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Higher–rank generalisations of electrodynamics have recently attracted considerable attention
because of their ability to host “fracton” excitations, with connections to both fracton topological
order and gravity. However, the search for higher–rank gauge theories in experiment has been greatly
hindered by the lack of materially–relevant microscopic models. Here we show how a spin liquid
described by rank–2 U(1) gauge theory can arise in a magnet on the breathing pyrochlore lattice.
We identify Yb–based breathing pyrochlores as candidate systems, and make explicit predictions
for how the rank–2 U(1) spin liquid would manifest itself in experiment.

Introduction. It is of great intellectual interest and
practical utility to discover novel effective laws of nature
emerging from many–body systems. Traditionally, this
enterprise has been entwined with the concept of bro-
ken symmetry [1]. However, a powerful alternative has
proved to be the local constraints which arise from com-
peting or “frustrated”, interactions. In the context of
frustrated magnets, these can lead to the emergence of
a local gauge symmetry, and thereby to quantum spin
liquids, which defy all usual concepts of magnetic or-
der, and instead exhibit fractionalised excitations and
long–range entanglement [2–5]. A well–studied exam-
ple is quantum spin ice, a realisation of a U(1) gauge
theory on the pyrochlore lattice, whose emergent excita-
tions exactly mimic conventional electrodynamics: pho-
tons, electric charges and magnetic monopoles. As such,
it has attracted intense theoretical [6–15] and experimen-
tal [16–24] investigation.

Recent work has highlighted the possibility of more
exotic forms of emergent electrodynamics [25–28], where
electric and magnetic fields have the form of rank–2 (or
higher–rank) tensors. These theories have modified con-
servation laws and gauge symmetries, resulting in some
remarkable properties. Some are argued to mimic grav-
ity [25, 29, 30], while others are dual to elasticity theory
[31, 32]. In both cases, the charged excitations, dubbed
“fractons”, have constrained mobility, and characterize a
new class of topological order [33–42]. Fracton models
are also linked to quantum stabilizer codes [43, 44] and
holography [45]. None the less, these desirable proper-
ties come at a price: the local constraint required has a
tensor character. As a consequence, prototypical mod-
els of fractons require rather complicated interactions
[25, 33, 35–37], with just a handful of proposals moti-
vated by experiment [41, 46, 47]. In the case of gapless
higher–rank gauge theories, only a few concrete models
exist [27, 48, 49], and even less is known about how to
achieve such a phase in a real material. For this rea-
son, realizing an emergent higher–rank electrodynamics
in experiment presents a significant challenge.

In this Letter we show how a canonical rank–2 U(1)

(a) BP Lattice (b) 0kl plane

(c) hk0 plane (d) 〈Exy(q)Exy(−q)〉

FIG. 1. Breathing pyrochlore (BP) lattice, and singular
correlations characteristic of a rank–2 U(1) [R2–U1] gauge
theory. (a) BP lattice, with A– and B–sublattice tetrahedra
of unequal size. The vectors associated with Dzyaloshinskii–
Moriya (DM) interactions on the A–sublattice [Eq. (6)] are
illustrated with green arrows. (b) Prediction of R2–U1 the-
ory for the correlation function 〈Exy(q)Exy(−q)〉 [Eq. (17)],
showing a 2–fold pinch point in the [0kl] plane. (c) Perpen-
dicular section, showing a 4–fold pinch point (4FPP) in the
[hk0] plane. (d) Equivalent results from MC simulation of the
breathing pyrochlore model [Eq. (6)].

[R2–U1] spin liquid can arise in a realistic model of a frus-
trated magnet. The model we consider is the Heisenberg
antiferromagnet (HAF) on a breathing–pyrochlore (BP)
lattice, perturbed by weak Dzyaloshinskii–Moriya (DM)
interactions [Fig. 1a]. Working in the classical limit, rel-
evant to a spin liquid at finite temperatures, we establish
that fluctuations can be described using a tensor field sat-
isfying the constraints required for a R2–U1 gauge the-
ory. We use classical Monte Carlo (MC) simulation to
confirm this scenario, and to explore how a R2–U1 spin
liquid could be identified in experiment. We find that
4–fold pinch points (4FPP), characteristic of the R2–U1
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state [50], become visible in polarised neutron scattering.
We discuss the application of these ideas to real materi-
als, identifying Yb–based breathing pyrochlores as po-
tential candidates for an R2–U1 spin liquid state. These
results complement earlier work exploring gapped, frac-
ton topological order, in models with bilinear interactions
[41, 46, 47], providing an example of an R2–U1 state, in
an experimentally–motivated context.

Review of R2–U1 theory. Conventional, U(1), elec-
trodynamics is built around a vector field E, subject to
a Gauss law ∂iEi = ρ so that, in the absence of charges,

∂iEi = 0 . (1)

The key which unlocked the effective electrodynamics of
spin ice was the realisation that, at low temperatures,
in a classical limit, spins satisfied a local constraint of
precisely the form of Eq. (1) [51, 52].

Here we consider instead an R2–U1 electrodynamics, in
its self–dual, vector–charged, traceless form [26–28], and
seek to show that, in an equivalent classical limit, spins
satisfy the appropriate generalisation of Eq. (1). The
R2–U1 theory is built around a rank–2 tensor electric
field E that is symmetric and traceless,

Eji = Eij TrE = 0 , (2)

subject to a generalised Gauss’ law for a vector charge

∂iEij = ρj . (3)

In the low–energy sector, the theory is charge free, i.e.

∂iEij = 0 . (4)

These constraints determine the symmetry of the R2–U1
gauge field

Aij → Aij + ∂iλj + ∂jλi + γδij , (5)

which in turn implies the form of the associated magnetic
field, Bij [26, 28]. However the key observable properties
of an R2–U1 spin liquid follow from the correlations of
its electric field Eij [50], and our goal will therefore be
to show how the spins in a frustrated magnet can be
described by a tensor field Eij , satisfying the constraints
Eqs. (2, 4).

The model. To this end, we consider a HAF, per-
turbed by weak DM interactions, on a “breathing” py-
rochlore (BP) lattice, for which A– and B–sublattice
tetrahedra have a different size

HBP =
∑
〈ij〉∈A

[
JASi · Sj +DAd̂ij · (Si × Sj)

]
+
∑
〈ij〉∈B

[
JBSi · Sj +DBd̂ij · (Si × Sj)

]
.

(6)

Definitions of the bond–dependent vectors d̂ij [53–56]
are given in the Supplemental Material [cf. Fig. 1a].
This model finds experimental motivation in Yb–based
breathing pyrochlores, discussed below.

Transcription to symmetry–based coordinates. Our
next step is to seek a continuum representation of
Eq. (6). To accomplish this, we consider the classical
limit where individual components of spin commute, and
introduce a set of coarse–grained fields mX which trans-
form as irreducible representations of the lattice sym-
metry [29, 57, 58]. In this basis [59], the Hamiltonian
becomes

H =
1

2

∑
tet∈A,X

aA,Xm
2
X +

1

2

∑
tet∈B,X

aB,Xm
2
X , (7)

where X runs over irreps of the group Td, i.e.
{A2,E,T2,T1+,T1−}, with the fields mX and the coef-
ficients aX defined in Table I and Table II of the Supple-
mentary Material.

