meric matrices. Packaging materials made of edible biopolymers
combined with natural antimicrobials are favorable for making
foods safer and of higher quality.201 The association of antimicro-
bial agents with edible coatings has thus increasingly been consid-
ered a favorable approach to increase the shelf life and/or enhance
the safety of perishable foods in recent decades. This trend is
illustrated by the increase in the proportion of articles on edible
coatings that also consider antimicrobials in the Web of Science®
database from 0% before 1994 to 25% since 2010.

Edible coatings/films incorporating antimicrobial plant polyphenols
Edible coating/film formulations are based on only food ingredi-
ents and additives. On the one hand, an edible coating is described
as a thin layer of edible material formed directly on the super-
ficial zone of a food that can be consumed with the food prod-
uct. To prepare edible coatings, film-forming suspensions can be
applied to foods by various processes, as reviewed by Andrade
et al.207 (e.g. panning, fluidized bed, dipping, spraying). A sub-
sequent draining of excess film-forming suspension and drying
are necessary following the dipping of food products. On the
other hand, stand-alone edible films may be prepared by either
solvent-casting or extrusion-blowing methods. Cast films can be
prepared by pouring a film-forming suspension on a flat substra-
tum, which is subsequently dried. Most edible films are prepared
using this versatile technology at the laboratory scale. However, at
the industrial scale, most food packaging plastic films are prepared
by extrusion-blow molding. Edible films can also be prepared with
this technology.208

Edible coatings/films provide a barrier to gaseous exchange
as well as the transmission of moisture, flavors and other solu-
ble constituents of processed products when manipulated and
stored, thereby enhancing their shelf life.209 The use of edible coat-
ings/films as vectors of bioactive molecules can ensure their avail-
ability to act effectively at their site of action.210 Incorporation into
edible coatings/films is a good alternative to preserve bioactive
compounds such as antimicrobial phenolics in foods. Bioactive
compounds can be incorporated (i) on the external surface of the
film, (ii) on the internal surface of the film, (iii) in the multilayers of
the edible coatings, or (iv) in different parts of the film.26

Zein, whey proteins, caseinates, soy proteins, chitosan, alginate,
carrageenan, pullulan, pectin, cellulose, and its derivatives are
examples of biopolymers that have been used to prepare edible
films and coatings.211–219 These coatings and films can delay food
spoilage due to their gas barrier properties, their intrinsic activity



(e.g. the antifungal activity of chitosan) or the antimicrobial com-
pounds added to their formulation. Therefore, in addition to the
biodegradability of these natural biopolymers, such films and coat-
ings are considered environmentally friendly since they could con-
tribute to food waste reduction.

Recent studies dealing with the incorporation of antimicrobial
plant extracts into edible films and coatings are listed in Table 3.
The incorporation of such compounds into films may enhance
their antimicrobial activity;231 the uptake of a sufficient quantity of
phytochemicals on the surface of foods over time could be made
possible by their gradual release through the film.58

In the literature, antimicrobial packaging acts primarily on
foodborne pathogenic bacteria such as Listeria monocytogenes,
Staphylococcus aureus, Escherichia coli O157:H7, and Salmonella
spp.232–234 However, food spoilage microorganisms such as
Bacillus spp. and Lactobacillus spp. could also be targeted228 to
increase perishable food shelf life and/or contribute to food waste
reduction.

The release of antimicrobials from the edible coatings depends
on many attributes, such as electrostatic (ionic and hydrogen
bonds) and hydrophobic interactions between antimicrobials
and polymers, osmosis, structural modifications of the polymeric
matrix resulting from the presence of the antimicrobial agents,
and the surrounding conditions (temperature, pH).71

Coatings may be used as a system for releasing antimicrobial
phytochemicals over time on a wide range of food surfaces (e.g.
vegetables, fruit, and meat products).71 Rapeseed protein/gelatin
coatings containing grape seed extract have been used to inhibit
Escherichia coli O157:H7 and Listeria monocytogenes growth in
strawberries.235 Edible zein coatings applied to fruit and vegeta-
bles have been found to have a protective effect during storage (by
controlling their respiration, ripening, and senescence).201 Some
phenolic acids (gallic, vanillic, and cinnamic acids) and extracts
from clove, oregano, artichoke stems and walnut shells were
assessed as antimicrobial zein film additives against four plant
pathogenic bacteria.201 The incorporation of phenolic compounds
(10–40 g m−2) into zein films was shown to improve the porosity of
films, which became more flexible and lost their brittleness.

