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Time-lapse optical flow regularization for geophysical complex
phenomena monitoring

Hadhri Hela1, Vernier Flavien1, Atto Abdourrahmane M.1, Trouvé Emmanuel1

Univ. Savoie Mont Blanc, LISTIC, F-74000 Annecy, France

Abstract

In this paper, we introduce a framework for the tracking of geophysical complex phenomena
via time-lapse images. It includes the regularization of the derived surface motion maps time
series. The proposed processing chain addresses five main challenges: undesired camera move-
ment, missing frames, important photometric changes, weak/repetitive texture and model-free
dense spatial transformations. In the proposed framework the motion maps time series are
obtained via robust pre-processing steps and optical flow computing. The contribution consists
of regularizing the resulting velocity and position time series to minimize a temporal closure
error in a subsequent stage. This step serves to alleviate the limitations of existing methods
in the context of geophysical monitoring. The temporal closure errors are formulated as linear
mappings to inverse using signal priors and two formulations are defined along with illustrative
cases. Related methods are discussed and extensive experimentation on simulated datasets is
carried out to validate the approach and compare between the different proposed formulations
and resolution schemes. Experimental results are presented on time series acquired by ground-
based cameras used for the monitoring of Alpine glaciers. The algorithm is computationally
efficient, even considering the quantity of processed and generated data, and is run in parallel
on multiple cores for speed-up.

Keywords: Computer Vision, Time series, Temporal regularization, Remote/proximal
sensing, Natural Outdoor Environment, Glaciers monitoring, Tracking

1. Introduction

Motion tracking and scene understanding from time-lapse images acquired by automatic
ground-based cameras is a task that has been studied in many applications, including medical
imaging tracking systems, video surveillance or geophysical monitoring. With a controlled en-
vironment scenario, this motion is characterized by the flow of pixels with constant intensity.
This assumption of intensity conservation is typically unrealistic for outdoor geophysical mon-
itoring data because illumination difference between images is relatively important, and more
photometric invariance must be introduced. There are two global families of computation tech-
niques to achieve this: (1) Differential techniques that compute velocity from spatio-temporal
derivatives of pixel intensities while incorporating other constancy assumptions and regularity
constraints [1][2]; (2) Region-based offset-tracking techniques, which compute the trajectory of
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pixels via the identification of local displacements that provide optimal similarity of two image
patches and which usually create robustness for intensity variation via normalization. In this
paper, optical flow (OF) methods refer to the first type of methods while the second type is
referred to as normalized cross-correlation (but other similarity measures exist) [3][4]. More-
over, geophysical monitoring data exhibit other particularities, such as geometric non-rigid
deformations, repetitive patterns, low texture, occlusion, frame mis-registration and weather
artifacts (such as snow, fog, water drops/sun beam reflection on the screen, clouds, shadows,
etc.) [3]. The main challenge in these applications is to automatically estimate accurate long
term motion time series from pairwise image registration despite the data contamination. To
overcome the limitations of existing techniques in such conditions, we propose a data process-
ing methodology which includes several steps: (1) pre-processing steps: to discard some of the
wrong measurements; (2) parameterized motion models: to handle frame mis-registration due
to camera motion; and (3) robust optical flow: to estimate apparent motion of the object of
interest over time. To introduce further robustness, we propose a regularization step that takes
the generated incomplete pixel-wise Velocity and Position Time Series (VTS and PTS) and
forces temporal closure, which is the main contribution of the paper. This regularization is
inspired by the Small Baseline Subset (SBAS) technique for Synthetic Aperture Radar (SAR)
interferometry [5]. In this domain, time series of complex SAR images are acquired to observe
ground surface deformations [6]. Redundant displacement fields are obtained by computing
phase differences from image pairs selected according to their temporal and spatial baselines
and the observed phenomena: urban and land subsidence [7][8][9], water level monitoring [10],
volcanic deformation [11], slope movements [12] and so on. These initial observations suffer from
different error sources such as noise, atmospheric artifacts and phase unwrapping errors. The
SBAS approach consists of deriving a final displacement time series with reduced uncertainty
by combining these observations in a linear system inverted by different techniques [13][14]. An
overview of the parameters of the SBAS algorithm can be found in [11]. Similarly to the SBAS
workflow, the proposed regularization is formulated as an inverse problem where a temporal
closure error within an appropriate range is minimized to reduce uncertainty via redundancy.

2. Related methods

2.1. Data regularization

Major time series regularization techniques are linked and include modelling, query by con-
tent, anomaly correction, motif discovery, prediction, clustering, classification, dimensionality
reduction, indexing and segmentation. A survey of these methods can be found in [15]. Hence,
this regularization is often done by:

• rolling statistics [16]

• filter like methods such as a non-linear median filtering or extended Kalman filters [17][18]

• other stochastic approaches such as Multiple Imputation and Bootstrapping [19]

• model fitting methods; such as Self-Organizing Maps [20], parametric/non-parametric re-
gression [21], AutoregRessive Moving Average (ARMA) models [22], etc.,

• supervised learning methods, such as RANdom SAmple Consensus (RANSAC), Support
Vector Machine (SVM), etc.

• spectral methods such as principal component analysis/empirical orthogonal function de-
composition, Discrete Wavelet Transform, etc. [23]
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Geo-statisticians often use linear-weighted averaging methods, with data driven weighting func-
tions, such as the interpolation/prediction kriging and collocation methods and deploy ground
means, such as corner reflectors or GPS measurements to constrain the problem by fusing mea-
surements from different sources. Recent works for the monitoring of geophysical phenomena
via time-lapses include:

• adaptive Least Squares collocation to detect outliers in VTS and PTS during feature
tracking [24],

• non-linear median filtering by averaging the values of Nearest Neighbors on surface change
time series to correct random noise and fill missing observations [25].

Machine learning techniques have also been used to learn the expected behavior of time series
in order to regularize observations [26][27][28][29] and it has been shown that fully Connected
Networks are more suited for time series tasks as they allow for the input and output to have
the same dimension and to process in a semantic way. A survey on Deep Learning methods for
time series inquiry can be found in [30]. On the other hand, optical measurements are generally
regularized via computer vision derived methods such as detection/recognition methods using
interest points, features, HoGs (Histogram of oriented Gradients), etc. For example, the current
best performing optical flow methods often use prior knowledge of the properties of the motion,
like local smoothness assumptions [31], structure and motion adaptive assumptions [32] or the
assumption that motion discontinuities are more likely at image edges [33] to ensure spatial
coherence over time. In [34] the authors propose a method for optical flow adaptation to fluid
monitoring using the continuity equation of 2D incompressible flows and passive scalar transport
constraints. There are several methods to optimally balance data fidelity with regularization
of the motion fields obtained by differential optical flow methods. Depending on the strength
of the local image gradients, these methods yield a smooth trade-off between matching and
interpolation, which can be very useful in the presence of noisy optical observations [2].

2.2. Inversion

Inversion consists of inferring the manifold of structural models that could yield some actual
observations y through a given transformation A induced by a physical model. Theoretically,
the goal of a reconstructive inversion is often to estimate a 2D or 3D field x ∈ M: the Model
space, from a set of observations or measurements y ∈ D: the Data space, of the form y = Ax+b.
The measurement or model operator A can be linear or non-linear, full rank or rank-deficient
and has a conditioning that can be quantified by means of the L = 2 condition number K defined
as the ratio between the biggest and smallest singular values σ of A [35], such as:

K =
σmax

σmin
,

which quantifies the sensitivity of the estimation to perturbations in the observations. b is the
noise or measure uncertainty which hopefully will not be reconstructed by inversion. Inverting
observations is now used extensively in many fields like remote sensing [36], deconvolution,
optical tomography, 3D reconstruction [37][38] or geodesy [39]. A typical photogrammetric
example would be recovering the descriptions of objects represented in image data x via optical
measurements y corrupted by noise b by inverting the optical model A (back-projection). For
this, a model misfit cost between y and Ax minimized. The used cost function is usually convex
(unless a special penalizer is needed to create specific robustness) if the direct linear mapping
is full-rank. Depending on the definition, sparseness and dimension of the direct problem, on
the prior information on the estimated solution and on the choice of the cost function, direct
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(spectral decomposition) or iterative (optimization via a solver) methods can be considered to
stably recover x. In this paper, the physical model, that is encoded in A, and to be inverted,
is the consistency of the displacement pattern over time: the temporal closure constraint. The
inversion is thus done on the temporal axis of the computed OF maps and densely for every
coordinate in order to obtain temporally regularized Optical Flow (OF) maps time series of the
size of the images. The inversion is pixelwise and two formulations are proposed to encode the
linear temporal closure model A.