Before considering the effect of DM interactions, it is
helpful to explore how this approach works in the case
of a known spin liquid, the HAF on a pyrochlore lattice
[60–65]. Setting

JA = JB , DA = DB = 0 , (8)

we find

0 < aA2 = aE = aT2 = aT1− < aT1+ . (9)

It follows that the fields mA2 ,mE,mT2 ,mT1− are all free
to fluctuate in the ground state. We can conveniently
collect all of these fields in the rank–2 tensor

EHAF = EHAF
sym. + EHAF

antisym. + EHAF
trace (10)

where

EHAF
sym. =


2√
3
m1

E mz
T1−

my
T1−

mz
T1−

− 1√
3
m1

E −m2
E mx

T1−

my
T1−

mx
T1−

− 1√
3
m1

E +m2
E

 , (11)

(EHAF
antisym.)ij = −εijkmk

T2
, (EHAF

trace)ij = −δij

√
2

3
mA2 .

(12)
The requirement of the continuity of the fields mX [57]
imposes the conditions

2√
3

 ∂xm
1
E

− 1
2∂ym

1
E −

√
3
2 ∂ym

2
E

− 1
2∂ym

1
E +

√
3
2 ∂ym

2
E

−
∂ymz

T1−
+ ∂zm

y
T1−

∂zm
x
T1−

+ ∂xm
z
T1−

∂xm
y
T1−

+ ∂ym
x
T1−


−
√

2

3
∇mA2 + ∇×mT2 = 0 . (13)

We obtain exactly the same constraint if we substitute
EHAF in Eq. (4), implying that HAF automatically sat-
isfies one of the two constraints defining the R2–U1 spin
liquid [66].
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To convert the HAF into an R2–U1 spin liquid, we
need to make the theory symmetric and traceless, and
so satisfy Eq. (2). This means eliminating fluctuations
of EHAF

antisym. and EHAF
trace from the ground state, something

which can be accomplished by opening gaps to the fields
mT2 and mA2 . For the BP model, Eq. (6), this is achieved
by any parameter set for which

JA , JB > 0 , DA < 0 , DB = 0 . (14)

In this case, the coefficients aX,A satisfy the condition

aE,A = aT1−,A < aA2,A, aT2,A, aT1+,A , (15)

which implies that only the fields mE and mT1− enter
into the ground state of Eq. (7). Meanwhile, on the
B–sublattice, we recover the condition Eq. (9), previ-
ously found for the HAF, which imposes the constraint
Eq. (13), with the caveat that the fields mA2 and mT2 can
now be set identically equal to zero. When expressed in
terms of the remaining tensor field EHAF

sym , this is exactly
Eq. (4). It follows that, in this classical limit, an R2–U1
gauge theory, satisfying both Eq. (2) and Eq. (4) emerges
as the effective description at the low–energy sector of the
BP model, Eq. (6).

It is worth noting that, as in the regular pyrochlore
lattice [56, 67], DM interaction is only a singular pertur-
bation in the context of the classical ground–state man-
ifold. At finite temperature, classical spin liquids owe
their stability to entropy, and a finite value of DA will
be needed to stabilise an R2–U1 spin liquid. For exactly
the same reason, introducing a finite value of DB does
not immediately invalidate the mechanism driving the
R2–U1 spin liquid, but will reduce the range of tempera-
tures over which it is observed. We will see that both of
these expectations are fulfilled by classical Monte Carlo
simulations of Eq. (6), described below

Characteristic signatures of R2–U1 state. We now turn
to the question of how the R2–U1 spin liquid can be
identified, in both simulation and in experiment. The
zero–divergence condition in spin ice, Eq. (1), manifests
itself in a pinch–point singularity [64]

〈Ei(q)Ej(−q)〉 ∝ δij −
qiqj
q2

, (16)

which is observed in neutron scattering experiments [68].
In the same way, the constraints associated with an
R2–U1 gauge theory, Eq. (2) and Eq. (4), lead to a
characteristic singularity in correlations of the tensor
field Eij [50]

〈Eij(q)Ekl(−q)〉 ∝ 1

2
(δikδjl + δilδjk) +

qiqjqkql
q4

− 1

2

(
δik

qiql
q2

+ δjk
qiql
q2

+ δil
qjqk
q2

+ δjl
qiqk
q2

)
− 1

2

(
δij −

qiqj
q2

)(
δkl −

qkql
q2

)
.

(17)

FIG. 2. Finite–temperature phase diagram of the BP model,
Eq. (6), as a function of DM interaction DA. The crossover
between the R2–U1 spin liquid, and the U(1) × U(1) × U(1)
spin liquid (HAF) is shown with a dashed line. The thin
solid line indicates a continuous transition into all–in all–out
order (AIAO), while thick solid line denotes a first order phase
transition into a state with q = W order. Results are taken
from MC simulation with JA = JB = 1, DB = 0.

The three–dimensional structure of the correlation
〈Exy(q)Exy(−q)〉 is illustrated in Fig. 1. In the [0kl]
plane, correlations exhibit a conventional 2–fold pinch
point, comparable to that found in spin ice [Fig. 1b].
However in the perpendicular [hk0] plane, we observe a
4–fold pinch point (4FPP) [Fig. S1], which unambigu-
ously distinguishes R2–U1 electrodynamics from lower–
rank theories [50].

Comparison with simulation. We can use the existence
of this 4FPP as a test for the R2–U1 spin liquid in simu-
lation. We have carried out classical Monte Carlo (MC)
simulations of Eq. (6), for the parameter–set

JA = JB = 1 , DA = −0.01 , DB = 0 . (18)

where the constraints Eq. (2) and Eq. (4) are expected to
hold. The resulting correlations of Eij , at a temperature
T = 2.5×10−3 JA, are shown in Fig. 1d. For q→ 0, these
are identical to the predictions of Eq. (17), confirming
that the model realizes an R2–U1 spin liquid.