Chitosan-coated films incorporated with green tea extract
(40 g kg−1) had bactericidal activity against Listeria monocyto-
genes in ham steak for 8 weeks of storage at 4 ∘C.236 In a more
recent study, incorporation of green tea extract (5–10 g L−1) con-
siderably enhanced the antifungal activity of chitosan coatings
on fresh walnut kernel; fungal growth was not detected during
18 weeks of storage at room temperature.237

Food packaging materials incorporating antimicrobial plant
polyphenols
Although conventional plastic packaging raises environmental
concerns and its current use in direct contact with foods is highly
regulated, many studies regarding active food packaging con-
sider polyethylene or polypropylene and their derivatives due
to their excellent physical and chemical characteristics.161,238,239

Such active packaging falls under the scope of the EC 450/2009
regulation.240

At the industrial scale, there are two possible processes for
including antimicrobials in packaging materials: (i) direct incorpo-
ration into the polymers during extrusion by melt-blending241 and
(ii) coating of the antimicrobial agents onto polymer surfaces.242,243

Extrusion is preferred by manufacturers because of the high cost
of the coating process (additional steps and technical changes).244

However, additional costs may also result from the degradation

of actives during extrusion processes operating at high temper-
ature, which would have to be compensated for by the addition
of a higher amount of active ingredients.241 Moreover, the fact
that antimicrobials are equally spread throughout the entire thick-
ness of films made by extrusion can lead to limitations in their
release from the packaged material and therefore lower in situ
activity.241 Therefore, in addition to the question of the stability
of antimicrobial plant phenolics to the conditions prevailing dur-
ing melt blending with the polymer (high temperature and shear
stress), the transport properties of the plant phenolics once incor-
porated into the polymeric matrix of the packaging material also
must be considered. The amount of plant phenolics released and
their release kinetics should effectively inhibit the multiplication of
unwanted microorganisms in the superficial zone of food.

Adequate analytical methods to assay plant phenolics in active
food packaging materials and monitor their release in food matri-
ces in direct contact should thus be developed. Therefore, Colon
and Nerin245 developed a method to quantify tea compounds
released from a polyethylene terephthalate (PET) film with an
internal coating layer containing green tea extract to IV gamma
nectarines placed in a tray covered by this active film. Solid-phase
extraction (SPE) combined with ultra-performance liquid chro-
matography (UPLC)-MS was used to check that the amounts
of catechins and caffeine from the green tea extract delivered
by the packaging material were below the migration limits of
10 μg per kg of nectarine. In agreement with the European Union
(EU) regulations for food-contact materials (EU 10/201198 and EC
450/2009240), all components not available in the positive lists of
the regulations introduced and not specifically recognized as a
food additive, such as catechins and caffeine, must be below 10 μg
per kg of food or food simulant. The ability of packaging films
composed of cast polypropylene/polyvinyl alcohol incorporated
with rhubarb ethanolic extracts and cinnamon essential oil to pre-
serve the quality of fresh beef was investigated. Interestingly, all
the experimental cast films used significantly decreased the total
viable counts (TVCs).246 However, as stated earlier, preparation of
cast films by solvent evaporation, despite likely limiting essen-
tial oil loss by evaporation during the preparation of stand-alone
films, is not the preferred method. In another study, 15 g kg−1

pomegranate peel extract was blended with polyethylene resin
by twin-screw extrusion at 160–190 ∘C to obtain active films.161

A decrease in total volatile basic nitrogen (TVB-N) was observed
during refrigerated storage of fresh pork meat packaged in these
active films. The shelf life of the fresh pork meat was thus extended
by 3 days. Interestingly, this result suggests that pomegranate peel
extract still had significant antimicrobial and antioxidant activi-
ties following its incorporation by extrusion in polyethylene films.
Despite its promise, this type of practice is still in its infancy.247,248

CONCLUSION
The in vitro antibacterial activity of many phenolic-rich plant
extracts and pure plant phenolics has been reported in this review.
Although their activity in perishable foods is often reduced or even
lost, numerous examples of plant extracts or phenolics effectively
preventing microbial contamination or degradation of foods are
given. Since no pure plant phenolics are authorized as food preser-
vatives, only direct incorporation of edible plant extracts (i.e. food
ingredients) into perishable foods can be considered currently.
In addition to direct incorporation into perishable food matrices,
incorporation into the polymeric matrix of either food packaging
materials or edible coatings is a promising approach to deliver





active plant phenolics to the immediate zone of foods in direct
contact. However, again, due to the absence of active plant pheno-
lics from the positive list of food preservatives and the legislation
regarding active food packaging, only the application of edible
coatings made of biopolymers with a food ingredient or additive
status and edible plant extracts with a food ingredient status can
be considered today. In addition to evaluation of some plant phe-
nolics as new food preservatives, future research on building a
rationale for the application of phenolic-rich plant extracts or phe-
nolics for food preservation should specifically focus on (i) identi-
fying the molecular mechanisms underlying their ability to control
unwanted microorganisms, (ii) understanding the effect of food
microstructure and composition on their antimicrobial activity and
(iii) designing innovative and sustainable systems of delivery of
active phenolics preserving their stability before use and favoring
their controlled release in the superficial zone of perishable foods
where postprocessing microbial contamination mainly occurs.
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