2.3. Contribution

Despite the existence of discontinuity-preserving smoothness constraints to ensure spatial
coherence of optical OF fields, one can notice the lack of long-term temporal constraints in
recent models proposed for the Middlebury benchmark [40] due to computational requirements.
Only a few methods make use of more than two frames and none of them incorporate temporal
information in the underlying model. For off-line remote sensing of geophysical complex phe-
nomena, we propose to revisit the Differential Synthetic Aperture Radar interferometry SBAS
technique to minimize a temporal error from a Network of Optical Flow Fields (NOFF) forming
the observations. The workflow to pre-process the raw data and compute relevant pairwise
optical flow fields in object coordinates is presented followed by the paper’s main contribution:
the regularization of the pixelwise Velocity Time Series (VTS) and/or Position Time Series
(PTS). To validate the whole pipeline under various conditions, 4 realistic datasets of simulated
time lapses are constructed. To validate the temporal regularization step, different processing
problems such as outliers, missing data and noise are further simulated on the observations
and estimations are compared to ground truth solutions. Finally, results for the monitoring of
alpine glaciers are presented.

3. Proposed pipeline

3.1. Overview

In a context such as stated before, the computed observations can be contaminated in differ-
ent ways: bias can be introduced by the motion of the fixed camera; outliers by the photometric
variance distorting the calculations in one of the layers of the automatic processing chain and/or
the registration failing to capture the non-rigid spatial transformations; and gaps can be caused
by targets being occluded and/or outliers due to weather artifacts being detected and removed.
Figure 1 shows the layers of the proposed pipeline to process time-lapses in such a context:
(A)Data is first acquired automatically via a programmable micro-controller; (B) a texture
score is computed to dismiss images where the information is too corrupted and the remain-
ing images are co-registered with regards to a master image to compensate for camera motion.
(C) Optical flow (OF) fields F⃗ = (Fx, Fy) at every pixel are then computed between all the
co-registered images within the chosen temporal closure range to form the Network of Optical
Fields (NOFF) (D) The NOFF contain redundant information and makes it possible to mini-
mize a temporal closure error to regularize the resulting VTS and PTS and interpolate values
where observations are missing. The matrices in (C) and (D) are examples of observations in
one pixel before and after regularization. The master image in figure 1 and all the illustrative
examples of the paper being the first valid image of the time-lapse; I0.
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Figure 1: Proposed pipeline. (A) data acquisition. (B) data selection via texture detection.
(C) matching and optical flow computation. (D) regularization of the obtained time series via

the construction of a network of optical flow fields.
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3.2. Data selection

After the acquisition of the time-lapse imagery, images are selected given their meta-data
tags and according to the desired time step of the resulting time series. Textural information
is quantified to dismiss corrupted images. This information is retrieved by the construction of
a bank of multi-parameters Gabor filters designed manually to recognize the known textures
(fringes, grains, tales, stripes, ice foliation, etc.) of the object of interest, if not occluded or
highly deformed. This bank is constructed by varying some parameters (frequency, orientation
and size) of the 2D Gabor function to create invariance to small differences between the images
to be selected for further processing. A similar work can be found in [41]. For every image i,
the sum of all the energies E of the obtained response maps is quantified. The energies of all the
images in the time-lapse should theoretically follow a Gaussian distribution and the spurious
images are detected by thresholding over median absolute deviation (MAD):

Ẽ = median(Ei), (1)

S1i = median(|Ei − Ẽ|) (2)

S 1 is thus the texture score encoding the object of interest visibility in image Ii. This way, and
as the known orientation of the gradients is also quantified by the designed filters, images that
have a lack of textural information (foggy, occluded, damaged, cut off, etc.) are rejected and
are no longer part of the pipeline. This classification gave a success rate of 96% for the rejection
of data affected by adverse weather conditions and mis-acquisition.

3.3. Pairwise image processing

3.3.1. Co-registration
The stack of remaining images are co-registered by estimating a parametric geometric trans-

formation regarding a chosen master image, the first relevant one for example. This step is
done to compensate for the undesired geometric differences of the images in the time-lapse (see
figure 1 (A)) and is thus done only on the static zone of the observed scene. This geometric
difference is due to camera orientation and image plane instability due to extreme weather
conditions. As the observed scene is distant, the images can be considered as the same planar
surface in space, and a homography H can encode the translation, rotation, the scale and also
the tilt (8 degrees of freedom) of the camera between two images Ii and I j with 8 parameters
param (2 scaling, 2 rotation, 2 translation and 2 vanishing points parameters). The arguments
param defining the homography Φ are encoded in non-singular 3×3 matrix computed in terms of
the Enhanced Correlation Coefficient criterion [42] on the static zones by iteratively minimizing
the following normalized Euclidean distance:

EECC(i,j) =

∥∥∥∥∥∥
(

Ii(X)
∥Ii(X)∥

−
I j(Φ(X; param))

∥I j(Φ(X; param))∥

)∥∥∥∥∥∥
2

, (3)

where Ii(x) is the master image and I j(Φ(X; param)) is the image warped by inverse composition
of pixels of coordinate X (= (xi, yi, 1)

T (in homogeneous coordinates notation) with Φ:x j

y j

1

 = Φ(X; param) = H−1X = H−1

xi

yi

1

 (4)
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3.3.2. Matching and optical flow
Deep-Matching. For every pair of images in between which an Optical Flow (OF) field is
computed, an initial matching is first quantified using a semi-dense matching algorithm called
DeepMatching (DM) [43]. In DM, the correlation is quantified by means of Normalized Cross
Correlation (NCC) of HOG descriptors of 4×4 pixel patches called atomic patches. Furthermore,
this correlation is computed in a pyramidal scheme to, first, aggregate coarser correspondence
by going up in the pyramid, and then, refine the correlation correspondences by optimizing the
backtracking to the bottom of the pyramid and retrieve optimized matches of atomic patches.
Besides the scale invariance insured by this multi-scale pyramidal scheme, the used operators
for recursive construction of the correlation pyramid make further analysis weakly affected by
non-rigidness and, more importantly, shows robustness against repetitive patterns. For speed-
up, the parameters are tuned so the search area, the rotation and scale factors of a match are
restricted to a range that can not be exceeded.

Optical flow computing. These dense matches are then used to initialize a further computation
of a dense OF field F⃗ that minimizes a weighted energy functional based on two data terms EDB
and EDG, from the brightness constancy assumption and the gradient constancy assumption
respectively and a smoothness term EREG. These assumptions respectively stipulate that the
color and the edges between two successive frames are conserved, and the regularizer encourages
the spatial smoothness of the flow field. For this, DeepFlow is used [44](DF). DF is similar to
the well known Brox and Malik [45] algorithm but, in addition, takes a matching term EM to
further constrain the minimization, such as:

EOF(i,j) =

∫ ∫
Ω

(EDG(i, j) + αEDBi, j + σEreg(i, j)
+ βEM(i, j)) dX, (5)

Furthermore, DF have a weighting strategy that has also been shown to be robust to repetitive
texture. A robust cost function ψ(s2) =

√
S ² + ϵ2 with ϵ = 0.001 is used for optimization and for

all terms. This makes the energy functional to minimize non-convex and non-linear. Let Ii and
I j be 2 consecutive frames defined on Ω with 3 RGB channels: Ii, I j : Ω → R3. The estimated
optical flow field is then F⃗ = (Fx, Fy) : Ω → R2 and can be viewed as the change of structured
light between the images, or in other terms, as the sub-pixelic displacement from an image Ii to
an image I j of the same scene at different time indexes ti and t j. This can be seen as the velocity
of the observed scene projected onto a subspace orthogonal to the line-of-sight (image plane)
if the set of dates are separated by unit intervals ∆t = ti+1 − ti = 1. OF fields are thus similar,
in the physical meaning, to the phase observed in DinSAR images (which is projected onto the
line of sight). The weights α, σ and β are tuned so to favor the gradient constancy assumption
over the brightness constancy assumption. This makes the optical flow computation sturdier to
photometric differences.