Phase diagram. The results of simulations for a range
of values of DA are collected in Fig. 2. At finite tem-
perature, a finite value of DA < 0 is required to achieve
a crossover from the U(1) × U(1) × U(1) spin liquid of
the pyrochlore HAF, with 2–fold pinch points, into an
R2–U1 spin liquid, with 4FPP. An analytic theory of
this crossover, which is controlled by the dimensionless
parameter η ∼ |DA|/kBT , is provided in Section VI of
the Supplemental Material. Meanwhile, at low temper-
atures, sufficiently negative values of DA drive a first–
order phase transition into an ordered state which in-
volves the characteristic wavevector q = W (i.e. corners
of the Brillouin zone) [69]. In contrast, a finite value of
DA > 0 leads to a continuous phase transition into a
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state with q = 0, all–out (AIAO) order.
Predictions for neutron scattering. Neutron scat-

tering experiments do not measure correlations of
Eij directly, but rather the spin structure factor
Sαβ(q) = 〈Sα(q)Sβ(−q)〉. On general grounds [50],
Sαβ(q) is expected to bear witness to the singularity in
Eq. (17). But exactly how 4FPPs would manifest them-
selves in experiment remains an open question. In Fig. 3
we present simulation results for Sαβ(q) for parameters
equivalent to Fig. 3a. We find that the 4FPP is not visi-
ble in the structure factor measured by unpolarised neu-
tron scattering [see Supplemental Material]. However the
4FPP can be resolved using polarised neutrons. In this
case, it manifests itself in the spin–flip (SF) channel for
neutrons polarised perpendicular to the scattering plane
[68], [Fig. S1].

Application to materials. Breathing–pyrochlore mag-
nets were first studied as a tractable limit of the py-
rochlore HAF [70–73], but have since been realised in
materials based on both transition–metal [74–78] and
rare–earth ions [79, 80]. Interesting parallels are also
found in lacunar spinels [81, 82]. To date, most theo-
retical work has concentrated on SU(2)–invariant mod-
els [70–73, 83–85]. However, in the presence of spin–orbit
coupling, the symmetry of the lattice permits anisotropic
exchange [80, 86–88]. And, with respect to higher–rank
gauge theories, a promising line of enquiry are Yb–based
materials, where the required form of interactions appear
to predominate.

One concrete example is Ba3Yb2Zn5O11 [79, 80, 86,
88], where A–tetrahedra are estimated to have the
coupling parameters JA ≈ 0.57 meV, DA ≈ −0.16 meV,
with other interactions negligible. This is exactly the
form of interactions needed for an R2–U1 spin liquid,
a feature which is expected to be robust [88], since it
holds for a wide range of Slater–Koster overlap ratios
[89]. Meanwhile, exchange interactions on the larger B–
tetrahedra of Ba3Yb2Zn5O11, while less well understood,
appear to be orders of magnitude smaller [80, 86]. Thus,
while it seems plausible that Ba3Yb2Zn5O11 could realise
a R2–U1 spin liquid, this may occur at temperatures too
low to measure.

The encouraging example of Ba3Yb2Zn5O11 motivates
us to consider the possibility of a magnet with similar
structure, but smaller B–tetrahedra, such that the inter-
actions on the B–sublattice become non–negligible. For
concreteness, we consider a parameter set:

JA = 0.57 meV, JB = 0.028 meV ,

DA = −0.16 meV, DB = −0.007 meV , (19)

where we assume that the interactions on the B–
sublattice are of the same form as on the A–sublattice,
but substantially weaker, JA/JB = DA/DB ≈ 20. To
demonstrate that the R2–U1 physics persists in the pres-
ence of finite DB we have used MC simulation to cal-
culate the spin structure factor. Once again, the 4FPP

(a) SSF(q), DB = 0 (b) SSF(q), DB � DA

FIG. 3. Spin structure factor found in MC simulation of
the BP model, Eq. (6), showing 4–fold pinch points (4FPPs)
characteristic of a R2–U1 spin liquid. (a) Correlations in the
[h0k] plane, in the spin–flip (SF) channel measured using
polarised neutrons. 4FPP are visible at [0, 0, 2] and points
related by symmetry. Results are for parameters Eq. (18),
T = 2.5× 10−3JA. (b) Equivalent results for parameters mo-
tivated by Ba3Yb2Zn5O11, Eq. (19), T = 252 mK.

associated with the R2–U1 spin liquid remains clearly vis-
ible for a range of temperatures [Fig. 3b]. The same will
hold for a more general choice of interactions, as long as
the anisotropic part of the exchange on the B–sublattice
is sufficiently weak; for DB ∼ DA, fluctuations are re-
stricted to the local easy plane, and the R2–U1 physics
will be lost.

Quantum effects. The theory of an R2–U1 spin liq-
uid presented above is classical, so it is important to ask
what might change once quantum effects are taken into
account. A useful point of comparison is quantum spin
ice (QSI), where quantum fluctuations leads to tunnelling
between different spin configurations satisfying the “ice
rules” constraint Eq. (1). This tunnelling, which occurs
on loops of spins, introduces a fluctuating magnetic field
B, and the result, at T = 0, is a QSL described by a
the deconfined phase of a U(1) quantum lattice gauge
theory [6–15]. However it is important to note that the
temperature scale associated with this QSL is three or-
ders of magnitude smaller than the range of temperatures
over which Eq. (1) holds [15]. Moreover, since the U(1)
QSL is gapless, any finite temperature immediately re-
stores classical correlations at long length scales [8]. As
a consequence, the spin structure factor S(q) continues
to be dominated by pinch–point singularities of the form
Eq. (16), down to the lowest temperatures studied [13].

The quantum limit of R2–U1 gauge theories has al-
ready been studied as a continuum field theory, and is
qualitatively very similar to QSI [26, 28, 50]. The low-
est lying excitations are gapless emergent photons which
modify, but do not eliminate, the singular features ob-
served in scattering [8, 50]. The microscopic study of
quantum effects in Eq. (6) lies outside the scope of this
Letter. However we anticipate that coherent gauge fluc-
tuations will be confined to an even lower temperature
scale than in QSI, by the fact that the magnetic field Bij
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is an extended object, involving third–order derivatives
of Aij [26, 28]. For this reason the classical theory devel-
oped here should prove sufficient to interpret experiments
searching for an R2–U1 in a BP material.

Summary and perspectives. In this Letter, we have
used a combination of analytic field theory and clas-
sical Monte Carlo simulation to show how a rank–2
U(1) [R2–U1] spin liquid, a state described by a higher–
rank generalisation of electrodynamics, can arise in
a pyrochlore magnet with breathing anisotropy and
Dzyaloshinskii–Moriya interactions, Eq. (6) [cf. Fig. S1].
These results provide a concrete starting point for the
experimental search for higher–rank gauge theories, and
clarify the type of neutron scattering experiment which
would be needed to resolve the 4–fold pinch points
(4FPP) of a R2–U1 spin liquid [cf. Fig. 3].

This work opens a number of interesting perspec-
tives. On the experimental side, we identify Yb based
breathing–pyrochlore materials as potential candidates
for a R2–U1 spin liquid state. On the theoretical side,
determining the quantum ground state of Eq. (6), should
ultimately prove tractable, since breathing anisotropy
provides a natural control parameter for both perturba-
tive [71, 72] and variational approaches [90]. And, while
the model studied here does not correspond to a frac-
ton stabilizer code upon Higgsing [38, 39], the parital–
confinement mechanism used to eliminate selected com-
ponents of the tensorial electric field is very versatile,
and easily adapted to generate other versions of R2–U1
theory [91].

