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1 Introduction

Inequalities for the logarithmic function are useful in all the areas of mathe-
matics. The most famous logarithmic inequality is without doubt the scholar
one:

log(1 + x) 6 x, x > 0.

It has a place of choice in terms of simplicity and enormous amount of ap-
plications. More complex but sharpest logarithmic inequalities are available
in the literature. Those list below are often considered in various situations:

log(1 + x) 6
x√
x+ 1

, x > 0, (1.1)

log(1 + x) 6
x(2 + x)

2(1 + x)
, x > 0, (1.2)

log(1 + x) 6
x(6 + x)

2(3 + 2x)
, x > 0 (1.3)
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and

log(1 + x) 6
(x+ 2)[(x+ 1)3 − 1]

3(x+ 1)[(x+ 1)2 + 1]
, x > 0. (1.4)

Details can be found in [3] for (1.1), (1.2) and (1.3). See [1, page 1, only for
x > 1] for (1.4). Other sharp upper bounds defined as ratio of two polynomial
terms are presented in [3, Table 1]. Further developments can also be found
in [2].

In this paper, we present new sharp bounds for log(1 + x). We prove
that our upper bound is sharper than all the upper bounds presented above.
Moreover, it has the surprising feature to involve the arctan function, with
a relatively tractable expression. A graphical study supports the theoretical
findings. A lower bound is also proved for x ∈ (−1, 0), with discussion.

The rest of the paper is as follows. Section 2 is devoted to the main
results of the paper, the proofs are postponed in Section 3.

2 Results

The result below presents the new upper bound for log(1 + x) for x > 0.

Proposition 1. For any x > 0, we have

log(1 + x) 6
f(x)√
x+ 1

, (2.1)

where

f(x) = π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
. (2.2)

The proof of Proposition 1 is based on an analytical study of the function
g(x) = f(x) −

√
x+ 1 log(x + 1), with the use of sharp lower bound of

log(x+ 1) i. e. log(1 + x) > 2x/(2 + x) for x > 0.
Now we claim that the obtained upper bound f(x)/

√
x+ 1 is shaper to

those in (1.1), (1.2), (1.3) and (1.4). For a first approach, we illustrate this
claim graphically in Figure 1, where log(1 + x) and all the presented upper
bounds are depicted. At least for x large, we clearly see that the new upper
bound is the closest to log(1 + x).

We now prove analytically that f(x)/
√
x+ 1 is the best in Lemmas 1, 2,

3 and 4 below. To facilitate the comparison in the proofs, we only use the
numerator f(x) of the bound.
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Figure 1: Graphs of the functions of the upper bounds (2.1), (1.1), (1.2) and
(1.3) for x ∈ (0, 13).

Lemma 1. Let f(x) be the function given by (2.2). Then, for any x > 0,
we have

f(x) 6 x.

It follows from Lemma 1 that f(x)/
√
x+ 1 is shaper than the one in

(1.2).

Lemma 2. Let f(x) be the function given by (2.2). Then, for any x > 0,
we have

f(x) 6
x(2 + x)

2
√

1 + x
.

An immediate consequence of Lemma 2 is that f(x)/
√
x+ 1 is sharper

than the one in (1.1).
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Lemma 3. Let f(x) be the function given by (2.2). Then, for any x > 0,
we have

f(x) 6
x(6 + x)

√
x+ 1

2(3 + 2x)
.

Thus, Lemma 3 shows that f(x)/
√
x+ 1 is better in comparison to (1.3).

Lemma 4. Let f(x) be the function given by (2.2). Then, for any x > 0,
we have

f(x) 6
(x+ 2)[(x+ 1)3 − 1]

3
√
x+ 1[(x+ 1)2 + 1]

.

Lemma 3 shows that f(x)/
√
x+ 1 is shaper than the one in (1.3).

Let us now present results on lower bounds for log(1+x). We first present
a reverse version of the inequality (2.1) for x ∈ (−1, 0).

Proposition 2. For any x ∈ (−1, 0), we have

log(1 + x) >
f(x)√
x+ 1

,

where f(x) is defined by (2.2).

The proof of Proposition 2 is an adaptation of the proof of Proposition 1.

Again, we claim that the obtained lower bound is sharp. The following
result shows that the obtained lower bound, i.e. f(x)/

√
x+ 1, is shaper than

those in the following inequality (see, for instance, [3, Equation (4)]): for any
x ∈ (−1, 0),

log(1 + x) >
x(2 + x)

2(1 + x)
.

Lemma 5. Let f(x) be the function given by (2.2). Then, for any x ∈
(−1, 0), we have

f(x) >
x(2 + x)

2
√

1 + x
.

The proof of Lemma 5 is an adaptation of the proof of Lemma 2.
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3 Proofs

Proof of Proposition 1. For x > 0, we consider the function g(x) given
by

g(x) = f(x)−
√
x+ 1 log(x+ 1)

= π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
−
√
x+ 1 log(x+ 1).

Then, by differentiation, we have

g′(x) = − 2√
x+ 1

− log(x+ 1)

2
√
x+ 1

− 2arctan
(√

x+ 1
)

+ 2 +
π

2

and

g′′(x) =
(x+ 2)log(x+ 1)− 2x

4(x+ 1)3/2(x+ 2)
.

Using the (nontrivial sharp) inequality log(1 + x) > 2x/(2 + x) for x > 0
(see [3, Equation (3)]), we arrive at g′′(x) > 0. So g′(x) is increasing for
x > 0 and g′(x) > g′(0) = 0. Therefore g(x) is increasing for x > 0 and
g(x) > g(0) = 0, ending the proof of Proposition 1. �

Proof of Lemma 1. For x > 0, let us denote by h(x) the function given
by

h(x) = f(x)− x = π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
− x.

