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Abstract—This paper proposes a real-time approach for long-
term inertial navigation based only on an Inertial Measurement
Unit (IMU) for self-localizing wheeled robots. The approach
builds upon two components: 1) a robust detector that uses
recurrent deep neural networks to dynamically detect a variety
of situations of interest, such as zero velocity or no lateral
slip; and 2) a state-of-the-art Kalman filter which incorporates
this knowledge as pseudo-measurements for localization. Eval-
uations on a publicly available car dataset demonstrates that
the proposed scheme may achieve a final precision of 20 m for
a 21 km long trajectory of a vehicle driving for over an hour,
equipped with an IMU of moderate precision (the gyro drift
rate is 10 deg/h). To our knowledge, this is the first paper which
combines sophisticated deep learning techniques with state-of-
the-art filtering methods for pure inertial navigation on wheeled
vehicles and as such opens up for novel data-driven inertial
navigation techniques. Moreover, albeit taylored for IMU-only
based localization, our method may be used as a component
for self-localization of wheeled robots equipped with a more
complete sensor suite.

Index Terms—inertial navigation, deep learning, invariant
extended Kalman filter, autonomous vehicle, inertial odometry

I. INTRODUCTION

Inertial navigation, or “inertial odometry”, uses an Inertial
Measurement Unit (IMU) consisting of accelerometers and
gyrometers to calculate in real time by dead reckoning the
position, the orientation, and the 3D velocity vector of a
moving object without the need for external references or
extra sensors. Albeit a mature field, the development of low-
cost and small size inertial sensors over the past two decades
has attracted much interest for robotics and autonomous
systems applications, see e.g. [1]–[3].

High precision Inertial Navigation Systems (INS) achieve
very small localization errors but are costly and rely on time-
consuming initialization procedures [4]. In contrast, MEMS-
based IMU suffer from large errors such as scale factor, axis
misalignment, thermo-mechanical white noise and random
walk noise, resulting in rapid localization drift. This prompts
the need for fusion with complementary sensors such as GPS,
cameras, or LiDAR, see e.g., [5]–[7].

In this paper, we provide a method for long-term localiza-
tion for wheeled robots only using an IMU. Our contribu-
tions, and the paper’s organization, are as follows:
• we introduce specific motion profiles frequently encoun-

tered by a wheeled vehicle which bring information
about the motion when correctly identified, along with
their mathematical description in Section III;

• we design an algorithm which automatically detects
in real time if any of those assumptions about the
motion holds in Section IV-A, based only on the IMU
measurements. The detector builds upon recurrent deep
neural networks [8] and is trained using IMU and ground
truth data;

• we implement a state-of-the-art invariant extended
Kalman filter [9,10] that exploits the detector’s outputs
as pseudo-measurements to combine them with the IMU
outputs in a statistical way, in Section IV-B. It yields
accurate estimates of pose, velocity and sensor biases,
along with associated uncertainty (covariance);

• we demonstrate the performances of the approach on
a publicly available car dataset [11] in Section V. Our
approach solely based on the IMU produces accurate
estimates with a final distance w.r.t. ground truth of 20m
on the 73 minutes test sequence urban16, see Figure
1. In particular, our approach outperforms differential
wheel odometry, as well as wheel odometry aided by
an expensive fiber optics gyro whose drift is 200 times
smaller than the one of the IMU we use;

• this evidences that accurately detecting some specific
patterns in the IMU data and incorporating this informa-
tion in a filter may prove very fruitful for localization;

• the method is not restricted to IMU only based naviga-
tion. It is possible to feed the Kalman filter with other
sensors’ measurements. Besides, once trained the detec-
tor may be used as a building block in any localization
algorithm.