Acknowledgements. The authors acknowledge help-
ful conversations with Jeffrey Rau and Daniel Khom-
skii. This work was supported by the Theory of Quan-
tum Matter Unit, Okinawa Institute of Science and
Technology Graduate University (OIST). H.Y. is also
supported by Japan Society for the Promotion of Sci-
ence (JSPS) Research Fellowship for Young Scientists.
L. J. acknowledges financial support from the French
“Agence Nationale de la Recherche” under Grant No.
ANR-18-CE30-0011-01, and hospitality from Gakushuin
University under Grants-in-Aid for Scientific Research
on innovative areas “Topological Materials Science”
(No.JP15H05852) from JSPS. The research was also sup-
ported in part by the National Science Foundation under
Grant No. NSF PHY-1748958, and the KITP program
”Topological Quantum Matter: From Concepts to Real-
izations”.

∗ han.yan@oist.jp
[1] P. W. Anderson, Science 177, 393 (1972).
[2] P. Anderson, Materials Research Bulletin 8, 153 (1973).
[3] L. Balents, Nature (London) 464, 199 (2010).
[4] L. Savary and L. Balents, Reports on Progress in Physics

80, 016502 (2017).

[5] Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys.
89, 025003 (2017).

[6] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev.
B 69, 064404 (2004).

[7] A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim,
Phys. Rev. Lett. 100, 047208 (2008).

[8] O. Benton, O. Sikora, and N. Shannon, Phys. Rev. B
86, 075154 (2012).

[9] L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202
(2012).

[10] N. Shannon, O. Sikora, F. Pollmann, K. Penc, and
P. Fulde, Phys. Rev. Lett. 108, 067204 (2012).

[11] Z. Hao, A. G. R. Day, and M. J. P. Gingras, Phys. Rev.
B 90, 214430 (2014).

[12] M. J. P. Gingras and P. A. McClarty, Reports on Progress
in Physics 77, 056501 (2014).

[13] Y. Kato and S. Onoda, Phys. Rev. Lett. 115, 077202
(2015).

[14] G. Chen, Phys. Rev. B 96, 195127 (2017).
[15] C.-J. Huang, Y. Deng, Y. Wan, and Z. Y. Meng, Phys.

Rev. Lett. 120, 167202 (2018).
[16] H. D. Zhou, C. R. Wiebe, J. A. Janik, L. Balicas, Y. J.

Yo, Y. Qiu, J. R. D. Copley, and J. S. Gardner, Phys.
Rev. Lett. 101, 227204 (2008).

[17] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents,
Phys. Rev. X 1, 021002 (2011).

[18] T. Fennell, M. Kenzelmann, B. Roessli, M. K. Haas, and
R. J. Cava, Phys. Rev. Lett. 109, 017201 (2012).

[19] K. Kimura, S. Nakatsuji, J.-J. Wen, C. Broholm, M. B.
Stone, E. Nishibori, and H. Sawa, Nature Communica-
tions 4, 1934 (2013).

[20] R. Sibille, E. Lhotel, V. Pomjakushin, C. Baines, T. Fen-
nell, and M. Kenzelmann, Phys. Rev. Lett. 115, 097202
(2015).

[21] J.-J. Wen, S. M. Koohpayeh, K. A. Ross, B. A. Trump,
T. M. McQueen, K. Kimura, S. Nakatsuji, Y. Qiu, D. M.
Pajerowski, J. R. D. Copley, and C. L. Broholm, Phys.
Rev. Lett. 118, 107206 (2017).

[22] J. D. Thompson, P. A. McClarty, D. Prabhakaran,
I. Cabrera, T. Guidi, and R. Coldea, Phys. Rev. Lett.
119, 057203 (2017).

[23] R. Sibille, N. Gauthier, H. Yan, M. Ciomaga Hatnean,
J. Ollivier, B. Winn, U. Filges, G. Balakrishnan, M. Ken-
zelmann, N. Shannon, and T. Fennell, Nature Physics
14, 711715 (2018).

[24] B. Gao, T. Chen, D. W. Tam, C.-L. Huang, K. Sas-
mal, D. T. Adroja, F. Ye, H. Cao, G. Sala, M. B. Stone,
C. Baines, J. A. T. Verezhak, H. Hu, J.-H. Chung, X. Xu,
S.-W. Cheong, M. Nallaiyan, S. Spagna, M. B. Maple,
A. H. Nevidomskyy, E. Morosan, G. Chen, and P. Dai,
Nature Physics 15, 1052 (2019).

[25] C. Xu, Phys. Rev. B 74, 224433 (2006).
[26] M. Pretko, Phys. Rev. B 96, 035119 (2017).
[27] A. Rasmussen, Y.-Z. You, and C. Xu, arXiv e-prints

, arXiv:1601.08235 (2016), arXiv:1601.08235 [cond-
mat.str-el].

[28] M. Pretko, Phys. Rev. B 95, 115139 (2017).
[29] O. Benton, L. D. C. Jaubert, H. Yan, and N. Shannon,

Nature Communications 7, 11572 (2016).
[30] M. Pretko, Phys. Rev. D 96, 024051 (2017).
[31] M. Pretko and L. Radzihovsky, Phys. Rev. Lett. 120,

195301 (2018).
[32] A. Gromov, Phys. Rev. Lett. 122, 076403 (2019).
[33] C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).

mailto:han.yan@oist.jp
http://dx.doi.org/10.1126/science.177.4047.393
http://dx.doi.org/ http://dx.doi.org/10.1016/0025-5408(73)90167-0
http://dx.doi.org/10.1038/nature08917
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://stacks.iop.org/0034-4885/80/i=1/a=016502
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://dx.doi.org/10.1103/RevModPhys.89.025003
http://link.aps.org/doi/10.1103/PhysRevB.69.064404
http://link.aps.org/doi/10.1103/PhysRevB.69.064404
http://link.aps.org/doi/10.1103/PhysRevLett.100.047208
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.075154
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.86.075154
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/10.1103/PhysRevLett.108.037202
http://dx.doi.org/ 10.1103/PhysRevLett.108.067204
http://dx.doi.org/10.1103/PhysRevB.90.214430
http://dx.doi.org/10.1103/PhysRevB.90.214430
http://stacks.iop.org/0034-4885/77/i=5/a=056501
http://stacks.iop.org/0034-4885/77/i=5/a=056501
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1103/PhysRevLett.115.077202
http://dx.doi.org/10.1103/PhysRevB.96.195127
http://dx.doi.org/ 10.1103/PhysRevLett.120.167202
http://dx.doi.org/ 10.1103/PhysRevLett.120.167202
http://dx.doi.org/10.1103/PhysRevLett.101.227204
http://dx.doi.org/10.1103/PhysRevLett.101.227204
http://dx.doi.org/10.1103/PhysRevX.1.021002
http://dx.doi.org/ 10.1103/PhysRevLett.109.017201
http://dx.doi.org/10.1038/ncomms2914 http://10.0.4.14/ncomms2914 https://www.nature.com/articles/ncomms2914{#}supplementary-information
http://dx.doi.org/10.1038/ncomms2914 http://10.0.4.14/ncomms2914 https://www.nature.com/articles/ncomms2914{#}supplementary-information
http://dx.doi.org/ 10.1103/PhysRevLett.115.097202
http://dx.doi.org/ 10.1103/PhysRevLett.115.097202
http://dx.doi.org/10.1103/PhysRevLett.118.107206
http://dx.doi.org/10.1103/PhysRevLett.118.107206
http://dx.doi.org/10.1103/PhysRevLett.119.057203
http://dx.doi.org/10.1103/PhysRevLett.119.057203
http://dx.doi.org/10.1038/s41567-018-0116-x
http://dx.doi.org/10.1038/s41567-018-0116-x
http://dx.doi.org/10.1038/s41567-019-0577-6
http://dx.doi.org/10.1103/PhysRevB.74.224433
http://dx.doi.org/10.1103/PhysRevB.96.035119
http://arxiv.org/abs/1601.08235
http://arxiv.org/abs/1601.08235
http://dx.doi.org/10.1103/PhysRevB.95.115139
http://dx.doi.org/10.1038/ncomms11572
http://dx.doi.org/10.1103/PhysRevD.96.024051
http://dx.doi.org/10.1103/PhysRevLett.120.195301
http://dx.doi.org/10.1103/PhysRevLett.120.195301
http://dx.doi.org/10.1103/PhysRevLett.122.076403
http://dx.doi.org/10.1103/PhysRevLett.94.040402


