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Abstract. This note surveys some results on the geometric structure
on the tangent bundle and cotangent bundle of statistical manifolds. In
particular we give a description for the tangent bundle of exponential
models parametrized on convex domains.
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1 Statistical manifolds

We recall here the definition of statistical manifolds following [10, 2, 1, 3]. Let
(M, g) be a Riemannian manifold. Denote Γ (TM) the space of vector fields on
M . A connection ∇ on M is a bilinear map

∇ : Γ (TM)× Γ (TM)→ Γ (TM) (1)

(X,Y ) 7→ ∇XY (2)

satisfying for all f ∈ C∞(M), X, Y, Z ∈ Γ (TM)

1. ∇fXY = f∇XY , i.e, ∇ is C∞(M,R)-linear in the first variable;
2. ∇X(fY ) = X(f)Y + f∇XY , i.e, ∇ satisfies Leibniz rule in the second vari-

able.

A connection ∇∗ is called dual connection of ∇ with respect to g if

∇Zg(X,Y ) = g(∇ZX,Y ) + g(X,∇∗ZY )

for all X,Y, Z ∈ Γ (TM). It is straightforward that ∇∗ is defined uniquely by
the last identity.

Definition 1. A triple (M, g,∇) is called a statistical manifold if ∇ and ∇∗
are torsion free. We also call (g,∇,∇∗) a dualistic structure on M .

Assume that (g,∇,∇∗) is a dualistic structure on M . Then the tensor T
defined by

T (X,Y, Z) = g(∇∗XY −∇XY,Z), ∀X,Y, Z ∈ Γ (TM)

is symmetric on all three entries. The tensor T has been called the skewness
tensor by Lauritzen [10]. Conversely, it follows from Lauritzen [10] that:
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Theorem 1. A metric g and a symmetric 3-tensor T yields a dualistic structure
with torsion-free connections.

Denote ∇̂ the Levi-Civita connection with respect to g, then we have

∇̂ =
1

2
(∇+∇∗) and T = 2(∇̂ − ∇).

From now we have another way to define a statistical manifold by a triple
(M, g, T ), where g is a Riemannian metric on M and T is a symmetric 3-tensor.

Definition 2. A smooth map φ from a statistical manifold (M1, g1, T1) to a
statistical manifold (M2, g2, T2) is called a statistical isomorphism if φ is an
diffeomorphism of M1 into M2 such that g1 = φ∗(g2) and T1 = φ∗(T2).

2 Tangent and Cotangent bundles of statistical manifolds

2.1 Almost Kähler structure on tangent bundles

We recall here the work of Dombrowski [6] on the geometry of the tangent
bundle. As a corollary, the tangent bundles of a statisticcal manifolds admit a
canonical almost Kähler structure.

Let (M, g) be a Riemannian manifold and ∇ be a connection on M . Denote
by π : TM →M the canonical projection, then π∗ := dπ : TTM → TM is a C∞

map. We denote by VξTM the vector space ker(π∗|TξTM ). Then the connection

∇ induces a direct sum decomposition on TTM at any ξ ∈ TM :

TξTM = VξTM ⊕HξTM (3)

where VξTM (reps. HξTM) is called the vertical (reps. horizontal) space of
TξTM . Indeed, for any a normal neighborhood U (with respect to ∇) of p ∈M ,
there is a canonical map

τ : π−1(U)→ TpM

defined as follows: for ξ ∈ π−1(U), τ(ξ) is the parallel translation with respect
to ∇ of ξ along the unique geodesic arc in U joining q = π(ξ) and p. We define
the connection map K : TTM → TM as follows: for any ξ ∈ TM , A ∈ TξTM ,
and c : t→ c(t) a path in TM with ċ(0) = A, then

KA = lim
t→0

τ(c(t))− ξ
t

.

Then we define HξTM := ker(K|TξTM ).

