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Abstract

Being confounding factors, directional trends are likely to make two quantitative traits appear as
spuriously correlated. By determining the probability distributions of independent contrasts when
traits evolve following Brownian motions with linear trends, we show that the standard independent
contrasts can not be used to test for correlation in this situation. We propose a multiple regression
approach which corrects the bias caused by directional evolution.

We show that our approach is equivalent to performing a Phylogenetic Generalized Least Squares
(PGLS) analysis with tip times as covariables by providing a new and more general proof of the
equivalence between PGLS and independent contrasts methods.

Our approach is assessed and compared with three previous correlation tests on data simulated
in various situations and overall outperforms all the other methods. The approach is next illustrated
on a real dataset to test for correlation between hominin cranial capacity and body mass.

Keywords: directional evolution; correlation tests; Brownian motion; independent contrasts.

1 Introduction

Testing for correlation between two traits is a natural question which has been widely studied, notably
in a comparative biology context (Groussin and Gouy 2011; Marchini et al. 2014; Grabowski et al. 2015;
Will et al. 2017; Zhao et al. 2017). Correlation tests may concern any kind of traits: phenotypic, genetic
or other. For instance, Seligmann (2018, 2019) observed a correlation between the syntheny level of
poxviruses with amoeban mitogenome and their genome size. Assessing the correlation between two
traits measured on several species cannot be performed by directly computing the Pearson correlation
coefficient on the traits values since these values are not independent but related through the evolutionary
relationships of the species involved (Diaz-Uriarte and Garland 1996). This point raises questions about
how to interpret a correlation between two traits in a phylogenetic context. Actually, since all the
observed taxa are assumed to have evolved from a single ancestral taxa, stating that two traits shared
by the taxa are correlated can have only one significance, which is that the respective evolutions of these
traits are correlated one with the other (Harvey and Pagel 1991). Assumptions about traits evolution
are thus essential in order to disentangle the dependency structure of their extant values, and eventually
to be able to study their correlation by correcting biases due to their evolutionary relationships (Martins
and Garland 1991; Garland and Adolph 1994; Diaz-Uriarte and Garland 1996; Martins 1996; Oakley and
Cunningham 2000).

A widely used approach for testing correlation between traits on a phylogenetic tree is the independent
contrasts method of Felsenstein (1985) which extracts independent quantities from the tip values of the
traits in order to estimate their correlation. The rationale behind this approach is that if two traits
follow two correlated Brownian motions then their matched independent contrasts are realizations of
independent and identically distributed pairs of Gaussian random variables correlated with the same
correlation as the Brownian motions. Therefore, testing for correlation through independent contrasts
is perfectly founded if one assumes that the two traits to compare follow Brownian motions along the
phylogenetic tree, thus a neutral evolution for both of them (Felsenstein 1988). A strongly related
method, called Phylogenetic Generalized Least Squares (PGLS, Grafen 1989) addresses the same question
in an equivalent way. We extend and give formal proofs of results about the equivalence between
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independent contrasts and PGLS methods for regression analysis stated in Garland and Ives (2000);
Rohlf (2001); Blomberg et al. (2012).

Both independent contrasts and PGLS approaches make the strong assumption that evolution of the
considered traits is neutral. There are many situations where this assumption is not granted, for instance
when evolution is driven by ecological pressures. Arnold and Moncrieff (1994) showed that several lizard
species developed the same discrete traits in approximately the same order when adapting to a same
environmental condition. In the same way, quantitative traits may evolves toward optima or following
a general trend. This type of non-neutral evolution, referred to as adaptative and directional evolution,
cannot be modeled by using standard Brownian processes. Adaptation, i.e., evolution toward optima,
is generally modeled with Ornstein-Uhlenbeck processes or more complex models (Cressler et al. 2015).
For instance, Hansen et al. (2008) consider traits evolving according Ornstein-Uhlenbeck processes with
optima which themselves evolve following a Brownian process. Directional evolution is generally modeled
with arithmetic Brownian motions, i.e., Brownian process with linear trends. Note that after a change in
the optimum during the adaptation process, traits under selection may look under directional evolution
until getting close to their new optima. In this work, we focus on the directional evolution case. More
precisely, we address the question of how to detect correlation between two traits when at least one of
them is under directional evolution. Among the numerous examples of evolutionary tendencies in the
evolution of phenotypic or genetic traits, Cope’s rule, which predicts that the body size of species tends
to increase over evolutionary time, has gained considerable empirical support (Kingsolver and Pfennig
2004; Van Valkenburgh et al. 2004; Hone and Benton 2005; Hone et al. 2005; Hunt and Roy 2006; Bokma
et al. 2016). Beside the Cope’s rule, there are strong evidence that traits of some clades have evolved
following trends at certain periods. For instance, there are evidence of increase in the Mysticetes body
size (Slater et al. 2010) and in the microsatellite size in Maize (Vigouroux et al. 2003). Last, insular
dwarfism and gigantism phenomena provide numerous examples of directional evolution (Lomolino 2005).
We emphasize that an evolutionary tendency in increasing or decreasing the body size of species implies
that most of their morphological measures follow the same trend, and would be systematically tested as
significantly correlated (Yule 1926; Entorf 1997; Deng 2015).

In order to study the correlation between traits under directional evolution, we first determine the
probability distribution of the independent contrasts of a trait which evolves following a Brownian motion
with a linear trend. The form of these distributions shows that testing for correlation between two traits
under directional evolution through independent contrasts makes no sense. We propose an alternative
approach based on a multiple regression which includes time as explanatory variable in order to correct
the bias due to a linear trend. We show that our approach is equivalent to performing a PGLS analysis
by adding the tip times as covariable in the regression.

A previous approach to correct the trend effect on the independent contrasts and to test for correlation
between traits under directional evolution was proposed in Elliott (2015). Its general idea is to “center”
the independent contrasts with regard to the trend (this method is detailed below). A thorough study
of the Elliott’s (2015) approach shows that it does not satisfy the regression assumptions. Note that if
the phylogenetic tree supporting the evolution of the traits is ultrametric, our new method and that of
Elliott (2015) are both equivalent to the independent contrasts method.

We simulated evolution of correlated and uncorrelated quantitative traits with and without trend
on hominin phylogenetic tree in order to assess and to compare our new correlation test and three
previous ones, namely the standard correlation test on the tips values of the traits, the correlation
between independent contrasts of Felsenstein (1985) and that between the directional contrasts proposed
by Elliott (2015). Simulation results shows that the new test is the most accurate as soon as one of
the traits is under directional evolution. Despite its statistical flaws, the approach suggested by Elliott
(2015) performs almost as well as our approach.

Last, the approach was applied on a real dataset in order to test for correlation between the logarithms
of hominin body mass and cranial capacity, among which the logarithm of cranial capacity shows a
significant positive trend. Our test concluded to a significant correlation between the logarithms of these
two traits.

R-scripts implementing the correlation tests and the simulations performed for this work are available
at https://github.com/gilles-didier/Correlation.

The rest of the paper is organized as follows. The independent contrasts and their distributions when
traits follow Brownian motions with linear trends are presented in Section 2. Section 3 recalls three
previous correlation tests on phylogenetic data and introduces a new one based on a multiple regression
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between independent contrasts which includes time as explanatory variable. The four correlation tests
are assessed and compared on simulated data in Section 4. Last, our test is applied to check correlation
between hominin cranial capacity and body mass in Section 5.

2 Independent contrasts

2.1 Phylogenetic trees - Notations

In all what follows, we assume that the evolutionary history of the species is known and given as a rooted
binary phylogenetic tree T with branch lengths. Our typical tree T contains 2n+ 1 nodes among which
n are internal nodes. According to the Felsenstein’s (1985) convention, the nodes are indexed in the
following way:

• index 0 for the root,

• indices 1 to n− 1 for the other internal nodes,

• indices n to 2n for the tips.

For all nodes k, we put

• r(k) and `(k) for the two direct descendants of k, if k is an internal node,

• a(k) for the direct ancestor of k, if k is not the root,

• vk for the length of the branch ending at k,

• tk for the (absolute) time of k, which is the sum of the branch lengths of the path relying the root
to k (both included), and

• zk for the value of the trait at node k, which is defined only if k is a tip.

2.2 Felsenstein’s (1973) algorithm

Independent contrast were introduced in Felsenstein (1973) in order to compute the probability of the tip
values of a quantitative trait evolving on a phylogenetic tree under the assumption that this trait follows
a Brownian motion. This method extracts a series of realizations of independent Gaussian variables from
the tip values by iteratively considering differences between terminal sister taxa and by replacing them
with a single terminal taxa, while modifying the length of the branch that it ends and associating it
with an artificial trait value computed from those of the two terminal sister taxa. Namely, the method
recursively computes a new branch length vk and an “artificial” trait value zk for all nodes k of T in the
following way.

Definition 1 (Felsenstein 1973). Let T be a phylogeny and (zk)n≤k≤2n be the values of a quantitative
trait only known at the tips of T . Under the notations of Section 2.1 and for all nodes k of T , the
quantities vk, zk are recursively defined as

vk =


vk if k is a tip,

vk +
vr(k)v`(k)

vr(k) + v`(k)
otherwise, and

zk =


zk if k is a tip,
v`(k)zr(k) + vr(k)z`(k)

vr(k) + v`(k)
otherwise.

For all internal nodes k of T , the (standardized) independent contrast uk is then defined as

uk =
zr(k) − z`(k)√
vr(k) + v`(k)

.