6

[34] N. Shannon, G. Misguich, and K. Penc, Phys. Rev. B
69, 220403(R) (2004).

[35] J. Haah, Phys. Rev. A 83, 042330 (2011).
[36] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136

(2015).
[37] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157

(2016).
[38] D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112

(2018).
[39] H. Ma, M. Hermele, and X. Chen, Phys. Rev. B 98,

035111 (2018).
[40] R. M. Nandkishore and M. Hermele, Annual Review of

Condensed Matter Physics 10, 295 (2019).
[41] K. Slagle and Y. B. Kim, Phys. Rev. B 96, 165106 (2017).
[42] G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev.

Lett. 119, 257202 (2017).
[43] A. T. Schmitz, H. Ma, R. M. Nandkishore, and S. A.

Parameswaran, Phys. Rev. B 97, 134426 (2018).
[44] A. Kubica and B. Yoshida, (arXiv:1805.01836).
[45] H. Yan, Phys. Rev. B 99, 155126 (2019).
[46] G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev.

Lett. 119, 257202 (2017).
[47] Y. You and F. von Oppen, Phys. Rev. Research 1, 013011

(2019).
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Supplemental Material

RANK–2 U(1) GAUGE THEORY: ELECTROSTATICS

Here, following Ref. [25, 26], we derive the relationship between electric, magnetic and gauge fields within the
rank–2 U(1) [R2–U1] electrodynamics considered in the main text. This section focuses on the classical electrostatics
which is realized in our work. The next section will focus on the quantum dynamics of the theory, which is beyond
the scope of this work but nevertheless essential for future developments.

Our starting point is an electric field described by a symmetric, traceless rank–2 tensor,

Eij = Eji, Eii = 0. (S1)

Here we do not distinguish super and subscript since we are dealing with spacial indices.
The low energy sector of the electric field has vanishing vector charge, and is traceless,

∂iEij = 0 (S2)

Here we keep all indices as subscripts but still use the Einstein summation rule. The proper rank-2 tensor with the
proper Gauss law as a classical spin liquid system is achieved in this work.

RANK–2 U(1) GAUGE THEORY: DYNAMICS

A quantum spin liquid requires quantum dynamics in addition to the emergent Gauss law. Broadly speaking, the
dynamics play the role of B2 term in electrodynamics. They are to tunnel different classical spin liquid states between
each other, leading to a long-range entangled quantum ground state and gapless photon excitations. This section
explains how to derive such terms and also their implication on mobility of electric charges (fractons).

As in conventional electrodynamics, the conjugate of E is the rank-two gauge field A, which also has to be symmetric
to match the degrees of freedom,

Aij = Aji. (S3)

These two conditions determine the form of gauge transformation. Consider a wave-function

|Ψ(A)〉 . (S4)

We take a low energy configuration of E obeying Eq. (S2) and construct a symmetrized operator that is identical to
zero to act upon the wave-function

−i(λj∂iEij + λj∂iEij) |Ψ(A)〉 = 0. (S5)

By integration by parts and assuming vanishing boundary terms, we have

i(∂iλj + ∂iλj)Eij |Ψ(A)〉 = 0. (S6)

Since Eij conjugates with Aij , it generates a transformation of A. Thus

i(∂iλj + ∂iλj)Eij |Ψ(A)〉 = |Ψ(A + ∇⊗ λ + (∇⊗ λ)T )〉 − |Ψ(A)〉 = 0. (S7)

That is, the low energy sector wave-function is invariant under gauge transformation

A + ∇⊗ λ + (∇⊗ λ)T , i.e., Aij → Aij + ∂iλj + ∂iλj . (S8)

Similarly, the traceless condition

−iγδijEij |Ψ(A)〉 = 0. (S9)

leads to another gauge symmetry

Aij → Aij + γδij . (S10)
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Finally, the magnetic field is obtained by finding the simplest gauge-invariant quantity. In this case, it has to have
three derivatives acting on the gauge field,

Bij =
1

2
[εjab(∂a∂k∂iAbk − ∂a∂2Abi)

+ εiab(∂a∂k∂jAbk − ∂a∂2Abj)].
(S11)

Finally, the Gauss law, the traceless and symmetric conditions of the electric field can be used to derive:

∫
dv~ρ = 0 (S12)∫
dv~x× ~ρ = −

∫
dvεijkEjk = 0 (S13)∫

dv~x · ~ρ = −
∫
dvEii = 0 (S14)

In this case, a vector charge excitation is fully fractonic, i.e., it cannot move in any direction of the system.
Further details of the phenomenology of R2–U1 phases can be found in Refs. [26, 28].

DERIVATION OF EFFECTIVE FIELD THEORY

We show how a rank–2 tensor electric field, satisfying the constraint required for R2–U1 electrodynamics [Eqs. (1,2)],
can be derived from a breathing pyrochlore lattice model [Eq. (6)]. The pattern of this derivation closely follows
Refs. [29, 57, 58].

Our starting point is the breathing pyrochlore lattice with a spin on each of its sites, and nearest neighbor interac-
tions between the spins. “Breathing” means the lattice is bi-partitioned into A- and B-tetrahedra [Fig. (1)], and each
type of tetrahedron has its own interactions.