A. Related Works

Odometry and localization based on inertial sensors, cam-
eras, and/or LIDARs have made tremendous progresses over
the last decade, enabling robust real-time localization sys-
tems, see e.g., [5]–[7]. As concerns back-end techniques, al-
though optimization-based methods tend to presently prevail,
filtering based methods building upon the Invariant Extended
Kalman Filter (IEKF) [9,10] are currently gaining interest,
owing to its theoretical guarantees in terms of convergence
and consistency. The IEKF [9] has already given rise to a
commercial product in the field of high precision navigation,
see [10,12]. It has also been successfully applied to visual
inertial odometry, in [13]–[15] and bipedal robotics [16].

Taking into account vehicle constraints and odometer mea-
surements are known to increase the robustness of visual-
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Fig. 1. Trajectory ground truth and estimates obtained by various methods: integration of IMU signals; odometry based on a differential wheel encoder
system; odometry combined with an highly accurate and expensive Fiber optics Gyro (FoG) that provides orientation estimates; and the proposed RINS-W
approach which considers only the IMU sensor embarked in the vehicle, and which outperforms the other schemes. The final distance error for this
long-term sequence urban16 (73 minutes) of the car dataset [11] is 20m for the RINS-W solution. The deep learning based detector (see Section IV-A)
has of course not been trained or cross-validated on this sequence.

inertial systems [17,18]. Although quite successful, systems
using vision continuously process a large amount of data
which is computationally demanding and energy consuming.
Moreover, an autonomous vehicle should run in parallel its
own robust IMU-based localization algorithm to perform
maneuvers such as emergency stops if LiDAR and camera
are unavailable due to lack of texture or information, and
more generally failures [1].

Inertial navigation systems have long leveraged pseudo-
measurements from IMU signals, e.g. the widespread Zero
velocity UPdaTe (ZUPT) [19,20]. Upon detection of a zero-
velocity event, such pseudo-measurement can be fused with
the dead reckoning motion model in an extended Kalman
filter [21,22] or in a factor graph, see [23].

Very recently, great efforts have been devoted to the
use of deep learning and more generally machine learning
frameworks for pedestrian inertial navigation [24]–[28]. In
[24] velocity is estimated using support vector regression
whereas [25]–[27] use recurrent neural networks respectively
for ZUPT detection, speed estimation, and end-to-end iner-
tial navigation. Those methods are promising but difficult
to transfer to a wheeled robots since they generally only
consider horizontal planar motion, and must infer velocity di-
rectly from a small sequence of IMU measurements, whereas
we can afford to use larger sequences. Finally, in [29], we
used Gaussian Processes to learn and correct wheel encoders
errors to improve wheel encoder based dead reckoning in 2D.

II. INERTIAL NAVIGATION SYSTEM & SENSOR MODEL

Denoting the IMU orientation by Rn ∈ SO(3), i.e. the
rotation matrix that maps the body frame to the world frame
W, its velocity in W by vW

n ∈ R3 and its position in W by
pW
n ∈ R3, the dynamics are as follows

Rn+1 = Rn expSO(3) (ωndt) , (1)

vW
n+1 = vW

n + (Rnan + g) dt, (2)
pW
n+1 = pW

n + vW
ndt, (3)

between two discrete times, with sampling time dt, and where
(R0,v

W
0 ,p

W
0 ) is the initial configuration. The true angular

velocity ωn ∈ R3 and the true specific acceleration an ∈ R3

are the inputs of the system (1)-(3). In our application sce-
narios, the effects of earth rotation and Coriolis acceleration
are ignored, and earth is considered flat.

A. Inertial Measurement Unit (IMU) Model

The IMU provides noisy and biased measurements of ωn ∈
R3 and an ∈ R3 as follows

ωIMU
n = ωn + bωn +wωn , (4)

aIMU
n = an + ba

n +wa
n, (5)

where bωn , ba
n are quasi-constant biases and wωn , wa

n are
zero-mean Gaussian noises. The biases follow a random-walk

bωn+1 = bωn +wbω
n , (6)



ba
n+1 = ba

n +wba
n , (7)

where wbω
n , wba

n are zero-mean Gaussian noises.
All sources of error - particularly biases - are yet unde-

sirable since a simple implementation of (1)-(3) leads to a
triple integration of raw data, which is much more harmful
that the unique integration of differential wheel speeds. Even
a small error may thus cause the position estimate to be way
off the true position, within seconds.