3.3.3. Scores and errors
To assess the pairwise OF maps computation steps, the following scores and error measures

are computed:
• The mean texture score (from section 3.2): S 1.
• A correlation score per couple of images equal to the sum of all patch similarities along

their DM back-tracking path: S 2.
• The inverse of the mean residual velocity amplitude 1∑

S Z |F(i, j) | observed on the static zones:
R1.
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3.3.4. Scaling and geo-referencing
For the result to be more reliable and to avoid parallax confusion on the computed Optical

Flow maps F⃗, scaling, from sensor coordinates into object space metric coordinates, and geo-
referencing is needed. For this purpose, and considering the pinhole camera geometric and
optical equations, a ground sample distance map ∆mm (in cm/pixel) can be computed from
intrinsic camera parameters and the depth map Z with respect to the image against which the
time-lapse has been co-registered:

∆mm =
xmm

f
Z, (6)

where xmm is the physical metric distance between pixels inside the hardware, or pixel pitch,
and f is the lens focal length. This depth information Z was obtained via a shape from motion
framework, whose seminal work can be found in [46], of stereo image pairs. This 3D photogram-
metric workflow is stabilized by several in-situ control points that were measured on the static
zones seen by the cameras. These in-situ measurements allowed us to constrain the search for
the orientation of the cameras (extrinsic), to perform auto-calibration (intrinsic) and to geo-
reference the obtained 3D model of the object of interest during the bundle-adjustment step.
The depth maps from the camera centers are then retrieved by ray intersection from camera
centers to the 3D points. This way, the components of F⃗ could be scaled to quasi-3D with
known GPS location. Unfortunately, there are two main disadvantages to this technique. First,
the flow of the scene that is projected onto the line of sight is neglected and, hence, the main
direction of the sought after flow should be parallel to the image plane for an accurate augmen-
tation to 3D. Secondly, classic calibration algorithms (such as with calibration chessboards /
corners) can introduce extra uncertainty in the case of geophysical monitoring due to ground
constraints, important distances and the lack of geometrically stable features. Therefore, the
in-situ measurements must be well scattered over the entire scene and measured with a high
accuracy and precision for both the GPS and the corresponding pixel coordinates.

3.4. Regularization
3.4.1. Temporal closure errors

The cost functions for regularizing the obtained velocity and position time series (respec-
tively VTS and PTS) are the norm of the temporal closure errors denoted bLF and bCM for
the Leap-Frog and Common-Master formulations respectively. These temporal closure errors
can be expressed as follows: Let N be the number of images and a the master image for the
regularization step. Its first expression, the Leap-Frog formulation LF, is given by the forward
and backward forms such that:

∀ a ∈ {1..N} ,∀ ranges n ∈ {1..N − a} and ∀µ ∈ {1..a − 1} :

−Fa,a+n +
a+n−1∑

i=a

Fi,i+1 = bLF,

Fa,a−µ +
1∑

i=a−1
−Fi,i+1 = bLF.

(7)

The second expression is the Common-Master formulation CM and is given by the form such
that:

∀ a ∈ {1..N} ,∀i ∈ {a..N} ,∀n ∈ {1..N − i} :
Fi,i+n + Fa,i − Fa,i+n = bCM.

(8)
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F(i, j) denotes either component Fx or Fy of the OF field between two images Ii and I j with date
indexes i and j and at a given pixel p = (x, y)T . These closed loop error measures should be equal
to zero if the flow computation of the involved fields is flawless. In practice, temporal closure
can be violated not only by the uncertainty introduced over the different layers of the pipeline
but an abrupt event can also take place in the observed area inducing the flow computation to
fail capturing the non-smooth large motion.

3.4.2. Temporal closure mappings
Given a master image a, to consider errors in Equations (7) and (8) for all temporal loop

sizes n, we express them as the following pixelwise system of equations:

ALF × FestLF − Fobs = bLF,

ACM × FestCM − Fobs = bCM.
(9)

The processed observation vector F⃗obs belongs to the Data space D = R(N−m)(N−m−1) and is the
same for the CM and LF formulations. It consists of observed OF fields between all possible date
index arrangements after the rejection of m unreliable images, or the NOFF values at a given
pixel (all bi-directed orange arrows in the graphs in figure 2). The sought after estimates F⃗estLF
and F⃗estCM should minimize a misfit error to the model spaces MLF,MCM ⊂ RN−1 respectively
(black simple directed contour arrows of the graphs in figure 2). The model space MLF is the
set of temporally coherent time series: F⃗estLF = {Fi,i+1, i ∈ (0, 1, ...,N − 1)} and MCM is the set of
temporally coherent time series: F⃗estCM = {Fa,i, i ∈ (a+1, ..., a+ N)} relative to a Common Master
image Ia. The output of inverting the Common Master (CM) formulation is thus, theoretically,
the Riemann sum over the output estimated via the Leap-Frog (LF) inversion starting from the
master index a such as:

F⃗estCM(tk) =
k−1∑
i=a

F⃗estLF(ti). (10)

Both temporal closure error formulations in Equations (7) and (8) can thus be deducted from
one another and whereas F⃗estLF can be interpreted as the motion velocity between adjacent date
indexes (at a given pixel), F⃗estCM can be seen as the motion position relative to the Common
Master date a. The output of the LF inversion is thus a VTS and the output of inverting the
CM formulation is a PTS.

Illustration case. To illustrate the temporal closure mappings to inverse, let us consider a time-
lapse of 18 images. Figure 2a shows the Network of Optical Flow Fields (NOFF) index graph,
i.e. the graph of indexes in between which optical flow fields are computed (in orange) and
the index of the estimations (in black). Figure 3 show the induced linear mappings and their
corresponding Singular Values, respectively for the LF and CM formulations. We can see that
both mappings are full-rank and have a low condition number (12.06 and 4.35 respectively for
the LF and CM mappings) which suggests that the solution of the inversion process won’t be
too affected by noise in the observations.

Reducing the maximum range. Considering that the registration error increases with the tem-
poral baseline and the important time span for geophysical monitoring, reducing the maximum
range of the temporal closure loops allows to reduce mis-registration related errors. Figure 2b
shows the obtained index graph and figure 4 the corresponding linear mappings. We can see that
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(a) Index graph for a full range problem: 18 vertices (size of
Fest) and 342 directed edges (size of Fobs). In blue all

observations including image I18.

(b) Index graph for a problem with a reduced range: 18 vertices
and 160 directed edges.

Figure 2: Polygonal index graph for a full-rank problem.
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(a) matrix associated with the model in
Equation (7): ALF , size = 342 × 18

(b) matrix associated with the model in
Equation (8): ACM , size = 342 × 18

(c) Singular values (rounded) of the Leap-Frog linear mapping in figure 3a.

(d) Singular values (rounded) of the Common Master linear mapping in figure 4b.

Figure 3: 3a: Respectively, mappings from the data space D to the model spaces MLF (left) and MLF (right) and thair
histogram of singular values in figure 3c and 3d .The associated condition numbers are respectively 12.06 and 4.35.

The rows and columns are arranged as in equations (11) and (12) but only 1 on 20 homologous indexes are displayed
on the vertical axis.11



this operation does not significantly affect the condition numbers of the mappings to inverse (5
and 7, 79 respectively for the Leap-Frog and Common Master mappings).

We can also see that the CM mapping presents smaller singular values for both the full
and reduced range cases. As a practical matter, small singular values are usually a sign of
ill-conditioning, in the one hand, and it can be difficult to distinguish zero and relatively small
Singular Values in a large scale problem, on the other hand. For these reasons, we tend to say
that, theoretically, inverting the LF formulation is less sensitive to errors in the observations.

(a) matrix associated with the model in
Equation (7), size = 160 × 18: ALF

(b) matrix associated with the model in
Equation (8), size = 160 × 18: ACM

(c) Singular values (rounded) of the linear mappings in figure 4a (top) and 4b
(down).