The model that hosts a rank-2 spin liquid has breathing Heisenberg antiferromagnetic interactions on both the A-
and B-tetrahedra, and negative Dzyaloshinskii-Moriya (DM) interactions on A-tetrahedra only. The Hamiltonian for
the model is

H =
∑
〈ij〉∈A

[
JASi · Sj +DAd̂ij · (Si × Sj)

]
+
∑
〈ij〉∈B

[
JBSi · Sj +DBd̂ij · (Si × Sj)

]
. (S15)

where 〈ij〉 ∈ A(B) denotes nearest neightbour bonds belonging to the A(B)-tetrahedra. The sites 0, 1, 2, 3 are at
positions relative to the center of an A-tetrahedron

r0 =
a

8
(1, 1, 1), r1 =

a

8
(1,−1,−1), r2 =

a

8
(−1, 1,−1), r3 =

a

8
(−1,−1, 1), (S16)

where a is the length of the unit cell. Vectors d̂ij are bond dependent, defined in accordance with Ref [53, 56, 86]:

d̂01 =
(0,−1, 1)√

2
, d̂02 =

(1, 0,−1)√
2

, d̂03 =
(−1, 1, 0)√

2
,

d̂12 =
(−1,−1, 0)√

2
, d̂13 =

(1, 0, 1)√
2

, d̂23 =
(0,−1,−1)√

2
.

(S17)

Equivalently, this model can be written in a standard matrix-exchange form for a breathing-pyrochlore lattice model
as

H =
∑
〈ij〉∈A

Sαi J
αβ
A,ijS

β
j +

∑
〈ij〉∈B

Sαi J
αβ
B Sβj (S18)

where JA,ij is a three-by-three matrix that couples spins on sub-lattice sites i, j whose bond belongs to A-tetrahedra,
and JB is the coupling matrix for B-tetrahedra. In the case of DB = 0 that we are interested in, JB is identical for
any pair of i, j,

JB =

JB 0 0
0 JB 0
0 0 JB

 . (S19)
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order definition in terms associated

parameter of spin components ordered phases

mA2
1

2
√
3

(Sx
0 + Sy

0 + Sz
0 + Sx

1 − Sy
1 − Sz

1 − Sx
2 + Sy

2 − Sz
2 − Sx

3 − Sy
3 + Sz

3 ) “all in-all out”

mE

(
1

2
√
6

(−2Sx
0 + Sy

0 + Sz
0 − 2Sx

1 − Sy
1 − Sz

1 + 2Sx
2 + Sy

2 − Sz
2 + 2Sx

3 − Sy
3 + Sz

3 )
1

2
√
2

(−Sy
0 + Sz

0 + Sy
1 − Sz

1 − Sy
2 − Sz

2 + Sy
3 + Sz

3 )

)
Γ5, including

Ψ2 and Ψ3

mT1+

 1
2
(Sx

0 + Sx
1 + Sx

2 + Sx
3 )

1
2
(Sy

0 + Sy
1 + Sy

2 + Sy
3 )

1
2
(Sz

0 + Sz
1 + Sz

2 + Sz
3 )

 collinear FM

mT1,−


−1

2
√
2
(Sy

0 + Sz
0 − Sy

1 − Sz
1 − Sy

2 + Sz
2 + Sy

3 − Sz
3 )

−1

2
√
2
(Sx

0 + Sz
0 − Sx

1 + Sz
1 − Sx

2 − Sz
2 + Sx

3 − Sz
3 )

−1

2
√
2
(Sx

0 + Sy
0 − Sx
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3 − Sy
3 )

 non-collinear FM

mT2


1

2
√
2

(−Sy
0 + Sz

0 + Sy
1 − Sz

1 + Sy
2 + Sz

2 − Sy
3 − Sz

3 )
1

2
√

2
(Sx

0 − Sz
0 − Sx

1 − Sz
1 − Sx

2 + Sz
2 + Sx

3 + Sz
3 )

1

2
√
2

(−Sx
0 + Sy

0 + Sx
1 + Sy

1 − Sx
2 − Sy

2 + Sx
3 − Sy

3 )

 Palmer–Chalker (Ψ4)

TABLE I. Order parameters mX, describing how the point-group symmetry of a single tetrahedron within the pyrochlore
lattice is broken by magnetic order. Order parameters transform according to irreducible representations of the point-group
Td, and are expressed in terms of linear combinations of spin-components Si = (Sx

i , S
y
i , S

z
i ), in the global frame of the crystal

axes — cf. H [Eq. (S15))]. Labelling of spins within the tetrahedron follows the convention of Ross et al. [17]. The notation
Ψi for ordered phases is taken from Ref. [54].

Matrices JA,ij are bond dependent and related to each other by the lattice symmetry. Their values are

JA,01 =

 JA DA/
√

2 DA/
√

2

−DA/
√

2 JA 0

−DA/
√

2 0 JA

 , JA,02 =

 JA −DA/
√

2 0

DA/
√

2 JA DA/
√

2

0 −DA/
√

2 JA

 ,
JA,03 =

 JA 0 −DA/
√

2

0 JA −DA/
√

2

DA/
√

2 DA/
√

2 JA

 , JA,12 =

 JA 0 DA/
√

2

0 JA −DA/
√

2

−DA/
√

2 DA/
√

2 JA

 ,
JA,13 =

 JA DA/
√

2 0

−DA/
√

2 JA DA/
√

2

0 −DA/
√

2 JA

 , JA,23 =

 JA −DA/
√

2 DA/
√

2

DA/
√

2 JA 0

−DA/
√

2 0 JA

 .
(S20)

The spin degrees of freedom on each tetrahedron can be rewritten in terms of fields forming the irreducible repre-
sentations of the lattice symmetry,

mA2 , mE, mT2 , mT1+ , mT1− , (S21)

whose definition can be found in Table I. They are linear combinations of the spin degrees of freedom, allowing for a
fully quadratic Hamiltonian:

H =
1

2

∑
X

aX,Am
2
X,A +

1

2

∑
X

aX,Bm
2
X,B, (S22)

where X runs over irreps of the group Td, i.e. {A2,E,T2,T1+,T1−} as listed in Eq. (S21), and the subscript A,B
denotes on which type of tetrahedra they are defined. The coefficients aX are listed in Table. II.