III. SPECIFIC MOTION PROFILES FOR WHEELED
SYSTEMS

We describe in this section characteristic motions fre-
quently encountered by a wheeled robot, that provide use-
ful complementary information to the IMU when correctly
detected.

A. Considered Motion Profiles

We consider 4 distinct specific motion profiles, whose
validity is encoded in the following binary vector:

zn = (zVEL
n , zANG

n , zLAT
n , zUP

n ) ∈ {0, 1}4. (8)

• Zero velocity: the velocity of the platform is null. As a
consequence so is the linear acceleration, yielding:

zVEL
n = 1⇒

{
vn = 0

Rnan + g = 0
. (9)

Such profiles frequently occur for vehicles moving in
urban environments, and are leveraged in the well known
Zero velocity UPdaTe (ZUPT), see e.g. [19,20].

• Zero angular velocity: the heading is constant:

zANG
n = 1⇒ ωn = 0. (10)

• Zero lateral velocity1: the lateral velocity is considered
roughly null

zLAT
n = 1⇒ vLAT

n ' 0, (11)

where we obtain the lateral velocity vLAT
n after expressing

the velocity in the body frame B as

vB
n = RT

nv
W
n =

vFOR
n

vLAT
n

vUP
n

 . (12)

• Zero vertical velocity: the vertical velocity is consid-
ered roughly null

zUP
n = 1⇒ vUP

n ' 0. (13)

The two latter are common assumptions for wheeled robots
or cars moving forward on human made roads.

B. Discussion on the Choice of Profiles

The motion profiles were carefully chosen in order to
match the specificity of wheeled robots equipped with shock
absorbers. Indeed, as illustrated on Figure 2, when the wheels
of a car actually stop, the car undergoes a rotational motion

1Without loss of generality, we assume that the body frame is aligned
with the IMU frame.

0 1 2 3 4 5 6 7 8

0

2

4

6

8

·10−4

t (s)

1
0
4
m
/
s,

ra
d
/
s

‖vW
n‖ ‖ωn‖ zVEL

n

Fig. 2. Real IMU data of a car stopping from sequence urban06 of [11].
We see (9) holds and thus zVEL

n = 1 at t = 5.8s while (10) does not hold
yet.

forward and then backward. As a result, null velocity (9) does
not imply null angular velocity (10). For the level of precision
we pursue in the present paper, distinguishing between (9)
and (10) is pivotal since it allows us to: i) properly label
motion profiles before training (see Section V-B, where we
have different thresholds on position and on angular velocity);
and: ii) improve detection accuracy since only one motion
pattern can be identified as valid.

(11) and (13) generally hold for robots moving indoors or
cars on roads. Note that (13) is expressed in the body frame,
and thus generally holds for a car moving on a road even if
the road is not level. As such (13) is more refined that just
assuming the car is moving in a 2D horizontal plane. And
it is actually quite a challenge for an IMU-based detector to
identify when (11) and (13) are not valid.

C. Expected Impacts on Robot Localization

The motion profiles fall into two categories in terms of the
information they bring:

1) Zero velocity constraints: the profiles (9)-(10), when
correctly detected may allow to correct the IMU biases,
the pitch and the roll.

2) Vehicle motion constraints: the profiles (11) and (13)
are useful constraints for the estimates accuracy over the
long term. In particular, Section V-E will experimentally
demonstrate the benefits of accounting for (11) and (13).

IV. PROPOSED RINS-W ALGORITHM

This section describes our system for recovering trajectory
and sensor bias estimates from an IMU. Figure 3 illustrates
the approach which consists of two main blocks summarized
as follow:
• the detector estimates the binary vector zn from raw

IMU signals, and consists of recurrent neural networks;
• the filter integrates the IMU measurements in its dy-

namic model and exploits the detected motion profiles
as pseudo-measurements to refine its estimates, as cus-
tomary in inertial navigation, see e.g. [19].