Figure 4: 4a: Mapping from the data space D to the model space MLF and its histogram of singular values in figure 4c
(top). 4b: Mapping from the data space D to the model space MCM and its histogram of singular values in figure 4c

(bottom). The associated condition numbers are respectively 5.01 and 7.79.
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Missing observations. Let us now suppose that images with date indexes 2, 3, 14, 16 and 17
have been discarded from pre-processing for lack of texture or high deformation 3.2. The index
graph in figure 2b becomes as in figure 5 and the mappings become rank deficient (K is infinite).
The obtained cost to minimize, respectively for the errors in Equations (7) and (8) and at a

Figure 5: NOFF index graph for a rank-deficient problem: 18 vertices and 94 directed edges

given pixel p are:

∥bLF∥L = ||F⃗obs − ALFF⃗est||L =

∥∥∥∥∥∥∥



Fobs0,1
Fobs0,2.

.
Fobs0,5

Fobs1,0
Fobs1,2.

.
Fobs18,13
Fobs18,15


−



1 0 0 . . . 0 0 0 0 0
1 1 0 . . . 0 0 0 0 0

.

.
1 1 1 . . . 0 0 0 0 0
−1 0 0 . . . 0 0 0 0 0
0 1 0 . . . 0 0 0 0 0

.

.
0 0 0 . . . −1 −1 −1 −1 −1
0 0 0 . . . 0 0 −1 −1 −1




Fest0,1
Fest1,2
Fest2,3

.

.

.
Fest16,17
Fest17,18


∥∥∥∥∥∥∥

L

, (11)

∥bCM∥L = ||F⃗obs − ACMF⃗est||L =

∥∥∥∥∥∥∥



Fobs0,1
Fobs0,2.

.
Fobs0,5
Fobs1,0
Fobs1,2.

.
Fobs18,13
Fobs18,15


−



1 0 0 . . . 0 0 0 0 0
0 1 0 . . . 0 0 0 0 0
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.
0 0 0 . . . 0 0 0 0 0
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.

.
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Fest0,1
Fest0,2
Fest0,3

.

.

.
Fest0,16
Fest0,17
Fest0,18


∥∥∥∥∥∥∥

L

. (12)

In this example, the Common Master image is the first valid one, i.e. I0 and both linear
mappings have rank 13. The dimension of the Nullity space of A equals the number of rejected
image indexes leading to 5 linearly dependent columns out of 18. The condition-number is
effectively infinite, the data space D has shrunk and further regularization or Model space M
conditioning is needed to lead to a satisfying solution after inversion. To test the behaviour of
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inverting both systems on the missing data indexes, a random observation vector was generated
by assuming a gaussian process scaled by the temporal step. Figure 6 shows the simulated
outputs. The values corresponding to missing observations are filled with a constant in FestLF
(VTS) and with zeros in FestCM (PTS). To further illustrate how the solutions might be affected

(a) FestLF (Velocity Time Series) (b) FestCM (Position Time Series)

Figure 6: Inverting a random observation vector: 6a: the output of inverting the LF temporal closure mapping is a
VTS. 6b: the output of inverting the CM temporal closure mapping is a PTS. Images 2, 3, 14, 16 and 17 are

discarded. The position of the tracked pixel in I8 (green dot in figure 6a) is the green area in figure 6b.

by missing observations, figure 7 illustrates the mappings when facing an extreme rejection
case (that can occur in situations where the acquisition of the time-lapse is subject to extreme
external conditions) and the obtained solutions F⃗est with manually simulated data that respects
the temporal closure constraint but lacks several data.

3.4.3. Analytical aspect and optimization
As stated before, the mappings from the model spaces MLF and MCM to the Data space D can

be full rank, i.e. rank(A) = N, or rank deficient, depending on the number of missing images.
Given that the rows of A are by definition redundant constraints, the row rank can never be full
and hence the temporal closure linear mappings are never injective. This means that not every
observation F⃗obs ∈ D has a temporally coherent solution. Apart from specific situations where
most of the data is rejected from preprocessing (see illustration case of figure 7), the problem
is over-determined. Generally, for overdetermined problems, an optimal solution to the system
of equations is sought by resolving the normal equation: AT AF⃗est = AT F⃗obs either directly or
by SVD decomposition. This is equivalent to solving the problem in Equation (13) where the
cost function is the squared L = 2 norm Ψ : x → ||y − Ax||2 = ||y||2 − 2yT Ax + ||Ax||2 . The linear
mapping Ψ is twice differentiable and its Hessian is the positive semi-definite matrix 2AT A. The
Least Squares minimization is thus convex and should lead to unique optimal VTS and PTS
solutions, respectively, F⃗estLF and F⃗estCM .

arg min
F⃗est

||A × F⃗est − F⃗obs||L, F⃗obs ∈ D (13)

However, resolving the normal equation directly breaks down for the under-determined case
(severe rejection cases) and the rank deficient case (missing observations). A truncated SVD
decomposition is the most commonly used method for this scenario, and theoretically, gives
the best unbiased Least Squares estimation. Nonetheless, even using a truncated SVD may
lead to numerical difficulties as, for sparse and rank deficient problems, the problem is not
strictly convex (presence of local minima) and this can lead to divergent solution when the
observations are contaminated by noise and especially outliers. Most approaches for avoiding
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(a) matrix associated with the errors in
Equation (7) with an important amount of

missing data: ALF

(b) matrix associated with the errors in
Equation (8) with an important amount of

missing data: ACM

(c) Outputs, inpixels, of inverting matrices in Equations 7a and 7b: Velocity time series

(d) Outputs, in pixels, of inverting matrices in Equations 7a and 7b: Position time series

Figure 7: Illustration of a severe rank deficiency case: only images 0, 4, 10 and 18 are available over the 19 image
forming the time lapse. The matrices of the LF (7a) and CM (7b) linear mappings became large (12 × 18) and of rank

r = 3. 7c: velocity output of inverting a simulated observation vector FestLF and FestCM converted to a VTS. 7d:
position output of inverting a simulated observation vector FestCM and FestLF converted to a PTS. .
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these direct decomposition methods are based on dedicated incremental decomposition methods
or on constrained/unconstrained linear and quadratic programming. Iteratively learning the
inverse has the advantage of allowing to add equality/inequality constraints, to easily change
the cost to be minimized to suit the prior knowledge on the solution and the errors, to add an
initialization for the solution, and to optimize memory consumption by taking full advantage of
the sparsity of the direct mappings. For minimizing a functional this way, one can extensively
explore the model space, systematically (brute force), randomly (Monte Carlo), or use local
properties of the cost function space to find a global minimum. There are many optimization
algorithms and missing observations and rank-deficiency is shown to be handled differently
according to the inner local properties of the used solver. The solvers that are relevant in this
context were thus used in order to make the method tractable and will be cited and tested in
Section 4.2 with simulated condition acquisition. More about direct and iterative methods for
linear sparse problems can be found in [47][48][49].

Missing data and conditioning. As stated above, if there are no missing frames, the problem
is full (column) rank. The convex resolution process theoretically leads to similar minimas
with direct and iterative methods, after velocity/position conversion and for both LF and CM
formulations. In case an image Ii has been rejected from preprocessing because of lack of
information in the area of interest, the rows of A and F⃗obs involving the index i become obsolete
and are deleted. For m deleted images over N, we have 2Nm − m(m + 1) constraints less. The
decay of the rank depends on m and on the contingency of the missing observations. In this case,
for r = rank(A) parameter to estimate the problem is still overdetermined (too many constraints
involving the same unknowns) and for the N− r values involving a rejected index, the problem is
under-determined (redundant columns for LF system and zeroed columns for the CM system).

Reducing the maximum range and conditioning. It is important to note here that reducing the
maximum range (as in figure 4) of the temporal closure loops can also have analytical benefits
for the LF formulation. In fact, this operation prevents the matrix ALF from having a dense row
and, indeed, if a sparse matrix A have even one dense row, AT A becomes full and iterative and
direct methods using the normal equation are affected (much slower).