Contrasts can be computed thanks to the pic function in the ape R-package (Paradis et al. 2004).
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2.3 Independent contrasts as random variables

By construction, under an evolutionary model for quantitative traits, the tips values (zk)n≤k≤2n are
realizations of random variables Zn, . . . , Zn. In this context, the artificial trait values (zk)0≤k≤2n com-
puted during the independent contrasts procedure are also realizations of random variables which can
be expressed from Zn, . . . , Zn and so are the independent contrasts.

Definition 2. Let (Zk)n≤k≤2n be the random variables associated to the tip values of a trait. For all
nodes k of T , the random variable Zk is defined as

Zk =


Zk if k is a tip,
v`(k)Zr(k) + vr(k)Z`(k)

vr(k) + v`(k)
otherwise.

And for all internal nodes k of T , the random variable Uk is defined as

Uk =
Zr(k) − Z`(k)√

vr(k) + v`(k)
.

In plain English, for all nodes k, the random variable Zk corresponds to the value associated to k by
the computation presented in Definition 1. In the same way, for all internal nodes k, the contrast uk is
a realization of the random variable Uk.

As evolutionary models of traits, we shall consider below either the Brownian Motion (BM) model or
the Brownian Motion with linear trend, also known as the Arithmetic Brownian Motion (ABM) model.
Namely, the ABM model with parameters (x0, µ, σ

2), i.e., initial value x0, trend µ and variance σ2, is
the process (Xt)t>0 defined as

dXt = µdt+ σdWt and X0 = x0,

where (Wt)t>0 is the Wiener process (Grimmett and Stirzaker 2001). For all times t and s, the increments
Xt+s −Xt are independent Gaussian random variables with law N

(
µs, σ2s

)
.

Since a BM model is nothing but an ABM model with trend parameter µ = 0, we shall write results
and properties in the ABM case only. Basically, any property or result granted for ABM also holds for
BM.

The ABM process with parameters (x0, µ, σ
2) running on the phylogenetic tree T starts at the root

of T with the value x0, then evolves independently on each branch of T by splitting at each internal
node into two independent and identical processes both starting from the value of the process at this
node and eventually ends at the tips of T . It allows to model traits under directional evolution, e.g.,
following the Cope’s rule (Kingsolver and Pfennig 2004; Van Valkenburgh et al. 2004; Hone and Benton
2005).

Theorem 3. Let (Zk)n≤k≤2n be the random variables associated to the tip values of a trait following
the ABM model with parameters (x0, µ, σ

2) on T . For all nodes k of T , the random variable Zk can be
written as

Zk = x0 + µ(tk + γk) + σ (Wtk + Ψk(W)) ,

where

γk =


0 if k is a tip,
v`(k)(γr(k) + vr(k)) + vr(k)(γ`(k) + v`(k))

vr(k) + v`(k)
otherwise, and

and Ψk(W) is a linear combination of increments of the form Wti −Wta(i)
, recursively defined as

Ψk(W) =

 0 if k is a tip,
v`(k)

(
Wtr(k)

−Wtk
+Ψr(k)(W)

)
+vr(k)

(
Wt`(k)

−Wtk
+Ψ`(k)(W)

)
vr(k)+v`(k)

otherwise.

For all internal nodes k of T , the random variable Uk can be written as

(1 )Uk = µhk +
σ√

vr(k) + v`(k)
Φk(W),
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where

(2 )hk =


0 if k is a tip,
vr(k) + γr(k) − v`(k) − γ`(k)√

vr(k) + v`(k)
otherwise, and

Φk(W) = (Wtr(k)
−Wtk) + Ψr(k)(W)− (Wt`(k)

−Wtk)− Ψ`(k)(W).

Random variables Ψk(W) and Φk(W) have Gaussian distributions N
(

0,
vr(k)v`(k)

vr(k)+v`(k)

)
and N

(
0, vr(k) + v`(k)

)
respectively.

Proof. Appendix A.

Corollary 4. Under the ABM model with parameters (x0, µ, σ
2), for all internal nodes k of T , the

independent contrast random variables Uk are independent from one another and Gaussian distributed
with

Uk ∼ N
(
µhk, σ

2
)
.

Proof. The proof of the independence of the independent contrasts under the ABM model follows the
same arguments as the proof of the same property in the BM case provided in Felsenstein (1973). The
form of the distribution of the independent contrasts is a direct consequence of Theorem 3.

Proposition 5. Let T be an ultrametric tree and T be the length of the path from the root to the tips.
For all nodes k of T , we have that γk = T − tk and hk = 0.

Proof. Appendix B.

2.4 Correlation and independent contrasts

Independent contrasts are mainly used in order to test for correlation between two quantitative traits
known only at the tips of a phylogenetic tree (Felsenstein 1985). The rationale behind this approach
is that if two quantitative traits follow two correlated Brownian motions then their standardized inde-
pendent contrasts are realizations of independent and identically distributed pairs of Gaussian random
variables with the same correlation as the correlated Brownian motions. The transpose of a matrix or a
vector D is noted D′.

Definition 6. Let (XA
t )t≥0 and (XB

t )t≥0 two ABM models with parameters (xA0 , µA, σ
2
A) and (xB0 , µB , σ

2
B)

respectively and let (WA
t )t≥0 and (WB

t )t≥0 be two Wiener processes such that

XA
t = xA0 + µAt+ σAW

A
t and XB

t = xB0 + µBt+ σBW
B
t .

The processes (XA
t )t≥0 and (XB

t )t≥0 are correlated with correlation coefficient ρ if for all t ≥ 0, the
random vector (WA

t ,W
B
t )′ has covariance matrix tΣ where

Σ =

(
1 ρ
ρ 1

)
.

Any pair of Wiener processes (WA
t ,W

B
t )t≥0 with correlation matrix Σ can be obtained from two

independent Wiener processes (W̃A
t )t≥0 and (W̃B

t )t≥0 by applying the Cholesky decomposition on their
covariance matrix Σ (Gupta 2013). Namely, by decomposing Σ as Σ = LL′ where

L =

(
1 0

ρ
√

1− ρ2

)
,

the random vector (WA
t ,W

B
t )′ = L(W̃A

t , W̃
B
t )′ has covariance matrix Σ.

In sum, two ABM processes (XA
t )t≥0 and (XB

t )t≥0 with parameters (xA0 , µA, σA) and (xB0 , µB , σB)
are correlated with correlation coefficient ρ if and only if they can be written as

XA
t = xA0 + µAt+ σAW̃

A
t and XB

t = xB0 + µBt+ σB(ρW̃A
t +

√
1− ρ2W̃B

t ),

where (W̃A
t )t≥0 and (W̃B

t )t≥0 are two independent Wiener processes.
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Theorem 7. Let (XA
t )t≥0 and (XB

t )t≥0 be two ABM processes running on T with parameters (xA0 , µA, σ
2
A)

and (xB0 , µB , σ
2
B) respectively and (ZAk )n≤k≤2n and (ZBk )n≤k≤2n be the random variables associated to the

values of these processes at the tips of T . The processes (XA
t )t≥0 and (XB

t )t≥0 are correlated with corre-
lation coefficient ρ if and only if for all internal nodes k of T , the independent contrast random variables
UAk and UBk computed from (ZAk )n≤k≤2n and (ZBk )n≤k≤2n are correlated with correlation coefficient ρ.

Proof. Let us assume that the ABM processes (XA
t )t≥0 and (XB

t )t≥0 of parameters (xA0 , µA, σ
2
A) and

(xB0 , µB , σ
2
B) respectively are correlated with correlation coefficient ρ. It is equivalent to say that there

exist two independent Wiener processes (W̃A
t ) and (W̃B

t ) such that

XA
t = xA0 + µAt+ σAW̃

A
t and XB

t = xB0 + µBt+ σB(ρW̃A
t +

√
1− ρ2W̃B

t ).

By applying Equation 1 of Theorem 3 to XA
t and XB

t , we then have that for all internal nodes k, the
independent contrast random variables UAk and UBk can be written as

(3)UAk = µAhk +
σA√

vr(k) + v`(k)
Φk(W̃A), and

(4)UBk = µBhk +
σBρ√

vr(k) + v`(k)
Φk(W̃A) +

σB
√

1− ρ2√
vr(k) + v`(k)

Φk(W̃B).

Since Theorem 3 ensures that Var
(
Φk(W̃A)

)
= vr(k) + v`(k), it follows that

Cov
(
UAk , U

B
k

)
=

σAσBρ

vr(k) + v`(k)
×Var

(
Φk(W̃A)

)
= σAσBρ,

thus Cor
(
UAk , U

B
k

)
= ρ for all internal nodes k of T , which ends the proof.

3 Correlation tests

In practical situations, evaluating or testing for correlation between two random variables is performed
by considering a series of a certain number n of independent realizations of this pair of random variables.
Let us remark that sampling independently n times a pair of random variables is equivalent to draw
a joint sample of n independent and identically distributed pairs of random variables with the same
correlation between the random variables of all the pairs. Standard regression analysis can thus be
applied in this last case.

We emphasize the fact that performing a correlation test on a joint sample of n pairs of random
variables which are not identically distributed makes absolutely no sense, even if each pair has the same
correlation. Moreover, if we do not have independence between the pairs of random variables, then
assumptions required by correlation tests are violated.