Then, by differentiation, we have

h′(x) = − 1√
x+ 1

− 2arctan
(√

x+ 1
)

+ 1 +
π

2

and, by another differentiation, we get

h′′(x) = − x

2(x+ 1)3/2(x+ 2)
.

Thus h′′(x) 6 0 for x > 0. So h′(x) is decreasing for x > 0 and h′(x) 6
h′(0) = 0. Therefore h(x) is decreasing for x > 0 and h(x) 6 h(0) = 0. The
proof of Lemma 1 is completed. �
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Proof of Lemma 2. For x > 0, let us consider the function k(x) given
by

k(x) = f(x)− x(2 + x)

2
√

1 + x

= π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
− x(2 + x)

2
√

1 + x
.

Then, by differentiation, we have

k′(x) = −(x+ 2)(3x+ 4)

4(x+ 1)3/2
− 2 arctan

(√
x+ 1

)
+
π

2
+ 2

and, by another differentiation, we get

k′′(x) = − x(x+ 4)(3x+ 4)

8(x+ 1)5/2(x+ 2)
.

Thus k′′(x) 6 0 for x > 0. So k′(x) is decreasing for x > 0 and k′(x) 6
k′(0) = 0. Therefore k(x) is decreasing for x > 0 and k(x) 6 k(0) = 0. This
ends the proof of Lemma 2. �

Proof of Lemma 3. For x > 0, let us consider the function `(x) given
by

`(x) = f(x)− x(6 + x)
√
x+ 1

2(3 + 2x)

= π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
− x(6 + x)

√
x+ 1

2(3 + 2x)
.

Then, by differentiation, we have

`′(x) = −6x3 + 47x2 + 114x+ 72

4
√
x+ 1(2x+ 3)2

− 2arctan
(√

x+ 1
)

+
π

2
+ 2

and

`′′(x) = −x
2(12x3 + 108x2 + 239x+ 144)

8(x+ 1)3/2(x+ 2)(2x+ 3)3
.

Thus `′′(x) 6 0 for x > 0. So `′(x) is decreasing for x > 0 and `′(x) 6 `′(0) =
0. Therefore `(x) is decreasing for x > 0 and `(x) 6 `(0) = 0. This ends the
proof of Lemma 3. �
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Proof of Lemma 4. For x > 0, let us consider the function m(x) given
by

m(x) = f(x)− (x+ 2)[(x+ 1)3 − 1]

3
√
x+ 1[(x+ 1)2 + 1]

= π +
1

2
(4 + π)x− 2(x+ 2) arctan

(√
x+ 1

)
− (x+ 2)[(x+ 1)3 − 1]

3
√
x+ 1[(x+ 1)2 + 1]

.

Then, by differentiation, we have

m′(x) = −3x6 + 25x5 + 87x4 + 178x3 + 222x2 + 156x+ 48

6(x+ 1)3/2(x2 + 2x+ 2)2

− 2 arctan
(√

x+ 1
)

+
π

2
+ 2

and, by another differentiation, we get

m′′(x) = −x
3(3x6 + 35x5 + 171x4 + 460x3 + 700x2 + 564x+ 188)

12(x+ 1)5/2(x+ 2)(x2 + 2x+ 2)3

Thus m′′(x) 6 0 for x > 0. So m′(x) is decreasing for x > 0 and m′(x) 6
m′(0) = 0. Therefore m(x) is decreasing for x > 0 and m(x) 6 m(0) = 0.
This ends the proof of Lemma 4. �

Proof of Proposition 2. The first part of the proof is identical to
the one of Proposition 1. For x ∈ (−1, 0), we consider again the function
g(x) = f(x)−

√
x+ 1 log(x+ 1). Then recall that

g′(x) = − 2√
x+ 1

− log(x+ 1)

2
√
x+ 1

− 2 arctan
(√

x+ 1
)

+ 2 +
π

2

and

g′′(x) =
(x+ 2)log(x+ 1)− 2x

4(x+ 1)3/2(x+ 2)
.

Using the upper bound log(1 +x) 6 2x/(2 +x) for x ∈ (−1, 0) (see [3, Equa-
tion (4)]), we arrive at g′′(x) 6 0. So g′(x) is decreasing for x ∈ (−1, 0)
and g′(x) > g′(0) = 0. Therefore g(x) is increasing for x ∈ (−1, 0) and
g(x) 6 g(0) = 0. The proof of Proposition 2 is completed. �

Proof of Lemma 5. The proof follows the lines of Lemma 2. For x > 0,
let us consider the function k(x) = f(x)− x(2 + x)/(2

√
1 + x). Then recall

that

k′(x) = −(x+ 2)(3x+ 4)

4(x+ 1)3/2
− 2 arctan

(√
x+ 1

)
+
π

2
+ 2
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and

k′′(x) = − x(x+ 4)(3x+ 4)

8(x+ 1)5/2(x+ 2)
.

Thus k′′(x) > 0 for x ∈ (−1, 0). So k′(x) is increasing for x ∈ (−1, 0)
and k′(x) 6 k′(0) = 0. Therefore k(x) is decreasing for x ∈ (−1, 0) and
k(x) > k(0) = 0. This ends the proof of Lemma 5. �

Concluding Remarks: In this paper, we proposed the function f(x)/
√
x+ 1

as upper and lower bound for log(1 + x) according as x > 0 and x ∈ (−1, 0).
We proved analytically that it is better to some existing sharp bounds in the
literature. A graphical study of the upper bound supports the theory.
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