Error propagation simulation. Observational uncertainties (random errors) are assumed to be
normally distributed with zero mean and with prior covariance Σobs. By ”prior” we imply that
they are not related to the inversion step but to the data and the prior layers of the pipeline.
The uncertainties related to the observations propagate through the inversion process, leading
to estimations F⃗estLF and F⃗estCM with covariances ΣvLF (uncertainties of the LF estimated VTS)
and ΣpCM (uncertainties of the CM estimated PTS). The covariance of the estimations can be
approximated by the rule of linear functions of random variables as in equation:

Σest = A† Σobs A†
T
, (14)

where † stands for the pseudo-inverse of A. As the mappings from VTS to PTS (and vice-versa)
are linear, one can deduct ΣpLF (uncertainties of the LF estimated PTS after conversion) from
ΣvLF and ΣvCM (uncertainties of the CM estimated VTS after conversion) from ΣpCM . To ilustrate,
let us consider statistically independent observational errors with variance 1, in which case
Σobs = σ2

obsI. figure 8 shows the obtained covariance matrices of the estimates. The variances
can be used to state data confidence bounds for the model parameters, e.g. Fest(i,j) ±2σFest(i,j)

(but
can be misleading in the case where the estimations are highly correlated). Figure 8 suggests
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that VTS are less affected by uncertainty accumulation than PTS, on the one hand, and that
the LF minimization is less prone to observational uncertainty propagation on the missing data
indexes, on the other hand.

(a) Hypothetical uncertainties related to
observations

↓

(b) Uncertainties related to the estimated VTS (top) and PTS (bottom) through the LF (left)
and CM (right) inversions.

Figure 8: Illustration of uncertainty propagation through inversion for the hypothetical data described in 3.4.2.
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Weighting. In order to maximize the efficiency of the regularization and tackle heteroscedas-
ticity, which is the fact that the observations are measured with different uncertainties, one can
take into account the proper amount of influence over the observations by using the various resid-
ual error estimations and scores accumulated over the pipeline (Section 3.3). This is equivalent
to preconditioning the matrix A or to minimizing the weighted norm ∥.∥W of the temporal closure
error b where W represents the weights of the inner-product defined by < a, b >W= b∗Wa = bT Wa
and thus must be a positive-definite bilinear preferably symmetric form. Practically, this can
be implemented as follows:

arg min
F⃗est

||W(AF⃗est − F⃗obs)||L. (15)

The weighting matrix W is diagonal and the weights have to be estimated up to a proportionality
factor. To focus accuracy, every observation Fobs(i, j) is given a weight W(i, j) corresponding to
how well-registered the images Ii and I j are (scores S 1 and S 2 in Section 3.3.3). To discount
imprecision of the observations one would want to use an estimator that captures the information
about how volatile Fobsi, j is (score R1). In the Small Baseline Subset workflow, weighting is often
done by multiplying by the precision matrix Σ−1obs.

Adding priors about the solutions. As the sought VTS and PTS are known to be smooth
(quasi-stationary time series), a Tikhonov regularization term can also be incorporated in the
cost function to avoid landing on ”almost minimizers” that have a big norm. This term explicitly
incorporates the regularity requirement (minimum variance) in the formulation of the problem.
The damped system is such as:

arg min
F⃗est

∥W(ALF × F⃗est − F⃗obs)∥L + λ2∥F⃗est∥2

F⃗obs ∈ D
(16)

In Equation (16), the first term measures the goodness of fit to the temporal closure constraints
(in terms of the least L-norm cost), i.e. how well the estimations F⃗est predict the noisy observa-
tions F⃗obs and having important partial residuals ∥ALFw × F⃗est − F⃗obsw∥L means that the solution
does not solve the temporal closure problem. On the other hand, we should not make the
residual smaller than the average size of the errors in F⃗obs as we do not want to fit the noise
in the data. The second term λ2∥F⃗obsw∥2 measures the regularity of the solution based on the
knowledge that the naive estimations (without damping) can be dominated by high-frequency
components with large amplitudes we want to avoid considering as solutions.

These assumptions and empirical experiments will determine the choice of λ that will best
balance the problem, which is beyond the scope of this paper. The final resolution framework
(choice of the solver for resolution and of the norm L) will be discussed in the result section
(Section 4.1). The ”regularization” term in this case (Tikhonov) is linear (L = 2 norm), but
could have been any hand designed regularization priors, such as sparseness in the wavelet space
and so on. Recent examples of cost function analysis and the Tikhonov regularization term for
signal restoration by inversion can be found in [50] and [51].

4. Results on simulations

4.1. Simulated datasets
In order to assess the proposed pipeline in different controlled conditions, synthetic time-

lapses are created by resampling a template image with different types of displacement fields.
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This template image consists of a sub-image retrieved from real data. A simulated frameworks
that consists of 4 synthetically generated time-lapses of a textured semi-rigid fluid (a glacier)
with different parameters is obtained. These datasets have a full resolution (1100*1500 pixels
covering a small sub-area of a glacier) and a simulated temporal range of N = 6. The different
simulated displacement behaviors are:

• Spatial rigidity: No spatial deformation (100% rigid) / Affine geometric transform GA
(non-rigid, global)/ Piecewise-Affine geometric transform GPA (non-rigid, local).

• Temporal evolution of the PTS: Linear LT (VTS = constant) / Polynomial PT (non-linear
PTS).

Geometric transformation Temporal Shift
Dataset GA PAG LT PT

1 - - x
2 x x
3 x x
4 x x

Table 1: Parameters of the generated datasets.

(a) Template image

(b) Warped image (affine) (c) Warped image (piecewise affine)

Figure 9: Example of piecewise affine transform on the dynamic zone. 9a: template image. 9b: affine transform
warped image. 9c: piecewise affine transform warped image.

The template image I0 (figure 9a) is retrieved from real data and is transformed to simulate
images with indexes i = (1, 2, 3, 4, 5). For dataset 1, the transformation is a sub-pixelic rigid
motion (global translation) and the temporal evolution of the translation coefficient is linear
(LT). For datasets 2 and 3, the transformation is a global affine transform (figure 9b) with
greater rotation for dataset 3: for every image i in the simulated time-lapses 2 and 3, a rotation
angle ri (counter-clockwise direction), a shear factor shi and translation factors tx and ty are
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defined with respect to image i = 0, which will set the six degrees of freedom of the affine
transform. The temporal evolution of the translation coefficient is linear for dataset 2 (LT) and
non-linear for dataset 3 (PT). The shear parameter of the affine transform increases along the
vertical and temporal axis. This allows the analysis of the consequences of increasing non-rigid
deformation on Normalized-Cross-Correlation (NCC) and Optical Flow (OF) computing as well
as the ability of the regularization step to decrease the error on the computed VTS and PTS.
These results are reported on figure 10 where the error related to the shear is approximated by
summming over the temporal and horizontal axis, such as:

∑1450
x=0 (

∑4
t=0(ξt)). ξ being the distance

to the ground truth.
Dataset 4 is undergoing a piecewise-affine transform (figure 9c). Whereas affine transform
exhibits several geometric properties that describe a non-rigid global motion as seen on the
image plane, with a piecewise-affine transform, an image is modeled as a set of piecewise-convex
areas (triangles), each of which is undergoing a different affine displacement. This geometric
property grossly models the motion of a semi-rigid fluid subject to local compressions and
dilatations. As for most remote sensing applications, only the object of interest is subject to
motion, nearby zones remaining static. These static zones are retrieved from a real remote
sensing dataset at different times to assess the invariance of the framework to environmental
and photometric changes on motionless subimages.