Linear regression is a usual tool for studying the association between two variables. Statistic analysis
of regression requires additional assumptions, which are referred to as the key assumptions in Fox (2015),
namely the constancy of the error variance, the Gaussianity of the errors, their null mean, and their
independence. In the multiple linear regression, testing for correlation between the response variable and
one of the regressors is performed by testing the nullity of the corresponding regression coefficient. Under
the key assumptions, this test of nullity is based on the fact that, by assuming that the coefficient is
null, the ratio of the ordinary least squares estimate of this coefficient to its standard deviation follows a
Student distribution with a number of degrees of freedom equal to the difference between the number of
samples and the number of regressors (including the intercept if there is one, Fox 2015). In the case of the
simple linear regression with intercept, testing the nullity of the regression coefficient corresponding to the
slope is equivalent to performing a Pearson’s correlation test between the response and the explanatory
variables (Kendall and Stuart 1961, p985).

Let A and B be two traits, zA = (zAk )n≤k≤2n and zB = (zBk )n≤k≤2n be their tip-value vectors (of
dimension n+ 1) and uA = (uAk )0≤k<n and uB = (uBk )0≤k<n be the corresponding independent contrast
vectors (of dimension n) and 1 be for the vector with all entries equal to 1 (its dimension depending on
the context). Below, we shall present several ways of testing for correlation between A and B.
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3.1 Standard regression (SR)

The most basic way to test for correlation between two traits A and B is to consider the standard
Pearson’s correlation test obtained from the linear equation:

(5)zB = aSR1 + bSRzA + εSR,

which will be referred to as the SR method. In the SR method, the Pearson’s correlation test between
traits A and B amounts to testing for the nullity of the coefficient bSR.

Let [
âSR

b̂SR

]
=

([
1′

z′A

] [
1 zA

])−1 [ 1′

z′A

]
zB ,

be the vector of ordinary least square estimates of the coefficients aSR and bSR. The variance estimate of
bSR is σ̂2

SR(z′AzA)−1 where

σ̂2
SR =

(zB − âSR1 − b̂SRzA)′(zB − âSR1 − b̂SRzA)

n− 1

is the residual variance estimate. Under the key assumptions of the regression model, testing the nullity
of the coefficient bSR is performed thanks to the fact that if bSR = 0 then the ratio of the coefficient
estimate b̂SR to its standard error

√
σ̂2

SR(z′AzA)−1 follows a Student distribution with n − 1 degrees of
freedom. Unfortunately the key assumptions of the regression model are not granted here since entries
of the error vector εSR are not sampled from independent and identically distributed random variables
because of the evolutionary relationships between the species involved (Harvey and Pagel 1991). Though
one expects correlation tests with the SR method to be inaccurate in a phylogenetic context (except if
T is a star tree), the SR method is included in the study in order to be used as a basis of comparison.

3.2 Independent contrasts (IC)

The usual way to cope with the evolutionary dependency between the tip values of the traits is to consider
their independent contrasts (Felsenstein 1985), referred to as the IC method below, which is based on
the regression through origin between the independent contrasts according to the equation:

(6)uB = bICuA + εIC.

The IC method is widely used and has been assessed in several works (Grafen 1989; Martins and Garland
1991; Pagel 1993; Garland and Adolph 1994; Martins 1996; Diaz-Uriarte and Garland 1996). In the IC
approach, testing correlation between traits A and B amounts to testing for the nullity of the coefficient
bIC in the regression through the origin. The ordinary least square estimate b̂IC = (u′AuA)−1u′AuA of bIC
has variance σ̂2

IC(u′AuA)−1 where

σ̂2
IC =

(uB − b̂SRuA)′(uB − b̂SRuA)

n− 1
.

Under the key assumptions of the regression analysis, if bIC = 0 then the ratio of b̂IC to its standard
deviation follows a Student distribution with n− 1 degrees of freedom.

Testing for the nullity of bIC by using this property is theoretically founded if one assumes that
both traits A and B evolve following a BM model since Corollary 4 and Theorem 7 ensures that their
respective independent contrasts are realizations of independent and identically distributed centered
Gaussian random variables (UAk )0≤k<n and (UBk )0≤k<n with the same correlation as the two traits.
Putting ρ, σ2

A and σ2
B for this correlation and the variances of (UAk )0≤k<n and (UBk )0≤k<n, respectively,

and considering a Cholesky decomposition of their covariance matrix, we get that the random contrasts
UBk can be written as

UBk =
σBρ

σA
UAk + σB

√
1− ρ2Ek,

where the terms (Ek)0≤k<n are independent centered standard Gaussian variables. This shows that the
key assumptions of the regression analysis are well granted. The correlation between the independent
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Figure 1: Independent contrasts of two traits A and B simulated on the tree of Figure 2 under two
uncorrelated ABM models with trends µA = 0.5 and µB = 0.2 respectively.

contrast random variables (UAk )0≤k<n and (UBk )0≤k<n, thus between the traits A and B, can be assessed
by regression through origin between the contrast series (uAk )0≤k<n and (uBk )0≤k<n.

In the case where at least one of the two traits to compare follows an ABM model with a non-zero
trend, Theorem 7 still ensures that their respective independent contrasts are correlated with the same
correlation as the traits. Unfortunately, since from Corollary 4 their independent contrasts are no longer
identically distributed but depend on k (we have UAk ∼ N

(
µAhk, σ

2
A

)
and UBk ∼ N

(
µBhk, σ

2
B

)
with

hk 6= 0 in the general case), it makes no sense to test for their correlation through a joint sample.
Figure 1 illustrates how directional trends may make independent contrasts computed from two

uncorrelated traits look strongly correlated. This was expected since spurious correlations due to a
common dependency on a third factor is a classical phenomenon (Yule 1926; Entorf 1997; Deng 2015).

3.3 Directional contrasts (DC)

A first approach to correct the independent contrasts when at least one of the two traits to compare
evolves with a linear trend was proposed in Elliott (2015). The general idea of Elliott’s (2015) approach
is to center the independent contrasts in order to make them identically distributed. To this end, Elliott
(2015) defined the β-directional contrasts dk(β). The formal definition of the β-directional contrasts is
recalled in Appendix D in which we show that, for all internal nodes k, the β-directional contrasts dk(β)
of Elliott (2015) are equal to the β-centered contrasts ck(β) defined as:

ck(β) = uk − βhk,

which have a direct interpretation with regards to the formalism of Section 2.
Let us first remark that under an ABM model with trend µ, Theorem 3 ensures that the µ-centered/µ-

directional contrasts are well independent and identically distributed thus could be used in correlation
tests. Unfortunately, obtaining these corrected contrasts requires to have the trend parameter µ. More
exactly, for testing correlation between two traits A and B, their respective trends µA and µB have to be
known, but they are a priori unknown in practical situations. Elliott (2015) proposed to use instead their
estimates µ̂A and µ̂B (Equation C2) and to consider the correlation between the (estimated) directional
contrasts dAk (µ̂A) and dAk (µ̂B), where dAk (µ̂A) = uAk − µ̂Ahk and dAk (µ̂B) = uBk − µ̂Bhk for all internal
nodes k of T .

Regression between estimated directional contrasts will be referred to as the DC method. Namely,
by putting dA and dB for the vectors of directional contrasts (dAk (µ̂A))0≤k<n and (dAk (µ̂B))0≤k<n, it is
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based on the following linear equation:

(7)dB = aDC1 + bDCdA + εDC.

Let [
âDC

b̂DC

]
=

([
1′

d′A

] [
1 dA

])−1 [ 1′

d′A

]
dB ,

be the vector of ordinary least square estimates of the coefficients aDC and bDC and

σ̂2
DC =

(dB − âDC1 − b̂DCdA)′(dB − âDC1 − b̂DCdA)

n− 2
,

be the residual variance (vectors dA and dB have dimension n). Testing for correlation between traits
A and B amounts to testing for the nullity of the parameter bDC, which, under the key assumptions of
the regression model, is performed thanks to the fact that, by assuming that bDC = 0, the ratio of the
coefficient estimate b̂DC to its standard error

√
σ̂2

DC(d′AdA)−1 follows a Student distribution with n − 2
degrees of freedom.

Unfortunately, since the trends µ̂A and µ̂B are estimated from independent contrasts, the estimated
directional contrasts are neither independent, nor identically distributed under ABM models (Appendix
D). Applying standard correlation tests on estimated directional contrasts is not founded from a statistical
point view.

3.4 Multiple Regression (MR)

If traits A and B follows two ABM models (xA0 , µA, σ
2
A) and (xB0 , µB , σ

2
B) then, for all internal nodes k of

T , both independent contrast random variables UAk and UBk depend on the same explanatory variable hk
(Equation 1). As shown in Figure 1, this dependence on a common factor is likely to cause a systematic
correlation between the random variables UAk and UBk . Neutralizing this spurious correlation requires to
include the common explanatory variable hk in the regression (Yule 1926; Deng 2015). By combining
Equations 3 and 4, we get that

UBk =
σBρ

σA
UAk +

(
µB −

σBρ

σA
µA

)
hk +

σB
√

1− ρ2√
vr(k) + v`(k)

Φk(W̃B).