The detector does not use the filter’s output and is based
only on IMU measurements. Thus the detector operates
autonomously and is trained independently, see Section V-B.
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Fig. 4. Structure of the detector, which consists for each motion pattern
of a recurrent neural network (LSTM) followed by a threshold to obtain an
output vector ẑn that consists of binary components. The hidden state hn

of the neural network allows the full structure to be recursive.

Note that our approach is different from more tightly coupled
approaches such as [30]. We now describe each block.

A. The Specific Motion Profile Detector

The detector determines at each instant n which ones of the
specific motion profiles (8) are valid, see Figure 4. The base
core of the detector is a recurrent neural network, namely a
Long-Short Term Memory (LSTM) [8]. The LSTMs take as
input the IMU measurements and compute:

ûn+1, hn+1 = LSTM
(
{ωIMU

i , aIMU
i }

n
i=0

)
(14)

= LSTM(ωIMU
n , aIMU

n , hn) , (15)

where ûn+1 ∈ R4 contains probability scores for each motion
profiles and hn is the hidden state of the neural network.
Probability scores are then converted to a binary vector ẑn =
Threshold (ûn+1) with a threshold for each motion profile.

The thresholds must be set with care, and the procedure
will be described in Section V-A. Indeed, false alarms lead
to degraded performance, since a zero velocity assumption
is incompatible with an actual motion. On the other hand, a
missed profile is not harmful since it results in standard IMU
based dead reckoning using (1)-(3).

B. The Invariant Extended Kalman Filter

The extended Kalman filter is the most widespread tech-
nique in the inertial navigation industry, since it was first
successfully used in the Apollo program half a century
ago. However, recent work advocates the use of a modified
version, the Invariant Extended Kalman Filter (IEKF) [9] that
has proved to bring drastic improvement over EKF, and has

PropagationωIMU
n

aIMU
n

ẑn+1

Update x̂n+1

Invariant Extended Kalman Filter

Fig. 5. Structure of the IEKF. The filter leverages motion profile information
ẑn both for the propagation and the update of the state x̂n+1.

recently given raise to a commercial product, see [10,12], and
various successes in robotics [13]–[16]. We thus opt for an
IEKF to perform the fusion between the IMU measurements
and the detected specific motion profiles. The IEKF outputs
the state x̂n that consists of pose and velocity of the IMU, the
IMU biases, along with their covariance. We now describe
the filter more in detail, whose architecture is displayed on
Figure 5.

1) IMU state: we define the IMU state as

xn = (Rn, vW
n , pW

n , bωn , ba
n) , (16)

which contains robot pose, velocity, and the IMU biases. The
state evolution is given by the dynamics (1)-(7), see Section
II. As (9)-(13) are all measurements expressed in the robot’s
frame, they lend themselves to the Right IEKF methodology,
see [9]. Applying it, we define the linearized state error as

en =

[
ξn
ebn

]
∼ N (0,Pn) , (17)

where uncertainty is based on the use of the Lie exponential
as advocated in [31] in a wheel odometry context, and
mapped to the state as

χn = expSE2(3) (ξn) χ̂n, (18)

bn = b̂n + ebn, (19)

where χn ∈ SE2(3) is a matrix that lives is the Lie group
SE2(3) and represents the vehicle state Rn, vW

n , pW
n (see

Appendix A for the definition of SE2(3) and its exponential
map), Pn ∈ R15×15 is the error state covariance matrix,
bn = (bωn ,b

a
n) ∈ R6 , b̂n =

(
b̂ωn , b̂

a
n

)
∈ R6, and (̂·)

denote estimated variables.
2) Propagation step: if no specific motion is detected, i.e.