4.2. Legend and evaluation strategy.
Several experiments are conducted to first evaluate the whole pipeline compared to a NCC

approach with relatively clean data (Experiments A) and, later, to test the robustness of the
inversion step to various acquisition scenarios and with the different proposed formulations
(Experiments B, C and D):

• Experiments A: normal acquisition scenario
• Experiments B: noisy acquisition scenario
• Experiments C: missing observations
• Experiments D: systematic errors

Some other experiments and results will also be discussed.
The presented results are evaluated in terms of the temporal Root Mean Squared distance to

the ground truth solution, denoted by the tilde, ξ = ||F̃ − Fest||2 averaged over a 500× 1000 pixels
central patch. For the LF formulation ξ refers to the error in the estimated Velocity Time Series
(ξVTS) and for the CM formulation ξ refers to the error in the estimated Position Time Series
(ξPTS). For every series of experiments, the iterative method is a weighted non-constrained
damped least-squares minimization (L = 2) solved with the LSQR (Sparse Equations and Least
Squares) algorithm [48][52]. This method proved to be the most appropriate as it is adapted
to Sparse Linear systems (fewer vectors of working storage), to ill-conditioning and to both
over and under determined problems. It is a conjugate-gradient type method that iteratively
uses the Golub-Kahan bidiagonalization process to solve the normal equation. For the series of
experiments presented in Subsections 4.5 and 4.6, other minimization routines that have shown
an interesting behavior are presented (respectively; L = 1 norm for the cost function to deal
with outliers and solvers that have shown a different strategy to deal with missing data in the
observations).

4.3. Experiments A: normal acquisition scenario
In this series of experiments, the whole pipeline is evaluated and compared to Normalized

Cross Correlation (NCC). Results with both the Leap-Frog and Common Master formulations

20



and with direct (truncated SVD) and iterative resolution are presented before and after regu-
larization and with different weights (Non-weighted (NW), weighted with scores: S = S 1 × S 2

(WS), R (WR) and mixed scores S × R (WSR) (see Section 3.3).

Dataset OF Leap Frog LF
Direct Iterative

NW WS WR WSR
1 0.01646 0.00171 0.00130 0.00115 0.00117 0.00289
2 0.08366 0.02005 0.16890 0.01590 0.01583 0.01457
3 0.10486 0.01737 0.01254 0.01097 0.01115 0.01036
4 0.04363 0.02834 0.02970 0.02970 0.02834 0.02115

(a) ξVTS

LF-converted to position

NW WS WR WSR
0.00339 0.00216 0.00135 0.00216
0.06105 0.03312 0.0315 0.02861
0.05623 0.02667 0.02759 0.01846
0.01346 0.01970 0.01750 0.02079

(b) ξPTS

Table 2: OF errors ξVTS (2a) and ξPTS (2b) before and after a weighted LF (WLF) regularization.

Dataset OF Common Master CM
Direct Iterative

NW WS WR WSR
1 0.05385 0.00339 0.00220 0.00135 0.00214 0.00527
2 0.38395 0.06115 0.03311 0.03149 0.02862 0.03450
3 0.42601 0.05623 0.02675 0.02763 0.02188 0.01850
4 0.09780 0.01349 0.01973 0.01748 0.02058 0.01345

(a) ξPTS

CM-converted to velocity

NW WS WR WSR
0.00171 0.00131 0.00116 0.00118
0.02008 0.01688 0.01585 0.01585
0.01737 0.01256 0.01099 0.01116
0.02837 0.02834 0.02968 0.02117

(b) ξVTS

Table 3: OF errors ξPTS (3a) and ξVTS (3b) before and after a weighted CM (WCM) regularization.

Dataset NCC Regularized NCC
1 0.11597 0.07570
2 0.63350 0.37497
3 2.43873 1.19262
4 1.71092 0.30109

(a) ξVTS

Dataset NCC Regularized NCC
1 0.25562 0.19200
2 2.07360 0.43204
3 6.91797 3.83019
4 3.97034 0.51492

(b) ξPTS

Table 4: (NCC) errors ξVTS (4a) and ξPTS (4b) time series before and after (iterative - WLF) regularization.

Conclusions A Results are reported in tables 2, 3 and 4. Unlike Optical Flow (OF), normalized
Cross-Correlation (NCC), fails to capture non-rigid motion, especially on Dataset 3, which
is characterized by a more distorting spatial transformation, and presents many outliers on
Dataset 4, which is undergoing piecewise non-rigid spatial transformations (Table 4). Non-rigid
deformation of the the processed images exhibited indeed abrupt changes in the correlation
similarity measure. The error decreases by regularization for all datasets and weighting the
minimization provides the solutions that give the smallest ξVTS and ξPTS. The mixed weighting
with WSR gives better results most of the time (Tables 2, 3 and 4) and is therefore the one used
for the iterative method and the rest of the experiments. The iterative damped Least-Squares
resolution (LSQR) gives slightly better results than the Truncated SVD method and as the
solver converges within 2 iterations, LSQR is a better choice for the task. The experiments
with this acquisition scenario for minimizing the norm L = 1 of the temporal closure cost
function shown results equivalent to those with L = 2 but with a slower convergence rate. The

21



(a) Non-regularized NCC spatial error maps with increasing shear along the y (directed to the
bottom) and temporal axis.

(b) NCC RMSE with increasing shear (c) OF RMSE with increasing shear

Figure 10: ξVTS in terms of the shear with NCC and OF for Dataset 2. The shear increases with the vertical and
temporal axes resulting in an contamination of the observations.
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inversion being pixelwise, the spatial transformation does not theoretically affect the amount of
extra accuracy given by the temporal regularization, but we can see from figure 10 that when
several observations are affected by registration errors (due to non-rigidity), inversion may fail
to regularize the observations.

4.4. Experiments B: noisy acquisition scenario

In this series of experiments, an additive random white noise ω is injected spatially to all
observations to simulate a measure uncertainty such as: Fobs(i, j) ← Fobs(i, j) + ω(i, j). The ω(i, j)’s
are independent, identically distributed and drawn from zero-mean normal distributions with
different standard deviations σω.

WLF
Dataset σω = 0.1 pixel σω = 1 pixel σω = 5 pixel

OF +ω Direct Iterative OF +ω Direct Iterative OF +ω Direct Iterative
4 0.13167 0.03364 0.03341 1.02832 0.53800 0.51000 5.02794 2.39173 1.38109

Table 5: OF erros ξVTS before and after a weighted LF regularization with different noise levels.

WCM
Dataset σω = 0.1 pixel σω = 1 pixel σω = 5 pixel

OF +ω Direct Iterative OF +ω Direct Iterative OF +ω Direct Iterative
4 0.20621 6.91810 0.03761 1.10082 7.27980 0.54335 5.09987 5.09320 2.26979

Table 6: OF errors ξPTS before and after a weighted CM regularization with different noise levels.

Conclusions B Results are reported in tables 5 and 6. The regularization process accurately
denoises the obtained velocity fields from the added white noise and we can see in figure 11
that static zones have been cleared from residual displacement. Numerical instability associated
with the SVD resolution can be seen in red in Table 6. The damped least-squares solution given
by LSQR gives a ”regularized” solution.

4.5. Experiments C: missing observations

In this series of experiments, images have been discarded from the input of the pipeline
to imitate image rejection because of lack of texture (see Section 3.3). 1, 2 and 2 adjacent
images are discarded over 6 to evaluate how the regularization process fills the gaps in the
estimated VTS and PTS due to missing observations. The gap filling property is specific to the
local approximations made by the used solver on the under-determined sub-systems induced
by missing observations (local non-convexity). When solving with SVD or LSQR, gaps in the
estimated VTS (FestLF) are filled with a constant value interpolated from neighboring data, and
with zeros in the estimated PTS (FestCM) (see illustration case in figure 6). Other solvers were
found to have other local properties for gap-filling. The COBYLA (Constrained Optimization
BY Linear Approximation) algorithm [53][54][52] shows results similar to LSQR where no-data
is missing and a gap filling strategy that gives the closest solutions to ground truth F̃, at the
cost of relatively slower execution time (approximately doubled). The iterative method in this
subsection refers thus to the solution estimated by minimizing the damped least squares cost of
the temporal closure errors with the COBYLA solver.
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(a) Ground truth OF map (b) OF map with additional white
noise

(c) Regularized OF map

(d) OF VTS: LF and CM solutions at the central pixel of the simulated dataset 4.

Figure 11: Iterative LF inversion results after injection of a white noise of standard deviation σω = 5 pixel: Top: OF
map between Images 0 and 1 of Dataset 4. Bottom: OF velocity pixel temporal tracking.