This suggests to consider the multiple regression through origin between contrasts by including hk as
co-variable, i.e., to consider the equation:

uB = bMRuA + cMRh + εMR, (8)

which will be referred to as the MR method. The multiple regression procedure is statistically sound

here since the entries of the error vector are sampled from random variables

(
σB

√
1−ρ2√

vr(k)+v`(k)

Φk(W̃B)

)
0≤k<n

which are independent and Gaussian distributed with mean zero and constant variance σ2
B(1−ρ2) under

the current assumptions. The vector of ordinary least square estimates of bMR and cMR is[
b̂MR

ĉMR

]
=

([
u′A
h′

] [
uA h

])−1 [ u′A
h′

]
uB ,

and the variance of the estimator of bMR is
√
σ̂2

MR(u′AuA)−1 where

σ̂2
MR =

(uB − b̂MRuA − ĉMRh)′(uB − b̂MRuA − ĉMRh)

n− 2
.

Equations 3 and 4 show that if traits A and B follows two ABM models (xA0 , µA, σ
2
A) and (xB0 , µB , σ

2
B)

with correlation ρ, the random contrasts UBk can be written as

UBk =
σBρ

σA
UAk +

(
µB −

σBρ

σA
µA

)
hk +

σB
√

1− ρ2√
vr(k) + v`(k)

Φk(W̃B),
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where the random error variables

(
σB

√
1−ρ2√

vr(k)+v`(k)

Φk(W̃B)

)
0≤k<n

are independent and Gaussian dis-

tributed with mean zero and constant variance σ2
B(1 − ρ2). The key assumptions of the regression

analysis are thus granted if traits A and B follow two ABM models. Testing for correlation between
traits A and B can be performed by testing for the nullity of coefficient bMR thanks to the fact that
if bMR = 0 then the ratio of the coefficient estimate b̂MR to its standard deviation follows a Student
distribution with n− 2 degrees of freedom.

It is worth pointing out that the MR test does not require to estimate neither trend µA nor trend
µB .

3.5 Relation with PGLS method

PGLS method was introduced in Grafen (1989) and further studied in Martins and Garland (1991);
Pagel (1997); Martins and Hansen (1997). It is a generalized least squares method specifically designed
to take into account the phylogenetic dependency of the regression errors. This dependency relies on
evolutionary assumptions. In particular under the BM model, the dependency structure is exactly the
same as for the IC method which is based on the same model. Namely, the covariance matrix of the
tip random variables of T has the form σ2Σ where σ2 is the variance of the Brownian model and Σ is
the matrix indexed on the tips of T such that for all pairs of tips (i, j), the entry (i, j) is the total time
between the root of T and the most recent common ancestor of i and j. The PGLS approach is based
on the following linear equation

zB = aPGLS1 + bPGLSzA + εPGLS,

which looks the same as that of the SR method but the error vector εPGLS is now assumed to be sampled
from a centered Gaussian vector with covariance matrix proportional to Σ. The vector of general least
square estimates of the coefficients aPGLS and bPGLS is[

âPGLS

b̂PGLS

]
=

([
1′

z′A

]
Σ−1

[
1 zA

])−1 [ 1′

z′A

]
Σ−1zB ,

and the residual variance estimate is

σ̂2
PGLS =

(zB − âPGLS1 − b̂PGLSzA)′Σ−1(zB − âPGLS1 − b̂PGLSzA)

n− 1
.

Under the PGLS assumptions, testing the nullity of the coefficient bPGLS is performed thanks to the fact
that, by assuming that bPGLS = 0, the ratio of the coefficient estimate b̂PGLS to its standard error follows
a Student distribution with n− 1 degrees of freedom.

The strong relation between PGLS and IC approaches is well known (Garland and Ives 2000; Rohlf
2001). Blomberg et al. (2012) provided a formal proof that, in the simple regression case, least square
estimates of the regression coefficient of the explanatory variable is exactly the same with the IC as with
the PGLS methods, namely that b̂PGLS = b̂IC. In Appendix E, we prove the same result in the multiple
regression case and show that the variance of the least square estimates of the coefficients are also the
same with the IC and the PGLS methods.

Theorem 8. Let z0, z1,. . . zp be the tip value vectors of traits or covariables (e.g., tip times, environ-

mental variables . . . ) and u0, u1,. . . up be the corresponding independent contrast vectors, β̂IC be the
vector of the ordinary least square coefficient estimates from the linear equation though origin

u0 =
[

u1 . . . up
]
βIC + εIC,

and let β̂PGLS be the vector of the generalized least square coefficient estimates from the linear equation
with intercept

z0 =
[

1 z1 . . . zp
] [ αPGLS

βPGLS

]
+ εPGLS,

where the error vector εPGLS is assumed to be a realization of a centered Gaussian vector with covariance
matrix proportional to Σ (the covariance matrix associated to the tree T ). The vectors β̂IC and β̂PGLS

10



as well as covariance matrices of the corresponding least squares estimators are equal. Moreover, the
degrees of freedom involved in the nullity tests of their coefficients are both equal to n − p with the two
approaches.

Proof. Appendix E.

Theorem 8 directly implies that testing for correlation between two traits with IC and PGLS is
completely equivalent, even by considering others traits or covariables.

In order to show the relation between the MR and the PGLS approaches, let us add the tip times as
an explanatory covariable in the PGLS regression, i.e., let us consider the linear equation

(9)zB = aPGLSt1 + bPGLStzA + cPGLStt + εPGLSt,

where t = (tk)n≤k≤2n is the tip time vector. The vector of general least square estimates of the coefficients
aPGLSt, bPGLSt and cPGLSt is âPGLSt

b̂PGLSt

ĉPGLSt

 =

 1′

z′A
t′

Σ−1
[

1 zA t
]−1  1′

z′A
t′

Σ−1zB .

Testing for the nullity of bPGLSt is performed by considering the ratio of b̂PGLSt to its standard deviation
in the Student distribution with n− 2 degrees of freedom.

We prove in Appendix E that the variables (hk)0≤k<n are the independent contrasts of the tip times.
Theorem 8 then implies that both the least square estimates of the regression coefficient associated to
trait A and their variances are exactly the same with the MR method and with the PGLSt method.

In short, the IC and PGLS (resp. the MR and PGLSt) methods are interchangeable to test for
correlation between two continuous traits under neutral or directional evolution.

An important point is that computations of the PGLS method require to inverse the covariance matrix
accounting for the phylogenetic dependencies, which has cubic time complexity with respect to the size
of the tree, whereas the IC and MR methods takes advantage of the tree structure of the phylogenetic
dependencies in order to perform the same computations in linear time.

3.6 Ultrametric trees

Proposition 5 states that if T is ultrametric then hk = 0 for all internal nodes k of T . This implies
that Equations 6 and 8 turn out to be exactly the same in this case. In other words, on an ultrametric
phylogenetic tree, the IC and MR methods are totally equivalent to test for correlation. Moreover, since
in an ultrametric tree, the maximum likelihood estimator of the trend returns always 0 (again because
hk = 0 for all internal nodes k of T , cf Equation C2), Equation 7 is the same as Equations 6 and 8.
In sum, the IC, DC and MR methods are equivalent on ultrametric trees. Using the IC method is
statistically founded here since independent contrasts satisfy the requirements of correlations tests in the
ultrametric case.

Note that non-ultrametric phylogenetic trees arise in several situations. In particular, phylogenetic
trees containing fossil taxa (with or without extant taxa) are not ultrametric (e.g., Laurin 2004; Heim
et al. 2015). The ultrametric character relies on the evolutionary model used to infer the trees. For
instance, the speciational model which somehow assumes a same unitary branch length all along the
tree generally provides non-ultrametric trees (Knouft and Page 2003; Moen 2006; Laurin et al. 2012).
Measuring branch lengths in terms of genetic changes (Moen 2006) or scaling branch lengths by their own
evolution rates in heterogeneous models (Baker et al. 2015, 2016) instead of considering their geological
ages also lead to non-ultrametric trees even if all the taxa are extant.

4 Simulation study

In this section, we shall assess and compare the four correlation tests presented in Section 3:

• SR: standard regression of tips values (Equation 5),

• IC: regression through origin of independent contrasts (Equation 6),
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H. heidelbergensis

Figure 2: Hominin phylogeny (Dembo et al. 2015).

• DC: regression of directional contrasts (Equation 7),

• MR: multiple regression through origin of independent contrasts with hk as co-variable (Equation 8).

4.1 Simulation and evaluation protocol

We simulated the evolution of two quantitative traits A and B under various conditions, i.e., under BM
and ABM models with several sets of parameters and several levels of correlation between A and B. The
simulated evolution runs on the hominin phylogenetic tree displayed in Figure 2 (Dembo et al. 2015).

Although the ABM model has three parameters (x0, µ, σ
2), we only vary the trend parameter µ in

the simulations. The parameter x0 just translates the whole evolution process, which has no effect on the
correlation of a trait with another. Multiplying both the trend and the standard deviation of an ABM
model with a constant just results in multiplying the values of the ABM process with same constant
(i.e., what actually matters is the ratio of the trend to the standard deviation).

The four correlation tests were next assessed in terms of type I error, i.e., with regard to their ability
to not falsely reject the null hypothesis, the null hypothesis being that the traits are uncorrelated, in the
case where the traits to compare are actually uncorrelated. We also displays ROC plots of the tests for
summarizing their ability to distinguish between correlated and uncorrelated traits (Zhou et al. 2011).
Plots of type I error were obtained by simulating uncorrelated traits and by plotting the proportion of
simulations for which the null hypothesis was rejected versus the level of risk (each test associates to a
simulation, a level of risk between 0 and 1, accounting for the chance that this simulation satisfies the
null hypothesis). ROC curves were obtained by simulating both negative (i.e., uncorrelated) population
and positive (i.e., correlated) population and by plotting for all levels of risk the proportion of true
negatives versus the proportion of false positives detected by each test. We simulated 50 000 evolutions
of correlated and uncorrelated pairs of traits for each plot.