For the couplings in Eq. (S15), we have on A-tetrahedra

aA2,A = −JA − 4DA/
√

2 , (S23)

aT2,A = −JA − 2DA/
√

2 , (S24)

aT1+,A = 3JA , (S25)

aT1−,A = aE,A = −JA + 2DA/
√

2, (S26)
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coefficient of |mX|2 in Eq.(S22) definition in terms of J and D

aA2 −J − 4D/
√

2

aE −J + 2D/
√

2

aT2 −J − 2D/
√

2

aT+ 3J

aT− −J + 2D/
√

2

TABLE II. Coefficients aX of the irrep invariants |mX|2 appearing in H [Eq.(S22)]. Coefficients are expressed as a function of
J and D. Here the subscripts for the A- and B-tetrahedra are suppressed.

and on B-tetrahedra

aA2,B = aE,B = aT2,B = aT1−,B = −JB , (S27)

aT1+,B = 3JB . (S28)

For JA, JB > 0 and DA < 0, these parameters are in order

on A-tetrahedra: aE,A = aT1−,A < aA2,A, aT2,A, aT1+,A, (S29)

on B-tetrahedra: aA2,B = aE,B = aT2,B = aT1−,B < aT1+,B, (S30)

which plays the central role of dictating the low energy physics.
The irreducible representation fields are subject to constraints arising from fixed spin length∑

X

m2
X = 1 (S31)

for both A- and B-tetrahedra. As a consequence, the low energy sector allows the m2
X corresponding to the smallest

aX to fluctuate, while all other fields have to vanish. This principle applied to our model leads to

• On A-tetrahedra, the fields mE and mT1− can fluctuate;

• On A-tetrahedra, the fields mT1+ = mT2 = 0, mA2 = 0;

• On B-tetrahedra, the fields mA2 , mE, mT2 , mT1− can fluctuate;

• On B-tetrahedra,

mT1+ = 0 (S32)

Since every spin is shared by an A- and a B-tetrahedron, the fluctuating fields mE and mT1− on A-tetrahedra must
obey additional constraints to respect the the low-energy sector condition on B-tetrahedron imposed by Eq. (S32).
Assuming that the fields are varying slowly in space such that the continuous limit can be taken, the constraint
Eq. (S32) can be expressed in terms of fields living on A-tetrahedron as

2√
3

 ∂xm
1
E

− 1
2∂ym

1
E −

√
3
2 ∂ym

2
E

− 1
2∂ym

1
E +

√
3
2 ∂ym

2
E

−
∂ym

z
T1−

+ ∂zm
y
T1−

∂zm
x
T1−

+ ∂xm
z
T1−

∂xm
y
T1−

+ ∂ym
x
T1−

 = 0. (S33)

From this constraint we can build the symmetric, traceless, rank-two magnetic field Eij as

Eij =


2√
3
m1

E mz
T1−

my
T1−

mz
T1−

− 1√
3
m1

E −m2
E mx

T1−

my
T1−

mx
T1−

− 1√
3
m1

E +m2
E

 , (S34)

such that Eq. (S33) becomes

∂iEij = 0 , (S35)
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(a) (b) (c)

FIG. S1. Structure of the 4–fold pinch point (4FPP) associated with rank–2 U(1) [R2–U1] gauge theory. (a) Prediction
of R2–U1 theory for the correlation function 〈Exy(q)Exy(−q)〉, on a surface of fixed |q| near to a Brillouin zone center. (b)
Exploded view, showing a 2–fold pinch point in the [0kl] plane. (c) Perpendicular cut, showing a 4FPP in the [hk0] plane.

with symmetric and traceless conditions

Eji = Eji, TrE = 0 (S36)

by the definition of Eij . Hence a rank-2, traceless, vector charged magnetic field emerges at the low-energy sector
from the microscopic model of Eq. (S15).

Equation (S36) constrains the form of correlations functions of 〈Eij(q)Ekl(−q)〉, in the same spirit as how the
two-in-two-out condition constrains the spin-spin correlation of spin ice. It is, however, in a more complicated form.
The explicit results for the traceful scalar-charged and vector-charged versions of R2–U1 are discussed in detail in
Ref. [50]. The vector-charge field correlation is

〈Eij(q)Ekl(−q)〉 ∝1

2
(δikδjl + δilδjk) +

qiqjqkql
q4

− 1

2

(
δik

qiql
q2

+ δjk
qiql
q2

+ δil
qjqk
q2

+ δjl
qiqk
q2

) (S37)

In close analogy, we derive the correlation function of our traceless vector-charged model by deducting the trace,

〈Eij(q)Ekl(−q)〉 ∝1

2
(δikδjl + δilδjk) +

qiqjqkql
q4

− 1

2

(
δik

qiql
q2

+ δjk
qiql
q2

+ δil
qjqk
q2

+ δjl
qiqk
q2

)
− 1

2

(
δij −

qiqj
q2

)(
δkl −

qkql
q2

)
,

(S38)

which encodes a singularity at q → 0. Different choices of the components Eij and Ekl show different patterns. A
few representative ones can be found in Figs. S1,S2.

(a) (b) (c) (d)

FIG. S2. Different components of correlation function 〈Eij(q)Ekl(−q)〉 in qx − qy plane, calculated from Eq. (S38).

Fig. S2b,S2c have the four-fold pinch-point (4FPP) singularity, which differentiates the rank-2 gauge theories
uniquely from the conventional U(1) gauge theory. It is the key signature to be looked for in experiments.
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ALTERNATIVE FORMS OF R2–U1 SPIN LIQUID

In the main text we have shown how a classical spin liquid described by a symmetric, traceless R2–U1 gauge theory,
descends from the U(1) × U(1) × U(1) spin liquid found in the classical Heisenberg Antiferromagnet (HAF) on a
pyrochlore lattice. The approach taken is very versatile, and by tuning the Hamiltonian, one can also obtain other
forms of R2–U1 spin liquid.

Notice that the diagonal and off-diagonal components of EHAF
sym. come from different irreps mE and mT1− . In the

most general Hamiltonian (Eq.S22), these two irreps have their individually tunable coefficients aE and aT1− . So the
symmetric part of EHAF can be decomposed into three components

EHAF
trace + EHAF

sym−diagonal + EHAF
symm−off−diagonal, (S39)

and each component can be individually tuned to be active or suppressed by choosing the proper Hamiltonian. The
vector-charged Gauss law is unaffected. This allows us to build a variety of rank-2 U(1) gauge theories, including a
“hollow” version with vanishing diagonal terms [39] .

PREDICTIONS FOR NEUTRON SCATTERING

The 4FPP is a unique pattern that differentiates the R2–U1 from vector U(1) gauge theory, which only has the
conventional two-fold pinch points. The 4FPPs are most unambiguously presented in the correlation function of
the irrep fields as discussed in the main text. These correlation functions are, however, not directly accessible in
experiment.