WLF
Dataset 1/6 missing image 2/6 missing images 2/6 adjacent missing images

OF Direct Iterative OF Direct Iterative OF Direct Iterative
4 0.03864+nod 0.53062 0.01667 0.04214+nod 0.79308 0.59328 0.03873+nod 1.66724 0.63470

Table 7: OF ξVTS before and after a weighted LF regularization with different configurations of missing observations.
(nod = no data)

WCM
Dataset 1/6 missing image 2/6 missing images 2/6 adjacent missing images

OF Direct Iterative OF Direct Iterative OF Direct Iterative
4 0.12232+nod 4.22397 1.95198 0.09683+nod 6.52000 3.65185 0.13430+nod 6.50164 2.51473

Table 8: OF ξPTS before and after a weighted CM regularization with different configurations of missing observations.
(nod = no data)
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Figure 12: OF VTS: with SVD and COBYLA at the central pixel of the simulated dataset 4. Image 2 has been
discarded creating a gap of 2 values on the original VTS. The WCM outputs (PTS) are converted to VTS.

Conclusions C Results are reported in tables 7 and 8. Empirical results show that the COBYLA
method outperforms all the other solvers on all datasets and pixel samples through its local
approximations. When data is missing, the Leap-Frog formulation of the temporal closure con-
straint gives better results than the Common-Master formulation (Figure 12) and the solutions
from iterative methods are closer, in terms of the RMSE distance, to the ground truth velocity
F̃.

4.6. Experiments D: Systematic errors

In this series of experiments, noise have been injected into (a part of) the processed velocity
fields that include a common image Ii. The aim is to simulate bias induced by data, or systematic
observational error, in the involved OF maps. This noise is drawn from a normal distribution
with standard deviation σ = 1 and a mean value µ0, which is the parameter we will vary in the
experiments. In real data, this systematic observational error can be caused by a false detected
event in the image Ii.

WLF
Dataset µo = 5 pix µo = 10 pix µo = 20 pix

OF + outliers Direct Iterative OF + outliers Direct Iterative OF + outliers Direct Iterative
L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

4 2.25672 0.07824 0.02232 0.07824 4.49264 1.31144 0.02181 0.07824 8.96470 1.95816 0.02228 1.95662

Table 9: OF ξVTS before and after a weighted LF regularization with different outlier mean amplitude (associated
with 1 image).

WCM
Dataset µo = 5 pix µo = 10 pix µo = 20 pix

OF + outliers Direct Iterative OF + outliers Direct Iterative OF + outliers Direct Iterative
L = 1 L = 2 L = 1 L = 2 L = 1 L = 2

4 2.25912 6.94773 0.01335 0.09298 4.49385 5.98537 0.01341 1.66244 8.96531 8.65959 0.01304 1.97657

Table 10: OF ξPTS before and after a weighted LF regularization with different outlier mean amplitude (associated
with 1 image).
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(a) Ground Truth OF map (b) OF map with additional outliers (c) Regularized OF map

Figure 13: Iterative LF inversion results after systematic error injection on the dynamic zone related to image 3. OF
map between Images 0 and 3 of Dataset 4.

Conclusions D Results are reported in tables 9 and 10. The proposed weights rely strongly on
the residual error in the static zones of the observed scene. In case the bias were injected in the
dynamic zones (Figure 13), the weights might not ”detect” the biased map and, as expected,
using a cost function with L = 1 for the inversion is more robust against outliers (least absolute
deviation). Using the extra regularization term (cost function in equation (16)) prevents the
solution from diverging (Table 10).

4.7. Other experiments and conclusions
To summarize the results on the simulated datasets, the optimal resolution scheme depends

on the nature of the suspected anomalies in the processed velocity and position time series. In
the presence of outliers, such as when a high tolerance in the image rejection phase induced the
presence of occluded zones in the scene, a norm L = 1 should be used to initialize a further regu-
larization with a Least Squares cost function. Using the damped cost function in equation (16)
has allowed us to avoid divergent solutions, which can happen in the presence of important
noise, outliers or missing data. Extensive experiments showed that when combining two acqui-
sition scenarios, the conclusions for both scenarios remain. Initializing with observations makes
the convergence faster, in terms of the number of iterations. Introducing weights makes the
optimization relatively slow because of the effect of floating point arithmetic on the numerical
stability. As the weights must be determined up to a propto this day ity factor, one can consider
scaling them up or rounding / truncating them.

5. Glacier monitoring

5.1. Motivation
The motivation to apply our pipeline on alpine glacier monitoring is driven by the progressive

awareness to climate changes as it is an indicator of the local effects of global warming. Glaciers
are indeed thinning and melting after being subjected to a rise in the surrounding temperature
and a spectacular retreat has been observed on most of the alpine glaciers in recent decades.
The problem is that, to this day, it is still difficult to perform regular ground-based surveys
of alpine glacier flow: only once or twice a year and only on a few spatial points due to their
relatively unreachable location and dangerous geomorphology (crevasses). Remote studying of
glaciers can thus lead us to a more complete understanding and modelling of global warming
(along with meteorological data). On the other hand, studying the melting of glaciers is also
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(a) Right camera on the Argentiere
observation site

(b) Image example 1 (c) Image example 2

(d) Obstructed view (e) Foggy view (f) Sunbeam reflection

Figure 14: Argentiere site: data and artifact examples. In 14f a zoom is made to show a common artifact due to
sunbeam reflections. This artifact does not have constant image coordinates.

useful for economic and security reasons. Economic; because they also are water resources.
Security; because the melting can cause hazardous events to the surrounding areas, such as
destruction by seracs falls, or the so-called “glacier lake outburst flood” events, which occur
when glacier lakes start to drain through a subglacial channel underneath the glacier causing
flood in the downstream valleys. In this section we will show that daily surface measurements
are possible via optical remote sensing if one can tackle the rather difficult radiometry. These
surface measurements can later be used for a better understanding of the glacier’s rheological [55]
and morphological [56] parameters, and predict hazardous events [57].

5.2. Instrumentation and Set-up
The Argentiere glacier (45◦55’N, 6◦57’E) is a temperate alpine glacier located in the Mont-

Blanc massif in France. It is ∼ 10km long with a surface of ∼ 12km2, and between altitudes
3400m (background) and 1600m (snout or Lognan seracs fall). Its surface flow has been studied
numerous times by glaciologists [58] and remote sensors [59][60]. Given the ground constraints
and the expected motion the choice of the acquisition system is made (camera sensor size, lens
parameters range, disparity between the stereo views for depth maps computation, etc.). After
the parametrization of the external (orientation, tilt and distances from the area of interest) and
internal (consensus between focal length, depth of field and light dosage) camera parameters
and finally, the instrumentation of the acquisition system (number of automatic images per day
giving the object known velocity, electric power supply, etc.), the system gives us a stack of
images taken automatically that will be inquired offline. To observe the largest area, without a
”fish eye” effect and with the best resolution that we can embed in the installation, we chose a
Nikon D810 with 20mm lens (f/2.8D) parametrized to have an infinite depth of field. It gives
us 36.3-megapixel images with a high ground resolution, to observe as many details as possible,
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but that makes code optimization needful. The expected inconveniences are indeed prominent
in the raw data (see figure 14). The images also show a complex and repetitive texture pattern
due to crevasses and cracked ice on the glacier zone. As stated before (section 3.3.4), the flow
direction is mainly parallel to the image plane.The choice of the time step was made regarding
the temporal closure range: The time separation between images within the temporal closure
range must be long enough to increase the signal (the flow of the glacier) but short enough to
preserve the features for tracking. A long time separation can indeed decorrelate the images to
co-register and match for 3 main reasons: First, as stated before, photometric change, second;
features on the glaciers may change due to melting, snowfall or changes caused by windblown
snow. And last, good features for correlation, such as the crevasses and the ice foliation (mainly
transverse), appear from time to time at the same places and with similar shapes. For example,
crevasses open regularly upstream of a serac fall. For this reason, and as the Argentiere Glacier
is a temperate glacier with a relatively high velocity, the time step between images in the time-
lapse is 2 days (taken at 12AM to avoid drop shadows as much as possible) and the temporal
closure range was chosen empirically to be within 10 images. This set-up makes the maximum
time step between matched images (observations for the regularization) equal to 20 days. The
time span of the presented results is from July 06 to December 06 2017. The computed depth
map has an average uncertainty of ± 10 m compared to ground truth measurements.