4.2 Correlation tests between two traits under neutral evolution

We first simulated two traits evolving under neutral evolution (i.e., under the BM model) with correlation
levels 0 and 0.5 (results obtained with correlation 0.7 are provided in the supplementary information).

Figure 3-Left displays the proportion of type I error at all level of rejection α obtained from 50,000
simulations of two uncorrelated traits under the BM model with variance 0.09. We do observe that both
the IC and the MR methods are perfect in the sense that they both rejected the null hypothesis at the
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Figure 3: Left: Rates of false rejection of the null hypothesis at level α vs α when both traits A and
B follow the BM model with variance 0.09. Right: ROC plots of the correlation tests obtained from
two simulated traits under the BM model with variance 0.09. Negative population is simulated with
uncorrelated traits and positive population with traits correlated with correlation 0.5.

exact level α required (both plots of IC and MR completely overlap with the diagonal in Figure 3-Left).
The DC method is close to perfect but tends to reject the null hypothesis a little bit more than it should
do. Last, as expected, the worst performance comes from the SR method.

The p-values obtained from testing for the simulations are expected to be uniformly distributed with
support [0, 1]. We used Kolmogorov-Smirnov (K-S) test in order to check this point. We observed that
p-values obtained when testing for the correlation of independent traits follow an uniform distribution
both for the IC method (Kolmogorov-Smirnov test, p-value=0.537) and for the MR method (K-S test,
p-value=0.832). This is the case neither for the DC nor for the SR methods (K-S test, p-values smaller
than 10−8). In sum, under the BM model, only the IC and the MR methods have the behavior expected
from a statistical test.

The ROC plots of the tests with a positive population simulated under the same BM model, but
with a correlation 0.5 between the traits, are displayed Figure 3-Right. It shows that under the BM
model, the most accurate test is IC but MR and DC tests have close performances. As expected the less
accurate test is SR.

4.3 Correlation tests between a trait under neutral evolution and a trait
under directional evolution

We consider here the mixed situation where one of the traits follows a neutral evolution, here simulated
under the BM model with variance 0.09 and the other one follows a directional evolution, here simulated
under the ABM model with trend 0.5 and variance 0.09.

Figure 4-Left shows that the behavior of the type I error with regard to the level of rejection α is
essentially the same as in the case of two traits under neutral evolution for all the methods. Moreover,
p-values obtained here still follow an uniform distribution with support [0, 1] both for the IC method
(K-S test, p-value=0.345) and for the MR method (K-S test, p-value=0.586). This is the case neither
for the DC nor for the SR methods (K-S test, p-values smaller than 10−8).

The ROC plots displayed in Figure 4-Right shows that performances of the IC and the SR tests are
significantly lower than that of the MR and DC tests. The MR method is slightly more accurate than
the DC test.
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Figure 4: Left: Rates of false rejection of the null hypothesis at level α vs α when trait A follows the
BM model with variance 0.09 and trait B follows the ABM model with trend 0.5 and variance 0.09.
Right: ROC plots of the correlation tests obtained from two simulated traits under a BM model and an
ABM model with trend 0.5 respectively, both with variance 0.09. Negative population is simulated with
uncorrelated traits and positive population with traits correlated with correlation 0.5.
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Figure 5: Left: Rates of false rejection of the null hypothesis at level α vs α when both traits A and
B follow the ABM model with variance 0.09, and trend 0.5 and 1 respectively. Right: ROC plots
of the correlation tests obtained from two simulated traits under ABM models with trend 0.5 and 1
respectively, both with variance 0.09. Negative population is simulated with uncorrelated traits and
positive population with traits correlated with correlation 0.5.
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4.4 Correlation tests between two traits under directional evolution

In the case where the two traits are under directional evolution (here trait A has trend 0.5, and trait B
has trend 1 both with variance 0.09), the rate of type I error of both the SR and the IC methods becomes
maximal (Fig. 5-Left). In plain English, the SR and the IC method systematically reject the hypothesis
that the traits are uncorrelated, even when they are uncorrelated. This behavior clearly prevents us to
use the IC and the SR methods to detect correlation between traits under directional evolution. Still
with regard to type I errors, performances of the MR and DC methods are essentially the same as in
the case of neutral evolution or in the “mixed” case. The MR method looks perfect and the DC method
still tends to reject the null hypothesis a little bit more than it should do. Taking a closer look on the
p-values of the tests, we observe that those of the IC method no longer follow an uniform distribution
(K-S test, p-value below 10−9) and so do those of the SR and DC methods. Only the MR method has
the expected behavior of a test in this situation (K-S test, p-value=0.935).

Figure 5-Right displays the ROC plots of the SR, IC, DC and MR tests. The performance of the IC
test is not better than a random guess and that of the SR test is almost as bad. The accuracy of the
MR and DC tests is essentially the same as in the preceding case.

4.5 Discussion

As expected, the less accurate test is SR in all the situations. Overall, we observe that despite the
flaws in its statistical properties, the DC method performs generally well with regards to the two criteria
considered, whatever the trends of the traits. However, the DC method is always outperformed by the
MR method. The “historical” IC method is outperformed by both the MR and the DC methods as soon
as one of the traits is under directional evolution. It has the best performance from the ROC criteria
only when the two traits evolve under the BM model, which is not very surprising since it corresponds
exactly to the assumptions of this method, but the accuracy of the MR and DC methods is very close.
The additional figures obtained from a greater variety of parameters and provided in the Supplementary
Information lead to the same observations.

The simulations suggest to first test for the presence of a non-zero trend on each trait to compare,
for instance by using the method of Appendix C, then to use the MR method if at least one of the traits
shows a significant trend, and to use the standard IC method only if the two traits are under neutral
evolution.

5 Correlation between hominin cranial capacity and body mass

5.1 Data

Evolution of hominin cranial capacity and body mass was studied in numerous works (Kappelman 1996;
Henneberg 1998; Wood and Collard 1999; Leonard et al. 2003; Falk et al. 2005; Weber et al. 2005; Martin
et al. 2006; Young 2006; Snodgrass et al. 2009; Montgomery et al. 2010; Potts 2011; Shultz et al. 2012;
Schoenemann 2013; Hofman 2014; Grabowski et al. 2015; Grabowski 2016; Argue et al. 2017; Will et al.
2017; Du et al. 2018).

Our study is based on the hominin phylogenetic tree summarizing the best trees obtained in the
dated Bayesian analysis of Dembo et al. (2015, Fig. 1), which is displayed in Figure 2. We combined
data from several articles in order to get the body mass and the cranial capacity of as many species as
possible, namely from Kappelman (1996, Table 1), Wood and Collard (1999, Table 3), Leonard et al.
(2003, Table 3), Young (2006, Table 1), Schoenemann (2013, Tables 8.1 and 8.2), Grabowski et al. (2015,
Table 4), Will et al. (2017, Table 4) and Du et al. (2018, Elec. Supp.). We excluded data associated to
ambiguously identified species and to juvenile specimens. We finally averaged all the collected cranial
capacities and body masses by species in order to obtain the data displayed in Table 1. We excluded
H. floresiensis for calibrating our models, because being an outlier (Weber et al. 2005; Martin et al.
2006; Falk et al. 2007; Argue et al. 2017), this species over-influenced the results. Each time that a data
required in an analysis was missing, we did not consider the corresponding species in this analysis. In
particular, the correlation study pertains only to species for which both cranial capacity and body mass
are known.

15



Species
Cranial
capacity
(cm3)

Body
mass
(g)

Ar. ramidus 300.0 38,067
Au. afarensis 436.4 38,680
Au. africanus 457.1 31,260
Au. anamensis – 46,300
Au. garhi 450.0 –
Au. sediba 420.0 26,485
G. gorilla 520.2 120,500
H. antecessor 1,218.3 –
H. erectus 982.9 58,274
H. ergaster 840.0 58,164
H. floresiensis 417.0 27,500
H. habilis 580.3 35,782
H. heidelbergensis 1,214.5 80,440
H. neanderthalensis 1,470.2 79,573
H. rudolfensis 752.0 45,597
H. sapiens 1,391.8 64,224
K. platyops 425.0 –
P. aethiopicus 418.2 37,666
P. boisei 509.2 45,971
P. robustus 527.5 36,124
P. troglodytes 387.7 53,011
S. tchadensis 365.0 –

Table 1: Cranial capacity and body mass of species of the phylogenetic tree of Figure 2.

We considered the logarithms of cranial capacity and body mass data such as in Kappelman (1996);
Henneberg (1998); Leonard et al. (2003); Snodgrass et al. (2009); Navarrete et al. (2011); Du et al.
(2018). Taking the logarithm of quantitative trait values is quite usual since it accounts for the fact that
for instance, an increase of 100 g does not have the same significance for an organism of 1 kg as for a
organism of 100 kg. From a statistical point of view, log-transformation is a particular case of Box-Cox
transformations which tend to stabilize the variance. It is also sometimes used to approach Gaussian
behavior required by Brownian evolution models (Legendre and Desdevises 2009).