Let u1, . . . , un ∈ C∞(M) be a coordinate system on M . Define then a coor-
dianate system v1, . . . , v2n ∈ C∞(TM) on TM as follows:

vi := ui ◦ π ∀i = 1, . . . , n (4)

vn+i(X) := dui(X) ∀i = 1, . . . , n, and ∀X ∈ TM. (5)
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We also denote

Xi =
∂

∂ui
and Aj =

∂

∂vj
, (6)

for i = 1, . . . , n and j = 1, . . . , 2n. Then for any ξ =
∑n
i=1 x

iXi ∈ TM with

xi ∈ C∞(M), and A =
∑2n
j=1 a

jAj ∈ Γ (TM) with aj ∈ C∞(TM), we have

(π∗A)ξ =

n∑
i=1

ai(ξ)Xi

and

(KA)ξ =

n∑
i,j,k=1

(an+i(ξ) + Γ ijka
j(ξ)xi)Xi, (7)

where Γ ijk = (∇XjXk)ui.

We now define an almost complex structure J on TM as follows. For ξ ∈ TM ,
the exists for A ∈ TξTM a unique element in TξTM denoted by JA such that
π∗(JA) = −KA and K(JA) = π∗A. The map J : TTM → TM is thus an
almost complex structure for TM characterized by

π∗ ◦ J = −K, K ◦ J = π∗. (8)

It follows from [6] that for any X ∈ Γ (TM), there exist unique Xh ∈ Γ (TTM),
called horizontal lift and unique Xv ∈ Γ (TTM), called vertical lift satisfying

π∗(X
h
ξ ) = Xπ(ξ), π∗(X

v
ξ ) = Oπ(ξ),KX

h
ξ = Oπ(ξ),KX

v
ξ = Xπ(ξ).

By the definition we have JXh = Xv and JXv = −Xh for ant X ∈ Γ (TM).
We also have a natural Riemannian metric g̃ on TM , namely Sasaki metric

(cf. [13, 6]) induced from (g,∇):

g̃(A,B) := g(π∗A, π∗B) + g(KA,KB), ∀A,B ∈ TξTM. (9)

Observe J is g-compatible, i.e, g̃(JA, JB) = g̃(A,B), therefore we can define a
hermitian metric h̃ and its Kähler form ω̃ on TTM by

h̃(A,B) = g̃(A,B) + ig̃(A, JB), ∀A,B ∈ TξTM, (10)

and
ω̃(A,B) = h̃(A, JB), ∀A,B ∈ TξTM. (11)

Then it follows from Dombrowski [6] and Satoh [14] that:

Theorem 2. Let (M, g) be a Riemannian manifold with a torsion-free connec-
tion ∇, then (TM, h̃, J) is an almost-Hermitian manifold. It is almost-Kählerian
if and only if ∇∗ is torsion-free (so that (M, g,∇) is statistical). Furthermore,
(TM, h̃, J) is a Kähler manifold if and only if ∇ is flat, i.e the Riemannian
curvature of ∇ vanishes.
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This theorem gives a bridge between information geometry and complex geome-
try. As consequence we have the following characterization of statistical isomor-
phism.

Theorem 3. A smooth map φ : (M1, g1, T1)→ (M2, g2, T2) on statistical man-
ifolds is a statistical isomorphism if and only if ϕ := dφ : (TM1, h̃1, J1) →
(TM2, h̃2, J2) is an isomorphism of almost-Kähler manifolds, i.e, ϕ is a diffeo-
morphism satisfying ϕ∗h̃2 = h̃1 and ϕ∗J2 = J1.

Proof. The complex structure on TM1 is defined by g1 and ∇1 = ∇̂1 − 1
2T1,

where ∇̂1 is the Levi-Civita connection of g1. The complex structure on TM2 is
defined in the same way.

Suppose that φ : (M1, g1, T1) → (M2, g2, T2) is a statistical isomorphism.
Then it follows from the definition that g1 = φ∗g2 and T1 = φ∗T2, hence we get
ϕ∗h̃2 = h̃1 and ϕ∗J2 = J1.