ẑVEL
n+1 = 0, ẑANG

n+1 = 0, we apply (1)-(7) to propagate the
state and obtain x̂n+1 and associated covariance through the
Riccati equation

Pn+1 = FnPnF
T
n +GnQnG

T
n , (20)

where the Jacobians Fn, Gn are given in Appendix B,
and where Qn denotes the covariance matrix of the noise
wn =

(
wωn ,w

a
n,w

bω

n ,wba

n

)
∼ N (0,Qn). By contrast, if a

specific motion profile is detected, we modify model (1)-(7)
as follows:

ẑVEL
n+1 = 1⇒

{
vW
n+1 = vW

n

pW
n+1 = pW

n
, (21)



ẑANG
n+1 = 1⇒ Rn+1 = Rn, (22)

and the estimated state x̂n+1 and covariance Pn+1 are
modified accordingly.

3) Update: each motion profile yields one of the following
pseudo-measurements:

yVEL
n+1 =

[
RT

n+1v
W
n+1

ba
n+1 −RT

n+1g

]
=

[
0

aIMU
n

]
, (23)

yANG
n+1 = bωn+1 = ωIMU

n , (24)
yLAT
n+1 = vLAT

n+1 = 0, (25)
yUP
n+1 = vUP

n+1 = 0. (26)

A vector yn+1 is computed by stacking the pseudo-
measurements of the detected motion profiles. Note that, if
ẑVEL
n+1 = 1 we do not consider (25)-(26) since (23) implies

(25)-(26). If no specific motion is detected, the update step
is skipped, otherwise we follow the IEKF methodology [9]
and compute

K = Pn+1H
T
n+1/

(
Hn+1Pn+1H

T
n+1 +Nn+1

)
, (27)

e+ = K (yn+1 − ŷn+1) =

[
ξ+

eb+

]
, (28)

χ̂+
n+1 = expSE2(3)

(
ξ+
)
χ̂n+1, b̂+

n+1 = b̂n+1 + eb+,

(29)

P+
n+1 = (I−KHn+1)Pn+1, (30)

summarized as Kalman gain (27), state innovation (28), state
update (29) and covariance update (30), where Hn+1 is
the measurement Jacobian matrix given in Appendix B and
Nn+1 the noise measurement covariance.

4) Initialization: launching the system when the platform
is moving without estimating biases and orientation can
induce drift at the beginning which then is impossible to
compensate. As the filter is able to correctly self-initialize
the biases, pitch, roll and its covariance matrix when the
trajectory is first stationary, we enforce each sequence in
Section V to start by a minimum of 1 s stop. Admittedly
restrictive, the required stop is of extremely short duration,
especially as compared to standard calibration techniques [4].

V. RESULTS ON CAR DATASET

The following results are obtained on the complex urban
LiDAR dataset [11], that consists of data recorded on a
consumer car moving in complex urban environments, e.g.
metropolitan areas, large building complexes and under-
ground parking lots, see Figure 6. Our goal is to show that
using an IMU of moderate cost, one manages to obtain
surprisingly accurate dead reckoning by using state-of-the-art
machine learning techniques to detect relevant assumptions
that can be fed into a state-of-the-art Kalman filter. The
detector is trained on a series of sequences and tested on
another sequences, but all sequences involve the same car and
inertial sensors. Generalization to different robot and IMU is
not considered herein and is left for future work.

2https://www.xsens.com/

Fig. 6. The considered dataset [11] contains data logs of a Xsens MTi-
3002 (right) recorded at 100Hz along with the ground truth pose.