We applied diagnostic tests on residuals after log-transformation in order to check for least squares
regression validity conditions. Namely, we use Durbin-Watson’s test to detect autocorrelation at lag 1
(Durbin and Watson 1950, 1951, 1971); Harrison-McCabe’s test to detect heteroscedasticity (Harrison
and McCabe 1979) and Jarque-Bera’s test to confirm normality (Jarque and Bera 1987).

5.2 Evolutionary trends of hominin cranial capacity and body mass

Several works agree with the fact that hominin brain size increased through evolution (Henneberg 1998;
Montgomery et al. 2010; Navarrete et al. 2011; Potts 2011; Shultz et al. 2012; Hofman 2014). Henneberg
(1998) found a significant correlation between the log-transformed cranial capacity and the fossil age
through a direct “non-phylogenetic” regression approach. Applying the same approach on our dataset,
we also detected a positive evolutionary trend (p-value=0.003), but least squares regression conditions
are violated (Harrison-McCabe’s test, p-value=0.001), certainly because of the phylogenetic relationships
between tips values. Conversely, the hominin cranial capacities fulfill the conditions of the phylogenetic
trend detection test presented introduced in Appendix C (Durbin-Watson’s test, p-value=0.422; Harrison-
McCabe’s test, p-value=0.604; Jarque-Bera’s test, p-value=0.646). The test of Appendix C concludes to
a positive trend (p-value=0.012) which amounts to multiplying the cranial capacity by 1.2 per Ma.

Several studies conclude that the body mass data increased during evolution by using non phylo-
genetic approaches, i.e., without taking into account the evolutionary relationships between the species
(Henneberg 1998; Will et al. 2017). Considering a direct “non phylogenetic” regression of the logarithm
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of the body mass of our dataset led to detect a positive evolutionary trend (p-value=0.002), whereas, by
taking into account the evolutionary relationships between species, the detection test of Appendix C did
not conclude to a significant trend on the logarithm of hominin body mass (p-value=0.072). Both the non
phylogenetic regression and our detection test satisfy the regression assumptions (Durbin-Watson’s test,
p-value=0.243 and p-value=0.227; Harrison-McCabe’s test, p-value=0.066 and p-value=0.796; Jarque-
Bera’s test, p-value=0.953 and p-value=0.865 respectively).

Our results are consistent with those of Montgomery et al. (2010), who also found a positive trend
in cranial capacity and no significative trend in the body size evolution of hominids. Finally, testing
for correlation between the logarithms of hominin cranial capacity and body mass falls in a situation
close to that of Section 4.3, in which we compared a trait simulated under neutral evolution with a trait
simulated under directional evolution.

5.3 Correlation between hominin cranial capacity and body mass

We applied the MR method in order to test for correlation between the logarithms of the hominin body
mass and cranial capacity. These data fulfill the requirements of our correlation test (Durbin-Watson’s
test, p-value=0.819; Harrison-McCabe’s test, p-value=0.690; Jarque-Bera’s test, p-value=0.461). Durbin-
Watson’s and Harrison-McCabe’s tests require to order the residuals with respect to the explanatory
variable, which is straightforward for single regressions, but not for multiple regressions. Following Fan
and Huang (2001), we ordered the residuals with respect to most informative linear combination of the
explanatory variables obtained from principal component analysis.

It is thus allowed to apply the MR test, which concluded that the logarithms of hominin cranial
capacity and body size are significantly correlated (p-value=0.027). In plain English, even by taking into
account possible evolutionary trends, the logarithms of these two traits do not change independently.
This result is consistent with Grabowski (2016), who showed that the evolution of hominin body size
and that of the cranial capacity are related.
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A Distribution of independent contrasts – Proof of Theorem 3

Let us first prove by induction that for all nodes k of T , we have that

Zk = x0 + µ(tk + γk) + σ (Wtk + Ψk(W)) , with

γk =


0 if k is a tip,
v`(k)(γr(k) + vr(k)) + vr(k)(γ`(k) + v`(k))

vr(k) + v`(k)
otherwise, and

Ψk(W) =

 0 if k is a tip,
v`(k)

(
Wtr(k)

−Wtk
+Ψr(k)(W)

)
+vr(k)

(
Wt`(k)

−Wtk
+Ψ`(k)(W)

)
vr(k)+v`(k)

otherwise.

In the base case, i.e., when k is a tip, the property is granted since from Definition 2, we have that

Zk = Zk

= x0 + µtk + σWtk

= x0 + µ(tk + γk) + σ (Wtk + Ψk(W)) , with γk = 0 and Ψk(W) = 0.

Let k be an internal node and let us assume that the property holds for its direct descendants r(k)
and `(k). From Definition 2, we have that

Zk =
v`(k)Zr(k) + vr(k)Z`(k)

vr(k) + v`(k)

=
v`(k)x0 + vr(k)x0

vr(k) + v`(k)
+ µ

(
v`(k)

vr(k) + v`(k)
(tr(k) + γr(k)) +

vr(k)

vr(k) + v`(k)
(t`(k) + γ`(k))

)
+ σ

(
v`(k)

vr(k) + v`(k)

(
Wtr(k)

+ Ψr(k)(W)
)

+
vr(k)

vr(k) + v`(k)

(
Wt`(k)

+ Ψ`(k)(W)
))

= x0 + µ

(
v`(k)

vr(k) + v`(k)
(tk + vr(k) + γr(k)) +

vr(k)

vr(k) + v`(k)
(tk + v`(k) + γ`(k))

)
+ σ

(
Wtk +

v`(k)

vr(k) + v`(k)

(
Wtr(k)

−Wtk + Ψr(k)(W)
)

+
vr(k)

vr(k) + v`(k)

(
Wt`(k)

−Wtk + Ψ`(k)(W)
))

= x0 + µ(tk + γk) + σ (Wtk + Ψk(W)) ,

21



by setting

γk =
v`(k)(γr(k) + vr(k)) + vr(k)(γ`(k) + v`(k))

vr(k) + v`(k)
, and

Ψk(W) =
v`(k)

(
Wtr(k)

−Wtk + Ψr(k)(W)
)

+ vr(k)
(
Wt`(k)

−Wtk + Ψ`(k)(W)
)

vr(k) + v`(k)
,

and the property holds for all nodes k of T .
Proving the second point of the theorem is direct since from Definition 2, we have that

Uk =
Zr(k) − Z`(k)√

vr(k) + v`(k)

= µ
vr(k) + γr(k) − v`(k) − γ`(k)√

vr(k) + v`(k)
+

σ√
vr(k) + v`(k)

Φk(W),

where
Φk(W) = Wtr(k)

+ Ψr(k)(W)−Wt`(k)
− Ψ`(k)(W)

= (Wtr(k)
−Wtk) + Ψr(k)(W)− (Wt`(k)

−Wtk)− Ψ`(k)(W),

By construction, for all nodes k, Ψk(W) is a linear combination of independent centered Gaussian
random variables of the form Wti−Wta(i)

where i is a descendant of k. It follows that Ψk(W) is a centered
Gaussian variable, which is independent from any random variable Wtj −Wta(j)

if j is not a descendant
of k. Since (Wt)t>0 is the Wiener process, we have that

Var(Wti −Wta(i)
) = ti − ta(i) = vi

for all nodes i of T (Grimmett and Stirzaker 2001).
Let us prove by induction that

Var (Ψk(W)) =

{
0 if k is a tip,
vr(k)v`(k)

vr(k)+v`(k)
otherwise,

which is equivalent to say that Var (Ψk(W)) + vk = vk from Definition 2. It is basically true in the base
case where k is a tip. If k is an internal node, by assuming that the induction assumption holds for its
direct descendants r(k) and `(k), we have that

Var (Ψk(W))

=
v2
`(k)

(
Var

(
Wtr(k)

−Wtk

)
+ Var

(
Ψr(k)(W)

))
+ v2

r(k)

(
Var

(
Wt`(k)

−Wtk

)
+ Var

(
Ψ`(k)(W)

))
(vr(k) + v`(k))2

=
v2
`(k)

(
vr(k) + Var

(
Ψr(k)(W)

))
+ v2

r(k)

(
v`(k) + Var

(
Ψ`(k)(W)

))
(vr(k) + v`(k))2

=
v2
`(k)vr(k) + v2

r(k)v`(k)

(vr(k) + v`(k))2
=

vr(k)v`(k)

vr(k) + v`(k)
,

which proves the form of Var (Ψk(W)).
In the same way, Φk(W) is a linear combination of independent centered Gaussian random variables

of the form Wi −Wa(i) where i is a descendant of k, with variance

Var (Φk(W)) = Var
(
Wtr(k)

−Wtk

)
+ Var

(
Ψr(k)(W)

)
+ Var

(
Wt`(k)

−Wtk

)
+ Var

(
Ψ`(k)(W)

)
= vr(k) + Var

(
Ψr(k)(W)

)
+ v`(k) + Var

(
Ψ`(k)(W)

)
= vr(k) + v`(k).
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B Ultrametric trees - Proof of Proposition 5

Let T be an ultrametric tree and T be the total path-length/time from its root to its tips.
We shall prove by induction that γk = T − tk and hk = 0 for all nodes k of T . The property is

basically true if k is a tip, our base case. Let k be an internal node and let us assume that the property
holds for its direct descendants r(k) and `(k). From Theorem 3, we have that

γk =
v`(k)(γr(k) + vr(k)) + vr(k)(γ`(k) + v`(k))

vr(k) + v`(k)

=
v`(k)(T − tr(k) + vr(k)) + vr(k)(T − t`(k) + v`(k))

vr(k) + v`(k)

=
v`(k)(T − tk) + vr(k)(T − tk)

vr(k) + v`(k)
= T − tk, and,

hk =
vr(k) + γr(k) − v`(k) − γ`(k)√

vr(k) + v`(k)

=
(vr(k) + T − tr(k))− (v`(k) + T − t`(k))√

vr(k) + v`(k)

=
−tk + tk√

vr(k) + v`(k)
= 0, which ends the proof.