Conversely, if ϕ := dφ : (TM1, h̃1, J1) → (TM2, h̃2, J2) is an isomorphism
of almost-Kähler manifolds, then φ is diffeomorphic. Since ϕ∗h̃2 = h̃1, the
formulas (10) and (9) imply that φ∗(g2) = g1. Finally, the identities (8) and
ϕ∗J2 = J1 imply φ∗K2 = K1, where K1,K2 are the connections maps of
(M1, g1, T1), (M2, g2, T2). Since the connection ∇1,∇2 can be defined by K1,K2

(see (7)), so do T1 and T2. This show that φ∗T2 = T1, hence φ is a statistical
isomorphism as required.

For more results on tangent space of statistical manifold we refer to [11, 4].

2.2 Cotangent bundle

Let M be a manifold, then its cotangent bundle T ∗M has a natural symplectic
structure defined as follows. Denote by π̄ : T ∗M → M the canonical projection
which assigns to each form p ∈ T ∗qM its base point q ∈M . Define the Liouville
1-form θ on T ∗M by

〈θ,X〉 = 〈p, π̄∗X〉,∀X ∈ TpT ∗M. (12)

Then ω = dθ is a symplectic form on M . Take a local coordinate system
(p1, . . . , pn, q1, . . . , qn) on T ∗M , where (q1, . . . , qn) is a local coordinate on M
and (p1, . . . , pn) are the coefficients of forms. Then θ =

∑
pjdqj and ω = −dθ =

dqj ∧ dpj .
Now let g be a metric on M then, we have the following isomorphism

φg : TM → T ∗M (13)

ξ 7→ g(·, ξ) (14)

The following result is straightforward from Delanoë [5, Théorème 2] and Satoh
[14].

Theorem 4. Let (M, g) be a Riemannian manifold with a torsion-free connec-
tion ∇. The following are equivalent:
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1. (M, g,∇) is a statistical manifold;
2. (φg)∗(HM) is a Lagrangian subspace with respect to the symplectic form ω

on T ∗M , i.e, ω vanishes on (φg)∗(HM);
3. φg : (TM, ω̃)→ (T ∗M,ω) satisfies φ∗gω = ω̃, where ω̃ defined in (11).

2.3 Käher and dual flat correspondence

Definition 3. A statistical manifold (M, g,∇) is said to be ∇-flat if ∇ is a flat
connection.

Since ∇ being flat implies that ∇∗ is flat as well, we call a ∇-flat statistical
manifold is dual flat. It follows from [2] that any dual flat statistical manifold
(M, g,∇) carries a Hessian structure, i.e g can be locally expressed by g = ∇dϕ,
that is,

gij =
∂2ϕ

∂xi∂xj

where {x1, . . . , xn} is an affine coordinate system with respect to ∇. By Theorem
2, (TM, g̃, J) is a Kähler manifold, where g̃ and J are defined in Section 2.1.

Denote ∇̂ the Levi-Civita of (M, g), T = 1
2 (∇̂ − ∇). Then the (1,3) tensor

Q = ∇T is called the Hessian curvature tensor for (g,∇).

Definition 4. We define first Koszul form α and the the second Koszul form β
for (g,∇) (cf. [9]) by

∇Xvolg = α(X)volg and β = −∇α.

We recall here some properties of the Hessian curvature (cf. [15])

Proposition 1. Let R̂ be the Riemannian curvature of g, R̃ be the Riemannian
curvature on the Kähler manifold (TM, g̃, J). Then

R̂ijkl =
1

2
(Qijkl −Qjikl), R̃ = Q ◦ π, R̃jk̄ = βjk ◦ π,

where R̃jk̄ is the Ricci tensor on (TM, g̃, J).

These properties above infer that the second Koszul form β plays a similar role
as the Ricci tensor in Kähler geometry.