A. Implementation Details

We provide in this section the detector and filter setting of
the RINS-W system. The detector disposes of four LSTMs,
one for each motion profile. Each LSTM consists of 2 layers
of 250 hidden units and its hidden state is mapped to a
score probability by a 2 layers multi-perceptron network with
a ReLU activation function and is followed by a sigmoid
function [8] that outputs a scalar value in the range [0, 1].
We implement the detector on PyTorch3 and set the threshold
values to 0.95 for (zVEL

n , zANG
n ), and 0.5 for (zLAT

n , zUP
n ). The

filter operates at the 100Hz IMU rate (dt = 10−2 s) and its
noise covariance matrices are parameterized as

Qn = diag
(
σ2
ωI, σ

2
aI, σ

2
bω

I, σ2
ba
I
)
, (31)

Nn = diag
(
σ2

VEL,vI, σ
2
VEL,aI, σ

2
ANGI, σ

2
LAT, σ

2
UP

)
, (32)

where we set σω = 0.01 rad/s, σa = 0.2m/s2, σbω =
0.001 rad/s, σba = 0.02m/s2 for the noise propagation co-
variance matrix Qn, and σVEL,v = 1m/s, σVEL,a = 0.4m/s2,
σANG = 0.04 rad/s, σLAT = 3m/s, and σUP = 3m/s for the
noise measurement covariance matrix Nn.

B. Detector Training

The detector is trained with the sequences urban06 to
urban14, that represents 100 km of training data (sequences
urban00 to urban05 does not have acceleration data). For
each sequence, we compute ground truth position velocity
vW
n and angular velocity ωn after differentiating the ground

pose and applying smoothing. We then compute the ground-
truth zn by applying a small threshold on the ground truth
velocities, e.g. we consider zVEL

n = 1 if ‖vW
n‖ < 0.01m/s.

We set similarly the other motion profiles and use a threshold
of 0.005 rad/s for the angular velocity, and a threshold of
0.1m/s for the lateral and upward velocities.

The detector is trained during 500 epochs with the ADAM
optimizer [32], whose learning rate is initializing at 10−3

and managed by a learning rate scheduler. Regularization is
enforced with dropout layer, where p = 0.4 is the probability
of any element to be zero. We use the binary cross entropy
loss since we have four binary classification problems. For
each epoch, we organize data as a batch of 2min sequences,
where we randomly set the start instant of each sequence, and
constraints each starting sequence to be a stop of at minimum
1 s. Training the full detector takes less than one day with a
GTX 1080 GPU.

3https://pytorch.org/



test seq. wheels odo. odo. + FoG RINS-W

15: 16min 19 / 5 / 36 7 / 2 / 7 7 / 5 / 12
16: 73min 140 / 127 / 1166 34 / 20 / 164 27 / 11 / 20
17: 19min 96 / 64 / 427 58 / 51 / 166 13 / 11 / 13

15-17:
114 / 98 / 677 34 / 30 / 152 22 / 10 / 18

108min

Table 1. Results obtained by the 3 methods on urban test sequences 15,
16, 17 in terms of: m-ATE /aligned m-ATE / final distance error to ground
truth, in m. Last line is the concatenation of the three sequences. Direct IMU
integration always diverges. The proposed RINS-W outperforms differential
wheel speeds based odometry and outperforms on average (see last line) the
expensive combination of odometry + FoG. Indeed, RINS-W uses an IMU
with gyro stability of 10deg /h, whereas FoG stability is 0.05deg /h.

C. Evaluation Metrics

To assess performances we consider three error metrics:
1) Mean Absolute Trajectory Error (m-ATE): which av-

erages the planar translation error of estimated poses with
respect to a ground truth trajectory and is less sensitive to
single poor estimates than root mean square error;

2) Mean Absolute Aligned Trajectory Error (aligned m-
ATE): that first aligns the estimated trajectory with the
ground truth and then computes the mean absolute trajectory
error. This metric evaluates the consistency of the trajectory
estimates;

3) Final distance error: which is the final distance be-
tween the un-aligned estimates and the ground truth.