In magnetism, neutron scattering is widely used to measure the spin-spin correlation of the form

S(q) =
∑
α,β,i,j

(
δαβ −

qαqβ

q2

)
〈Sαi (q)Sβj (−q)〉 (S40)

where α, β = x, y, z are spin-component indices and i, j = 0, 1, 2, 3 are sub-lattice site indices.
Furthermore, with neutrons polarized in direction of unit vector v̂ perpendicular to the scattering plane, one can

measure the spin-flip (SF) channel neutron scattering defined by

S(q)SF =
∑
α,β,i,j

(vα⊥v
β
⊥)〈Sαi (q)Sβj (−q)〉, (S41)

where

v̂⊥ =
v̂ × q

|v̂ × q|
. (S42)

One can also measure the non-spin-flip (NSF) channel defined by

S(q)NSF =
∑
α,β,i,j

(vαvβ)〈Sαi (q)Sβj (−q)〉 (S43)

Here we show the spin structure factor of the [h0k] and [hhk] plane, with zoomed-in view of the 4FPPs.
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FIG. S3. 4-Fold Pinch Points (4FPPs) in spin structure factor in the [h0k] and [hhk] plane of momentum space of the model
[Eq. (6)] from MC simulations. The exchange parameters are from the idealized theoretical case JA = JB = 1.0, DA =
−0.01, DB = 0.0, at T = 2.5 × 10−3 JA. (a) Total structure factor in [h0k] plane. (b) Non-spin-flip (NSF) channel in [h0k]
plane. (c) Spin-flip (SF) channel in [h0k] plane. (d) Enlarged 4FPP in [h0k] plane. (a) Total structure factor in [hhk] plane.
(b) Non-spin-flip (NSF) channel in [hhk] plane. (c) Spin-flip (SF) channel in [hhk] plane. (d) Enlarged 4FPP in [hhk] plane.
The 4FPPs can be clearly observed in the SF channel, centered on [0, 0, 2] (and points related by symmetry), but weaker than
in the [h0k] plane.

FIG. S4. 4-Fold Pinch Points (4FPPs) in spin structure factors in the [h0k] and [hhk] planes of momentum space of the model
[Eq. (6)] from MC simulations. The exchange parameters are from the experimental case Eq. (19) at T = 252 mK. (a) Total
structure factor in [h0k] plane. (b) Non-spin-flip (NSF) channel in [h0k] plane. (c) Spin-flip (SF) channel in [h0k] plane. (d)
Enlarged 4FPP in [h0k] plane. (a) Total structure factor in [hhk] plane. (b) Non-spin-flip (NSF) channel in [hhk] plane. (c)
Spin-flip (SF) channel in [hhk] plane. (d) Enlarged 4FPP in [hhk] plane. The 4FPPs can be observed in the SF channel,
centered on [0, 0, 2] (and points related by symmetry), but weaker than in the [h0k] plane.

TEMPERATURE EVOLUTION OF 4–FOLD PINCH POINT INTO A CONVENTIONAL 2–FOLD PINCH
POINT

The cross–over from the HAF phase to the R2–U1 phase, with decreasing temperature, is manifested in the structure
factor as a cross–over between a conventional, 2–fold, pinch point and the 4–fold pinch point (4FPP) characteristic
of an R2–U1 gauge theory [50]. To provide further quantitative details of this cross–over, here we present an analysis
of correlations based on a coarse–grained field theory.

As shown above, the U(1)× U(1)× U(1) spin liquid of the Heisenberg model can be described in terms of a non-
symmetric matrix E, with a Gauss’ law applied to each column. The traceless R2-U(1) spin liquid is described in the
same way, but with the constraint that E be symmetric and traceless.

The following effective theory captures both cases:

Z =

∫ ∏
µ,ν

dEµν exp(−βHeff [Eµν ]) (S44)

βHeff =
λ

2

∫
d3r

(∑
µν

E2
µν + δ

∑
ν

[∑
µ

∂µEµν

]2
+ η

[
1

3
Tr[E]2 +

1

2
(Exy − Eyx)2 +

1

2
(Exz − Ezx)2 +

1

2
(Eyz − Ezy)2

])
(S45)

where the integral in Eq. (S44) is taken independently over all components of the matrix E and β = 1/T is the inverse
temperature.

The limit δ →∞, η → 0, captures the Heisenberg model spin liquid, with Gauss’ law enforced on every column of
E and no correlations between columns. The limit δ →∞, η →∞ captures the R2-U(1) spin liquid, with E forced to
be symmetric and traceless and still obeying Gauss’ law for each column.
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FIG. S5. Evolution of the correlation function 〈Eyx(q)Eyx(−q)〉 [Eq. (S47)] from a 2-fold pinch point to a 4-fold pinch point
as we tune from the Heisenberg to R2-U(1) spin liquids by increasing the parameter η [Eq. (S45)]. In terms of our microscopic
model, this may be viewed either as decreasing the temperature at fixed, small, |DA| or as increasing |DA| at fixed small
temperature.

In terms of the parameters of the microscopic model:

δ ∼ βJ, η ∼ β|DA|. (S46)

since δ is the coefficient enforcing the Gauss’ law (which is generated by J) and η is the coefficient enforcing the
symmetric and traceless conditions (which are generated by DA).

We can study the crossover from the Heisenberg to R2-U(1) spin liquids by first taking δ → ∞ and observing the
behavior as a function of η. The crossover can be illustrated by calculating the correlation function

〈Eyx(q)Eyx(−q)〉

which should have a 2-fold pinch point in the Heisenberg limit and a 4-fold pinch point in the R2-U(1) limit.

Calculating the correlation function from Eqs. (S44)-(S45) and taking the limit δ →∞. gives us

〈Eyx(q)Eyx(−q)〉 =
f(q, η)

2λq4(1 + η)(2 + η)(3 + 2η)
(S47)

f(q, η) = 4q4x(1 + η)(3 + 2η) + q2z(q2y + qz2)(2 + η)2(3 + 2η) + 2q2xq
2
y(1 + η)(2 + η)(3 + η) + q2xq

2
z(3 + 2η)(8 + 8η + η2).

(S48)

The η → 0 limit of Eq. (S47) gives the Heisenberg limit of the correlation function (a 2-fold pinch point)

lim
η→0
〈Eyx(q)Eyx(−q)〉 =

1

λ

(
1−

q2y
q2

)
. (S49)

Whereas, the η →∞ limit gives the R2-U(1) correlation function (a 4-fold pinch point):

lim
η→∞

〈Eyx(q)Eyx(−q)〉 =
1

2λ

(q2 − q2x)(q2 − q2y)

q4
. (S50)

Since η ∼ β|DA|, we can see from Eq. (S47) that for a fixed q at any, fixed, finite temperature the evolution as
a function of DA, will be smooth, although at small temperatures, a small change in DA will give a large change in
η and hence the correlation function. Only at T = 0 does the correlation function behave in a singular fashion as a
function of DA, but this is not surprising, since the Heisenberg limit has a highly degenerate ground state.

The progression of the correlation function as η is increased is given in Fig (S5). This progression can either be
seen as decreasing the temperature at fixed, small, |DA| or as increasing |DA| at fixed small temperature.
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MONTE CARLO SIMULATIONS

Monte Carlo simulations are performed on systems of classical O(3) spins with 16L3 sites, where L3 is the number
of cubic unit cells. The spin length is |S| = 1/2. To decorrelate the system, we use jointly the heatbath method, over-
relaxation and parallel tempering. Thermalization is made in two steps: first a slow annealing from high temperature
to the temperature of measurement T during te Monte Carlo steps (MCs) followed by te MCS at temperature T .
After thermalization, measurements are done every 10 MCs during tm = 10 te MCs. All structure factors have been
computed from simulations with L = 30 and tm = 5 × 105 MCs. The phase diagram of Fig. 5 has been computed
from simulations with L = 8 and tm = 107 MCs.
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