3 Completeness to tangent bundles of statistical
manifolds

In this section we study the completeness to the tangent bundle (TM, g̃) of a
statistical manifold (M, g,∇). We first recall the Riemannian submersion.

Definition 5. Let (M̃, g) and (M,h) be two Riemannian manifolds and π :
M̃ →M be a submersion. Then π is call Riemannian submersion if the isomor-
phism π∗ : HM̃ → TM is an isometry, where HM̃ is the horizontal distribution.
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We now have the following lemma (see for example [12]).

Lemma 1. Let π : M̃ →M be a Riemannian submersion. Then we have that

(i) for any gedesic γ of M , p̃ = π−1(γ(0)), there exists a unique locally defined
horizontal lift γ̃ of γ with γ̃(0) = p̃, and γ̃ is a geodesics of M̃ .

(ii) for any geodesic γ̃ of M̃ . If γ̃′(0) is a horizontal vector, then γ̃′(t) is hor-
izontal for every t in the domain of γ̃ and π ◦ γ̃ is a geodesic of M of the
same length as γ̃.

(iii) If M̃ is complete, so is M .

We now prove that a necessary condition so that (TM, g̃) is complete is that
(M, g) is complete.

Proposition 2. If (TM, g̃) is complete, so is (M, g).

Proof. We only need to prove that the canonical map π : (TM, g̃)→ (Mg) is a
Riemannian submersion. Indeed, it follow from the definition of Sasaki metric g̃
that

g̃(A,B) := g(π∗A, π∗B) + g(KA,KB), ∀A,B ∈ TξTM.

Therefore, for any A,B ∈ HξTM we have

g̃(A,B) := g(π∗A, π∗B)

this implies that π is a Riemannian submersion. Lemma 1 now implies that
(M, g) is complete.

Theorem 5. Suppose (M, g,∇) is a complete statistical manifold, then (TM, g̃)
is also complete.

Proof. For any p ∈ TM and any ξ ∈ TpTM , the Cauchy-Lipschitz theorem
implies the existence of the geodesic γ̃ on an open interval [0, t0), starting from
p with the tangent vector ξ on (TM, g̃). We can assume γ̃ : [0, t0) → TM is
a unit-speed geodesic. In order to prove that (TM, g̃) is complete, we need to
prove that the geodesic is defined on the interval [0, t0] as well.

We now prove that, γ̃ can be extended beyond t0. Indeed, take γ = π◦γ̃, then
γ is Lipschitz since γ̃ has bounded speed. In addition, (M, g) is complete, hence
there exists p = limt→t−0

γ(t). Take a neighborhood U of p, then π−1(U) = U×Rn

and γ̃(t) = (γ(t), c(t)) ∈ π−1(U) for t ∈ (t0 − ε, t0) for some ε > 0, hence
c((t0 − ε, t0)) ⊂ Rn. Since the speed of c(t) is also bounded and the restriction
of g̃ on fibers is complete, there exists limt→t−0

c(t), therefore we can extend γ̃

until t = t0.

Corollary 1. Suppose that (M, g,∇) is a compact statistical manifold, then
(TM, g̃) is complete.
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4 Examples

4.1 Euclidean space

Let M = Rn, ∇ be from the standard derivative and

ψ =
1

2

n∑
i=1

(xi)
2, then g =

n∑
i=1

(dxi)2

is the standard Euclidean metric. Then TRn is identified with Cn. Then (TM, J, g̃)
is a complete manifold.

4.2 Poincaré metric model

Let M = R+ = {x ∈ R|x > 0} and ψ = log(x−1),∀x ∈ R+. We then have
g = 1

x2 dx
2. Then the tangent space TR+ = {(x, y)|x > 0} has the induced

metric

g̃ =
(dx)2 + (dy)2

x2
.

Therefore (TR+, g̃) is the Poincaré half-plane model and g̃ is the Poincaré metric.
It is known that the Poincaré half-plane model is complete.