C Trend estimation and detection

Equation 1 shows that under an ABM model with trend µ, the independent contrasts Uk can be written
as the product of µ with the corresponding temporal variable hk, plus an independent, centered Gaussian
term of constant variance with respect to k. This suggests to estimate the trend µ as the slope of the
following linear equation

(C1)u = chRh + εhR

where, from Equation 1, the entries of the error vector εhR are samples of random variables

σΦk(W)√
vr(k) + v`(k)

,

which are independent and Gaussian distributed with mean zero and variance σ2 under the current
assumptions.

From Equation C1, the linear regression estimator of µ is

(C2)µ̂ =

∑n−1
j=0 ujhj∑n−1
j=0 h

2
j

.

Again from Equation C1, testing for a trend in the evolution of trait under an ABM model can be
performed by testing for the nullity of the slope. In order to assess the accuracy of this trend test
(referred to as the “hR test”) with regard to the standard regression of the tips values with respect to
their times (referred to as the “SR test”), we simulated evolution of quantitative traits with and without
trend on the tree of Figure 2 and plot the type I error rate against the rejection level and the ROC plots
of these two tests. Results are displayed in Figure C1. The hR test clearly outperforms the SR test.
Figure C1-Left shows that the SR test rejects the null hypothesis more than it should do whereas the
hR test rejects it at the exact level required. Moreover, their ROC plots show that the hR test better
discriminates between traits simulated with and without trend than the SR test (Fig. C1-Right).
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Figure C1: Left: Rates of false rejection of the null hypothesis (i.e., no trend) at level α vs α on traits
simulated under the BM model with variance 0.09. Right: ROC plots of the trend detection tests
obtained from simulated traits under the BM model for negative population (i.e., under H0) and under
the ABM model with trend 0.2 for the positive population, both with variance 0.09.

D Directional contrasts

Equivalence between centered and directional contrasts

Elliott (2015) associated to all nodes k of T and all values β the quantity ek(β) defined as

ek(β) =


zk if k is a tip,
v`(k)(er(k)(β)− βvr(k)) + vr(k)(e`(k)(β)− βv`(k))

vr(k) + v`(k)
otherwise,

where the modified branch lengths (vk)0≤k≤2n are given in Definition 1.
For all internal nodes k of T , Elliott (2015) then defined the (β-)directional contrast as

dk(β) =
er(k)(β)− e`(k)(β)√

vr(k) + v`(k)
− β

vr(k) − v`(k)√
vr(k) + v`(k)

.

Let us start to prove by induction that for all nodes k of T , we have that ek(β) = zk − βγk.
The equality is basically true in the base cases, since if k is a tip of T , we have that γk = 0 and

ek(β) = zk = zk.
Let k be an internal node of T and let us assume that the equality holds for its two direct descendants

r(k) and `(k). We have

ek(β) =
v`(k)(er(k)(β)− βvr(k)) + vr(k)(e`(k)(β)− βv`(k))

vr(k) + v`(k)

=
v`(k)(zr(k) − βγr(k)) + vr(k)(z`(k) − βγ`(k))

vr(k) + v`(k)
− β

v`(k)vr(k) + vr(k)v`(k)

vr(k) + v`(k)

=
v`(k)zr(k) + vr(k)z`(k)

vr(k) + v`(k)
− β

v`(k)(vr(k) + γr(k)) + vr(k)(v`(k) + γ`(k))

vr(k) + v`(k)
= zk − βγk,

which proves the equality for all nodes of T .
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Last, we have that

dk(β) =
er(k)(β)− e`(k)(β)√

vr(k) + v`(k)
− β

vr(k) − v`(k)√
vr(k) + v`(k)

=
v`(k)(zr(k) − βγr(k)) + vr(k)(z`(k) − βγ`(k))

vr(k) + v`(k)
− β

v`(k)vr(k) + vr(k)v`(k)

vr(k) + v`(k)

=
v`(k)zr(k) + vr(k)z`(k)

vr(k) + v`(k)
− β

v`(k)(vr(k) + γr(k)) + vr(k)(v`(k) + γ`(k))

vr(k) + v`(k)
= uk − βhk
= ck(β).

In plain English, for all internal nodes k and all values β, the β-directional contrast dk(β) is equal to
the β-centered contrast ck(β).

Estimated directional contrasts

In order to correct the trend effect, Elliott (2015) proposed to consider the µ̂-directional contrasts where
µ̂ is the estimated trend (Equation C2).

Let B be the random variable associated to the estimated trend. From Equation C2, we have that

B =

∑n−1
j=0 hjUj∑n−1
j=0 h

2
j

.

From Corollary 4, if the trait follows the ABM model of parameters (x0, µ, σ
2), then for all internal nodes

k of T , the independent contrast random variables Uk are Gaussian distributed with

Uk ∼ N
(
µhk, σ

2
)
,

which implies thatB follows the Gaussian distributionN
(
µ, σ

2
/
∑n−1

k=0 h
2
k

)
under the ABM model (x0, µ, σ

2).
For all internal nodes k of T , the random variable Dk(B) associated to the kth estimated directional

contrast is defined as
Dk(B) = Uk −Bhk

= Uk −
∑n−1
j=0 hjUj∑n−1
j=0 h

2
j

hk

=

Uk
∑n−1

j=0
j 6=k

h2j − hk
∑n−1

j=0
j 6=k

hjUj∑n−1
j=0 h

2
j

.

Corollary 4 implies that the estimated directional contrast random variables Dk(B) are Gaussian
distributed with

Dk(B) ∼ N

(
0, σ2

[
1− h2k∑n−1

j=0 h
2
j

])
.

Moreover, since the independent contrast random variables Uk are independent from one another, we
have that for all i 6= k

Cov (Di(B), Dk(B)) =
−hkhiσ2∑n−1
j=0 h

2
j

.

Since hk 6= 0 in the general case, the estimated directional contrast random variables are neither identi-
cally distributed nor independent.

E IC and PGLS regressions – Proof of Theorem 8

In all what follows, 0 (resp. 1) denotes the column vector with all entries equal to 0 (resp. to 1; their
dimensions depending on the context) and for all numbers N , IN is the identity matrix of dimension
N ×N . The transpose of a matrix or a vector A is noted A′. We recall that n is the number of internal
nodes of T which thus has n+ 1 tips.
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A matrix presentation of the Felsenstein’s (1973) algorithm

Let us sketch a matrix presentation of the Felsenstein’s (1973) algorithm which iteratively computes the
following variables for all nodes k of T . By putting Tk for the subtree of T rooted at k and nk for its
number of internal nodes, let

• gk be the vector of dimension nk + 1 that is such that the “artificial” trait value of node k, i.e., zk
of Definition 1, is obtained by multiplying g′k with the tip value vector of Tk,

• Qk be the nk × (nk + 1) matrix giving the independent contrasts of the subtree Tk from its tip
value vector, and,

• δk be the increment applied to the branch ending by k (i.e., vk − vk in Definition 1).

By initializing gk to the vector [1], Qk to the 0 × 0 “empty” matrix and δk to 0 for all tips k of T ,
these variables are recursively computed for all internal nodes k of T with direct descendants `(k) and
r(k) by setting:

• g′k =
[

(vr(k)+δr(k))g
′
`(k)

v`(k)+δ`(k)+vr(k)+δr(k)

(v`(k)+δ`(k))g
′
r(k)

v`(k)+δ`(k)+vr(k)+δr(k)

]
,

• Qk =

 Q`(k) 0
0 Qr(k)

g′`(k)√
v`(k)+δ`(k)+vr(k)+δr(k)

−g′r(k)√
v`(k)+δ`(k)+vr(k)+δr(k)

,

• δk =
(v`(k)+δ`(k))(vr(k)+δr(k))

v`(k)+δ`(k)+vr(k)+δr(k)
.