D. Trajectory Results

After training the detector on sequences urban06 to
urban14, we evaluate the approach on test sequences
urban15 to urban17, that represent 40 km of evaluation
data. We compare 4 methods:
• IMU: the direct integration of the IMU measurements

based on (1)-(7), that is, pure inertial navigation;
• Odometry: the integration of a differential wheel en-

coder which computes linear and angular velocities;
• RINS-W (ours): the proposed approach, that uses only

the IMU signals and involves no other sensor.
• Odometry + FoG: the integration of a differential

wheel encoder which computes only linear velocity.
The angular velocity is obtained after integrating the
increments of an highly accurate and costly KVH DSP-
17604 Fiber optics Gyro (FoG). The FoG gyro bias
stability (0.05 deg /h) is 200 times smaller than the gyro
stability of the IMU used by RINS-W;

We delay each sequence such that the trajectory starts
with a 1 s stop to initialize the orientation and the biases,
see Section IV-B. Bias initialization is also performed for
IMU pure integration and the FoG. Optimized parameters for
wheel speeds sensors calibration are provided by the dataset.

Experimental results in terms of error with respect to
ground truth are displayed in Table 1, and illustrated on
Figures 1, 7, and 8. Results demonstrate that:

4https://www.kvh.com
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Fig. 7. Ground truth and trajectory estimates for the test sequence urban15
of the car dataset [11]. RINS-W obtains results comparable with FoG-based
odometry.

• directly integrating IMU leads to divergence at the first
turn, even after a careful calibration procedure;

• wheel-based differential odometry accurately estimates
the linear velocity but has troubles estimating the yaw
during sharp bends, even if the dataset has been obtained
in an urban environment and the odometry parameters
are calibrated. This drawback may be remedied at the
expense of using an additional high-cost gyroscope;

• the proposed scheme completely outperforms wheel en-
coders, albeit in urban environment. More surprisingly,
our approach competes with the combination of wheel
speed sensors + (200 hundred times more accurate)
Fyber optics Gyro, and even outperforms it on average.

Furthermore, although comparisons were performed in 2D
environments our method yields the full 3D pose of the robot,
and as such is compatible with non planar environments.

E. Discussion

The performances of RINS-W can be explained by: 1)
a false-alarm free detector; 2) the fact incorporating side
information into IMU integration obviously yields better
results; and 3) the use of a recent IEKF that has been proved
to be well suited for localization tasks.

We also emphasize the importance of (11) and (13) in
the procedure, i.e. applying (25)-(26). For illustration, we
consider sequence urban07 of [11], where the vehicle
moves during 7 minutes without stop so that ZUPT may not
be used. We implement the detector trained on the first 6
sequences, and compare the proposed RINS-W to a RINS-
W which does not use updates (25)-(26) when detected,
see Figure 9. Clearly, the reduced RINS-W diverges at the
first turn whereas the full RINS-W is accurate along all the
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Fig. 8. Ground truth and trajectory estimates for the test sequence urban17
of the car dataset [11]. RINS-W clearly outperforms the odometry and even
the odometry + FoG solution. We note that RINS-W accurately follows the
interchange road located at (x = 2, y = 1).

trajectory and obtains a final distance w.r.t. ground truth of
5m. In contrast, odometry + FoG achieves 16m.

F. Detector Evaluation

In Section V-E we mentioned three possible reasons ex-
plaining the performances of RINS-W, but could not assess
what is owed to each. To assess the detector’s performance,
and to demonstrate the interest of our powerful deep neural
network based approach (see Section IV-A) we focus on the
zero velocity detection (9), and compare the detector with the
Acceleration-Moving Variance Detector (AMVD) [20] on the
test sequences urban15-17, which represent 64.104 mea-
surements. The AMVD computes the accelerometer variance
over a sample window W = 102 and assumes the vehicle is
stationary if the variance falls below a threshold γ = 10−3.
To make sure AMVD performs at its best, the parameters W
and γ are optimized by grid search on the test sequences.
Results are shown in Table 2 and demonstrate the detector is
more accurate than this “ideal” AMVD.