5 Statistical models on convex domain and complex tube
domains

5.1 Fisher metric and Bergman metric

Let Ω is a (regular) convex domain. Then the tangent space of Ω, TΩ = Ω+iRn

is a tube domain in Cn. Denote

Ω∗ = {t ∈ Rn|ψ(t) =

∫
Ω

e−2〈x,t〉dx < +∞}. (15)

For x ∈ Ω∗, and θ ∈ Ω, define

p(x; θ) =
e−〈x,θ〉

ψ(θ)
= e−〈x,θ〉−logψ(θ). (16)

Then {p(x; θ)|θ ∈ Ω} is an exponential family of probability distributions on
Ω parametrized by Ω and its statistical structure (Ω,∇, g = ∇d logψ) is a dual
flat, where ∇ defined by Γ ijk = gisEθ [∂j∂k(log p)∂s(log p)]. Then we have the
following result.

Theorem 6. Suppose Ω is homogeneous convex domain, then the Kähler metric
h̃ (see (10)) is the Bergman metric on TΩ := Ω+ iRn and (TΩ, g̃) is complete.
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Proof. Let ψ be the characteristic function define on Ω∗:

ψ(x) =

∫
Ω

e−2〈x,θ〉dθ. (17)

Then it follows from [8] that the Bergman kernel KΩ of TΩ := Ω + iRn is
defined by

KΩ(z, w) = (2π)−n
∫
Ω∗
e−〈x,z+w̄〉ψ(x)−1dx. (18)

Denote g = ∇d logψ is the Fisher metric of (Ω, g,∇). We now prove that h̃
is the Bergman metric i

2∂∂̄ logKΩ(z, z) on TΩ := Ω + iRn. Indeed, we have

KΩ(z, z) = (2π)−n
∫
Ω∗
e−2〈x,θ〉ψ(x)−1dx =: h(θ) (19)

where θ = Re(z). Observe that for any A ∈ Aut(Ω), h(Aθ) = (det(A))−2h(θ)
and ψ(Aθ) = (detA)−1ψ(θ).

For a fixed θ0 ∈ Ω, the homogeneity of Ω implies that for any θ ∈ Ω, there
exists A ∈ Aut(Ω) such that θ = Aθ0. Therefore if h(θ0) = cψ2(θ0) for some c,
then h(θ) = cψ2(θ),∀θ ∈ Ω. Since g = ∇d logψ and ω̃ =

√
−1(gjk ◦ π)dzj ∧ dz̄k,

we have

h̃jk̄(z) = ∂j∂k̄ logψ(Re(z)) =
1

2
∂j∂k̄ logKΩ(z, z)

as required. Since (Ω, g) is a homogeneous manifold, it is complete. The conclu-
sion is now followed from Theorem 5.

5.2 Convergence of statistical models on convex domains

Using the correspondence between Fisher metric and Bergman metric above, we
study the geometric convergence of statistical models on convex domains.

For two compact set K1,K2 in Rn, the Hausdorff distance of these two sets
is defined by

dH(K1,K2) = sup
z1∈K1

inf
z2∈K2

|z1 − z2|

Let Ωj be bounded convex domain in Rn. A domain Ω is called the limit of
Ωj if for any compact set K

lim
j→∞

dH(∂Ωj ∩K, ∂Ω ∩K) = 0

Then we have the following results

Theorem 7 ([7]). Let Ωj , Ω be domains in Rn such that Ωj → Ω .Then KΩj

converges locally uniformly in C∞ to KΩ.

As consequence we implies the convergence of the Fisher metric.

Corollary 2. Let {p(x, θ)| θ ∈ Ωj} be a a sequence of exponential models parametrized
by homogeneous convex domains Ωj ⊂ Cn. If Ωj → Ω, then the Fisher metric
gΩj on Ωj converges locally in C∞ to the Fisher metric gΩ on Ω.
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