It is straightforward to prove by induction that g′k1 = 1 for all nodes k of T . Let us prove by
induction that Q′kQk1 = 0 for all nodes k of T . The property is basically true for all tips. Let us assume
that k is an internal node and that its direct descendants `(k) and r(k) both satisfy the property. We
have

Q′kQk =

 Q′`(k)Q`(k) +
g`(k)g

′
`(k)

v`(k)+δ`(k)+vr(k)+δr(k)

−g`(k)g
′
r(k)

v`(k)+δ`(k)+vr(k)+δr(k)

−gr(k)g
′
`(k)

v`(k)+δ`(k)+vr(k)+δr(k)
Q′r(k)Qr(k) +

gr(k)g
′
r(k)

v`(k)+δ`(k)+vr(k)+δr(k)

 ,
thus

Q′kQk1 =

 Q′`(k)Q`(k)1 +
g`(k)g

′
`(k)1

v`(k)+δ`(k)+vr(k)+δr(k)
− g`(k)g

′
r(k)1

v`(k)+δ`(k)+vr(k)+δr(k)

−gr(k)g
′
`(k)1

v`(k)+δ`(k)+vr(k)+δr(k)
+Q′r(k)Qr(k)1 +

gr(k)g
′
r(k)1

v`(k)+δ`(k)+vr(k)+δr(k)

 = 0,

since g′r(k)1 = g′`(k)1 = 1 from above and Q′`(k)Q`(k)1 = Q′r(k)Qr(k)1 = 0 from the induction hypothesis,

which proves that Q′kQk1 = 0 for all nodes k of T .
Let us set g′ = g′r, Q = Qr and δ = δr where r is the root of T and let Σ be the covariance matrix

associated to T , i.e., for all pairs of tips (i, j) of T , the (i, j)-entry of Σ is the total time between the root
and the most recent common ancestor of i and j. Felsenstein (1973) showed that by assuming that a trait
follows a Brownian process with variance σ2 and by putting Z for the random vector of its tip values,
the contrasts, i.e., the entries of QZ, are independent centered Gaussian variables with variance σ2 and
that g′Z is a centered Gaussian variable with variance σ2δ which is independent from all the contrasts.
It follows that if Z is a Gaussian vector with covariance matrix σ2Σ then QZ is a n-Gaussian vector

with covariance matrix σ2In and, by defining the (n + 1) × (n + 1) matrix P =

[
Q
g′√
δ

]
, that PZ is a

(n+ 1)-Gaussian vector with covariance matrix σ2In+1. Since P is invertible (the standard presentation
of the Felsenstein’s (1973) algorithm shows that P can be written as a product of invertible matrices),
this implies P ′P = Σ−1 and that

(E1)Σ−11 = P ′P1 = Q′Q1 +
gg′1

δ
=

g

δ
,

which itself directly implies that
(E2)(1′Σ−11)−1 = δ.
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Moreover, since Σ−1 is symmetric, Equation E1 implies that gg′ = δ2Σ−111′Σ−1 and that

(E3)Σ−1 − δΣ−111′Σ−1 = Q′Q.

Note that matrix P plays the same role as the phylogenetic transformation matrix in Adams and
Collyer (2015) and as the matrix D defined in a complete different way in Garland and Ives (2000,
p349).

Multiple regression with IC and PGLS

Let y and X be respectively a vector of tip values of a trait and a matrix of tip values of p traits or
co-variables (e.g., the time, an environmental variable etc.). We shall show that testing for correlation
between y and any column of X leads to the same result with the IC and the PGLS methods.

In the IC regression and under the notations of subsection above, we consider the following linear
equation

Qy = QXβIC + εIC,

where the error vector εIC is a realization of the centered Gaussian random vector with covariance matrix
proportional to In. Vector Qy has dimension n and there are p regressors. The vector of estimated
regression coefficients is

β̂IC = (X ′Q′QX)
−1
X ′Q′Qy

and the estimator variance of the ith coefficient [βIC]i is σ̂2
IC

[
(X ′Q′QX)−1

]
i,i

where the residual variance

estimate σ̂2
IC is

σ̂2
IC =

(y −Xβ̂IC)′Q′Q(y −Xβ̂IC)

n− p
.

Under the key regression assumptions and that the ith coefficient [βIC]i is null, the statistics[
β̂IC

]
i√

σ̂2
IC [(X ′Q′QX)−1]i,i

follows the Student distribution with n− p degrees of freedom.
In the PGLS regression, the linear equation is

y =
[

1 X
] [ αPGLS

βPGLS

]
+ εPGLS,

where the error vector is a realization of the centered Gaussian vector with covariance matrix proportional
to Σ = (P ′P)−1. Vector y has dimension (n+ 1) and there are p+ 1 regressors (including the intercept).
The vector of estimated regression coefficients is[

α̂PGLS

β̂PGLS

]
=

([
1′

X ′

]
Σ−1

[
1 X

])−1 [ 1′

X ′

]
Σ−1y, and,

and the estimator variance of the ith coefficient [βPGLS]i is

σ̂2
PGLS

[([
1′

X ′

]
Σ−1

[
1 X

])−1]
i,i

where the residual variance estimate σ̂2
IC is

σ̂2
PGLS =

(
y −

[
1 X

] [ α̂PGLS

β̂PGLS

])′
Σ−1

(
y −

[
1 X

] [ α̂PGLS

β̂PGLS

])
n− p

.

27



Under the regression assumptions and that the ith coefficient [βPGLS]i is null, the statistics[
β̂PGLS

]
i√√√√σ̂2

PGLS

[([
1′

X ′

]
Σ−1

[
1 X

])−1]
i,i

follows the Student distribution with n− p degrees of freedom.
In order to prove that the IC and the PGLS methods are equivalent to test for correlation in a

multiple regression context, we shall establish that the three following properties hold:

1.

([
1′

X ′

]
Σ−1

[
1 X

])−1
=

[
a b′

c (X ′Q′QX)
−1

]
for a real a and two n-vectors b and c,

2. β̂PGLS = β̂IC,

3. σ̂2
PGLS = σ̂2

IC.

From the block matrix inversion formula and Equations E1, E2 and E3, we get that([
1′

X ′

]
Σ−1

[
1 X

])−1
=

[
1′Σ−11 1′Σ−1X
X ′Σ−11 X ′Σ−1X

]−1
=

[
δ−1 1′Σ−1X

X ′Σ−11 X ′Σ−1X

]−1
=

[
δ + δ21′Σ−1X

(
X ′Σ−1X − δX ′Σ−111′Σ−1X

)−1
X ′Σ−11 −δ1′Σ−1X

(
X ′Σ−1X − δX ′Σ−111′Σ−1X

)−1
−δ
(
X ′Σ−1X − δX ′Σ−111′Σ−1X

)−1
X ′Σ−11

(
X ′Σ−1X − δX ′Σ−111′Σ−1X

)−1
]

=

[
δ + g′X (X ′Q′QX)

−1
X ′g −g′X (X ′Q′QX)

−1

− (X ′Q′QX)
−1
X ′g (X ′Q′QX)

−1

]
, which proves Property 1.

The vector β̂PGLS of the PGLS regression coefficient estimates without the intercept is obtained by

multiplying the second line of the block matrix above with the column

[
1′Σ−1y
X ′Σ−1y

]
=

[
g′

δ y

X ′Σ−1y

]
:

β̂PGLS = − (X ′Q′QX)
−1
X ′

gg′

δ
y + (X ′Q′QX)

−1
X ′Σ−1y

= (X ′Q′QX)
−1
X ′
(

Σ−1 − gg′

δ

)
y

= (X ′Q′QX)
−1
X ′Q′Qy = β̂IC, which proves Property 2.

In the same way, the intercept estimate of PGLS is

α̂PGLS =
(
δ + g′X (X ′Q′QX)

−1
X ′g

) g′

δ
y − g′X (X ′Q′QX)

−1
X ′Σ−1y

= g′y + g′X (X ′Q′QX)
−1
X ′
(

gg′

δ
− Σ−1

)
y

= g′y − g′X (X ′Q′QX)
−1
X ′Q′Qy = g′(y −Xβ̂IC).

The residual variance estimate of PGLS is given by

σ̂2
PGLS =

(y − 1α̂PGLS −Xβ̂PGLS)′Σ−1(y − 1α̂PGLS −Xβ̂PGLS)

n− p

=
(y − 1g′(y −Xβ̂IC)−Xβ̂IC)′Σ−1(y − 1g′(y −Xβ̂IC)−Xβ̂IC)

n− p

=
(y −Xβ̂IC)′Σ−1(y −Xβ̂IC)− (y −Xβ̂IC)′g1′Σ−11g′(y −Xβ̂IC)

n− p

=
(y −Xβ̂IC)′

(
Σ−1 − gg′

δ

)
(y −Xβ̂IC)

n− p

=
(y −Xβ̂IC)′Q′Q(y −Xβ̂IC)

n− p
= σ̂2

IC, which proves Property 3,
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and ends to prove that testing for correlation with IC and PGLS is equivalent.

Multiple regression with time as co-variable

Let us start by showing that for all internal nodes k, hk is the phylogenetic contrast of the tip times
associated to k. By putting tk for the “artificial” time reconstructed at the internal node k by the
Felsenstein’s (1973) algorithm, it is straightforward to prove by induction that tk = tk + γk for all nodes
k of T . For all internal nodes k with direct descendants r(k) and `(k), we have that

hk =
vr(k) + γr(k) − v`(k) − γ`(k)√

vr(k) + v`(k)
=

tr(k) − t`(k)√
vr(k) + v`(k)

,

which is well the contrast of the tip times associated to node k. It follows that the vector h = (hk)1≤k<n
is obtained by multiplying the vector t = (tk)n≤k≤2n of tip times by Q, i.e., h = Qt.

Let us consider two traitsA andB and their tip-value vectors zA = (zAk )n≤k≤2n and zB = (zBk )n≤k≤2n.
The linear equation

QzB = Q
[

zA t
] [ bMR

cMR

]
+ εMR = bMRuA + cMRh + εMR,

where the error vector εMR is a realization of a centered Gaussian vector with covariance matrix propor-
tional to In, corresponds to the regression considered in the MR method (Equation 8). We showed in
the section above that testing for correlation between traits A and B with this equation is equivalent to
testing for correlation between A and B with the linear equation

zB =
[

1 zA t
]  aPGLSt

bPGLSt

cPGLSt

+ εPGLSt,

where the error vector εPGLSt is a realization of a centered Gaussian vector with covariance matrix
proportional to Σ which corresponds to testing for correlation between A and B with tip times as
covariables by the PGLS method.
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