VI. CONCLUSION

This paper proposes a novel approach for robust inertial
navigation for wheeled robots (RINS-W). Even if an au-
tonomous vehicle is equipped with wheel encoders, LiDAR,
and vision besides the IMU, the algorithm may be run in
parallel for safety, in case of sensor failure, or more simply
for validation such as slip angle monitoring [1]. Our approach
exploits deep neural networks to identify specific patterns in
wheeled vehicle motions and incorporates this knowledge in
IMU integration for localization. The entire algorithm is fed
with IMU signals only, and requires no other sensor. The
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Fig. 9. Comparison on the sequence urban07 between proposed RINS-
W, and a similar algorithm that does not use zero lateral and vertical
velocities assumptions brought by the detector, see (25)-(26). The final
distance between ground truth and RINS-W estimates is as small as 5m,
whereas ignoring (25)-(26) yields divergence.

zveln detection ideal AMVD our detector

true positive / false pos. 47.104 / 4.103 48.104 / 7.102

true negative / false neg. 16.104 / 1.104 16.104 / 9.103

precision / recall 0.974 / 0.940 0.996 / 0.940

Table 2. Results on zero velocity (9) detection obtained by an ideal
AMVD [20] and the proposed detector on test sequences urban15-17. The
proposed detector systematically obtains better results and precision. This is
remarkable because the detector is not trained on those sequences, whereas
AMVD parameters were optimized on the considered test sequences.

method leads to surprisingly accurate results, and opens new
perspectives for combination of data-driven methods with
well established methods for autonomous systems. Moreover,
the pseudo measurements output by the detector are not
reserved for dead reckoning and may prove useful in any
fusion scheme. In future work, we would like to address
the learning of the Kalman covariance matrices, and also the
issue of generalization from one vehicle to another.

APPENDIX A

The Lie group SE2(3) is an extension of the Lie group
SE(3) and is described as follow, see [9] for more details.
A 5× 5 matrix χn ∈ SE2(3) is defined as

χn =

[
Rn vW

n pW
n

0 I

]
∈ SE2(3). (33)

The uncertainties ξn ∈ R9 are mapped to the Lie algebra
se2(3) through the transformation ξn 7→ ξ∧n defined as

ξn =
(
ξRn , ξ

v
n, ξ

p
n

)
, (34)



ξ∧n =

[ (
ξRn
)
× ξvn ξpn

0

]
∈ se2(3), (35)

where (·)× transforms a vector to a skew-symmetric matrix,
ξRn ∈ R3, ξvn ∈ R3 and ξpn ∈ R3. The closed-form expression
for the exponential map is given as

expSE2(3) (ξn) = I+ ξ∧n + a(ξ∧n )
2 + b(ξ∧n )

3, (36)

where a =
1−cos(‖ξRn ‖)
‖ξRn ‖

and b =
‖ξRn ‖−sin(‖ξ

R
n ‖)

‖ξRn ‖3
.

APPENDIX B

Following the Right IEKF of [9], the Jacobians required
for the computation of the filter propagation (20) are given
as

Fn = I+


0 0 0 −Rn 0

(g)× 0 0 −(vW
n )×Rn −Rn

0 I 0 −(pW
n )×Rn 0

0 0 0 0 0
0 0 0 0 0

 dt, (37)

Gn =


Rn 0 0 0

(vW
n )×Rn Rn 0 0

(pW
n )×Rn 0 0 0
0 0 I 0
0 0 0 I

 dt, (38)

when ẑVEL
n = 0 and ẑANG

n = 0. Otherwise, we set the
appropriate rows to zero in Fn and Gn, i.e.:
• if ẑVEL

n = 1 we set the 4 to 9 rows of the right part of
Fn in (37) and of Gn to zero.

• if ẑANG
n = 1 we set the 3 first rows of the right part of

Fn in (37) and of Gn to zero.
Once again following [9], the measurement Jacobians used

in the filter update (27)-(30) are given as

HVEL
n =

[
0 RT

n 0 0 0
RT

n (g)× 0 0 0 −I

]
, (39)

HANG
n =

[
0 0 0 −I 0

]
, (40)

and we obtains HLAT
n and HUP

n as respectively the second and
third row of HVEL

n .
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