5.3. Results on the Argentiere observation site

(a) Camera motion compensation (zoom) (b) Mean velocity map

Figure 15: Result on the Argentiere glacier. 15a: velocity map with and without camera motion compensation. This
motion can be up to 20 pixels. 15b: mean velocity map in the HSV colorspace. Flow direction is encoded in the color

(Hue) and flow amplitude is encoded in the Value.

The results obtained on the Argentiere site (Figure 14) are illustrated with figure 15b encod-
ing the orientation and magnitude of the mean OF map in the HSV (Hue, Saturation, Value)
colorspace. Images 27, 28, 37, 38, 57, 60, 61, 62, 63, 64, 72, 73 and 74 have been discarded from
preprocessing mainly because of fog, clouds or droplets on the camera screen. These results were
obtained by minimizing a damped Least-squares LF temporal closure error such as in Equa-
tion (16) using the LSQR solver. Data parallelism was performed to cope with the amount of
pixels to process. A zoom on the results for the front and back zones of the glacier (respectively
yellow and red rectangles in figure 14b are shown in figures 16 and 17. x and y components
of the mean OF map are shown separately. We can clearly see the effect of the temporal reg-
ularization. On the static-zones, outliers caused by environmental changes, such as occlusion
by clouds, have been removed. On the glacier zone, the mean OF maps shows a river-like flow
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(a) Original (observed) mean OF map: x-component (b) Mean OF map after regularization: x-component

(c) Signed difference of maps in figure 16a and 16b:
Fobsmean − Festmean

(d) Histogram of values in the difference map in
figure 16c

(e) Original (observed) mean OF map: y-component (f) Mean OF map after regularization: y-component

Figure 16: Results on the Argentiere glacier. Front zoom (in red on figure 14b).
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(a) Original (observed) mean OF map: x-component (b) Mean OF map after regularization: x-component

(c) Original (observed) mean OF map: y-component (d) Mean OF map after regularization: y-component

Figure 17: Results on the Argentiere glacier. Front zoom (in yellow in figure 14b). 17a and 17c: original mean OF
maps. 17b and 17d: mean OF maps after regularization.
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(a) FestLF (VTS) for pixel A in figure 15b - converted to cm

(b) FestLF (VTS) for pixel B in figure 15b - converted to cm

(c) FestLF (VTS) for the seracs zone in figure 15b - converted to cm

Figure 18: Example of estimated VTS F⃗estLF through the pipeline and on pixels showed by a yellow X in figure 15b.
18a: mean velocity has evolved from 37 cm/day (before VTS regularization) to 34 cm/day (after VTS regularization).
18b: mean velocity has evolved from 40 cm/day to 38 cm/day. 18c: mean velocity has evolved from 72 cm/day to
66 cm/day. x-component. Legend. Red: original VTS (OF), Pink: original VTS (NCC), blue: Regularized OF VTS

(LSQR), green: regularized OF VTS (COBYLA).

Figure 19: Example of regularized velocity map converted to cm. Between 06 and 07 June 2017. The gaps in the
maps are due to missing depth data.

31



with more velocity at the center of the glacier caused by the friction on the rough edges within
the bedrock. Figures 16f and 17d show OF maps more consistent with the longitudinal velocity
and slope profiles presented in [61] on the same glacier. Examples of resulting time series for
points A, B and the seracs fall zone in figure 15b are shown in figure 18.

1996 2003 2007 2013 2017
Velocity (cm.day−1) 24-41[62] 23-50[63][56] 23(G)[64]

at altitude 18(O)[64]
2400m (cross-section 4 in [65][66]) 30[65][66] 27[65][66] 18[65][66] 16[65] 22 (us)

15-30(SX) [64]
Mass balance

averaged at altitude between
2380 − 2600m in m.w.e.a−1 [67] −3.05595 −4.9377857 −2.6223 −3.792 −4.993

cumulative precipitation in mm.a−1

(MeteoFrance rainfall archives ) 80 40 89 45 57

Table 11: Velocities of the Argentiere glacier from different sources. [62]: DinSAR between 10 & 11 March. [63]&[56]:
SPOT5 between 23August & 18 Sept. [64]: multi-method, O for optical between 23 September & 7 October, SX for
TerrasarX between 23 October & 3 November and G for GPS geocubes measurments (geocube 1018 in the paper) 16
to 21 September. [66][65]: GPS measurments, annual average. Us: optical photogrametry between June & December.

Spatially: we can see from figures 15b, 16, 17 and 19 that the amplitude of the surface velocity
increases with the slope of the glacier and decrease with the altitude. This is in accordance
with other velocity maps [56][62][63][64] on the glacier d’Argentiere and with a downslope flow
of a fluid. This dynamic is valable for glaciers all over the world (example of Greenland glacier
in [55]). Temporally: we see from figure 18 that the horizontal flow velocity time series don’t
have a noticeable trend at a given spatial point and during the inquired period of time (06 June
to 06 December 2017). This can also be seen for the sliding velocity of the same glacier in [65]
(figure 8.c) during the year 2013 along with further analysis of sudden accelerations peaks. The
obtained results show a mean (spatial and temporal) horizontal velocity of 18 cm/day at the
back of the glacier, as seen by our cameras, of 35 cm/day near the front of the glacier and up
to 66 cm/day in the seracs fall zone. At an altitude of 2400 m (cross section 4 in [65] and [66])
the mean velocity is 22 cm/day. We reported published surface velocities over the Argentière
Glacier on this cross-section since 1996 in table 11 and we can notice the temporal variability
over time along with a general negative trend and local fluctuations. These temporal fluctuations
in the surface flow velocity time series can also be seen in long mono-method time series such
as in [66] (figure 4). In [65], the authors state that the negative trend is due to glacier thinning
(weight loss) and local accelerations can be explained by a rise in temperature and episodes
of precipitation. The inquired period (June - December) presents indeed higher temperature
averages and several precipitation episodes (the rainy season began in August 2017). The semi-
annual seasonality between dry/cool and hot/rainy seasons can be seen in [65] (figure 3). We
can see that years 2003 and 2017 have similar mass balances [67] and velocity profiles [63] and
are averaged over roughly the same period of the year, with a higher cumulative precipitation
for year 2017. None of the referenced works over the Argentière Glacier gave spatially precise,
temporally regularized time series of the surface velocity. These results can be used, for example,
to estimate the glacier basal sliding or the ice thickness [56][67], which is of interest for potential
hydro-power.
These experimental results highlight the potential of remote sensing via time-lapses, on the one
hand, and the necessity to further regularize the automatically obtained results, on the other
hand. As already highlighted section 3.3.4, numerous, precise and accurate in situ measurements
are necessary to decrease the uncertainty related to the scaling to object coordinate and to geo-
reference the observations our depth maps have an uncertainty of ±10m which can be propagated
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to the presented VTS.

6. Conclusion and future work

We have proposed a processing chain for accurate displacement time series generation from
time-lapse images for complex geophysical phenomena monitoring. The pipeline includes ro-
bust pairwise OF maps computation and the formulation of a temporal closure error from a
network of optical flow fields. Temporal closure mappings are formulated as an inverse problem
where a weighted Least Squares solution is sought. Due to eventual ill-conditioning of the lin-
ear forward problem and the presence of noise in the observations, the inversion requires some
extra ”regularization” in order to generate physically plausible solutions. For this, a damping
term was introduced to the cost function. Several formulations, weighting strategies, norms and
solvers have been tested on simulated datasets to demonstrate the efficiency of the proposed
approach under controlled and realistic conditions and to establish an automatic resolution
framework given the a priori information on the observations. The proposed automatic method
has been successfully applied to monitor the Argentiere glacier flow resulting in more complete
and accurate OF maps time series all over the observed scene during a time span of 6 months. In
future works, 2 extensions of the pipeline will be investigated; (1) replacing the manually con-
structed Gabor filter bank by learned convolutionnal filters, and (2) a scene flow [68] processing
for deriving 3D motion fields from stereo regularized optical flow fields.
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