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Efficient global multidisciplinary optimization based on

surrogate models

S. Dubreuil∗, N. Bartoli†, T. Lefebvre∗

ONERA/DTIS, Université de Toulouse, Toulouse, France

C. Gogu ‡

Université de Toulouse, Toulouse, France

In order to solve MultiDisciplinary Optimization problems involving computationally
expensive disciplinary solvers, we propose a surrogate based approach where each disci-
plinary solver is replaced by an inexpensive surrogate model. As an approximation error
is introduced with the use of surrogate models, a probabilistic framework is considered to
manage the uncertainty propagation error from the MultiDisciplinary Analysis to the ob-
jective function of the optimization problem. This leads to the construction of an adaptive
surrogate-based approach, called EGMDO for Efficient Global Multidisciplinary Optimiza-
tion, to solve MDO problems. The approach is based on the adaptive enrichment of the
disciplinary surrogate models in areas where the optimum is likely to be. Two applications
are considered with a significant reduction in terms of number of calls to the expensive dis-
ciplinary solvers: a reduction by up to a factor of 30 is observed on the Sellar test problem
and in a preliminary aircraft design test case.

I. Introduction

This paper addresses the topic of multidisciplinary optimization (MDO) by proposing a surrogate based
approach for carrying out the MDO. The method proposed focuses on multidisciplinary analysis (MDA)

involving various disciplinary solvers with feedback coupling (i.e. the MDA is modeled as a non linear
system of equations). Moreover, it is assumed that the gradient of the disciplinary solvers with respect to
the design variables are not provided by the solvers and that the numerical cost of each solver is important
(i.e. computation of gradient by finite differences is intractable).

In this context, adaptive surrogate based optimization approaches seem to be relevant and have shown
efficiency in the context of optimization of monodisciplinary black-box functions (see 1–3). However, to
the best of our knowledge, their are only few attempts to adapt them to the MDO context. The proposed
approach, inspired by the Efficient Global Optimization (EGO) algorithm,1 can be seen as an uncoupled
MDO formulation in which each disciplinary solver is approximated by a metamodel. Then, these surrogate
models are adaptively enriched in promising areas of the design space with respect to the minimum value
of the objective function. Obviously the difficulties lie in the research of the promising areas of the design
space, given that the various disciplines are coupled, thus rendering non-trivial the choice of the disciplines
to be enriched and the choice of the most relevant input values. In order to properly define these areas, the
probabilistic framework is retained. Hence, each disciplinary solver is approximated by a Gaussian process
over the design and coupling variable spaces. Then, by carefully monitoring the uncertainty introduced by
the use of these surrogate models in the MDO process, the proposed algorithm finds relevant points of the
design space where the disciplinary surrogate models should be enriched.

In order to set up this strategy, several issues must be tackled among which:

• It is assumed that each disciplinary solver is approximated by a Gaussian process. However, the MDA
couples these surrogate models through a non linear system of equations. Hence, the coupling variables

∗Research Engineer, Information Processing and Systems Department
†Research Engineer, Information Processing and Systems Department, AIAA Member
‡Associate professor, Institut Clément Ader (ICA), CNRS, ISAE-SUPAERO, UPS, INSA, Mines-Albi, AIAA Member.

1 of 15

American Institute of Aeronautics and Astronautics



are random variables with unknown probability distribution as well as the objective function (computed
from the solution of the MDA). Consequently, the uncertainty propagation of the Gaussian surrogate
models through the MDA to the objective function is the first step of the proposed approach.

• Due to the modelling uncertainty induced by the use of surrogate models (Gaussian processes), the
objective function is a random field over the design space. The representation of this random field is
a keystone of the proposed approach.

• An enrichment criterion must be defined in order to find relevant areas of the design space where the
disciplinary surrogate models must be enriched.

The next section introduces the general problem we are interested in, details the three previously men-
tioned steps and presents the proposed uncoupled MDO method denoted by Efficient Global Multidisciplinary
Optimization (EGMDO). Section III presents two applications of the proposed algorithm on the analytical
Sellar problem4 and on an aircraft design test case investigated in the H2020 AGILE European project.5,6

Section IV draws conclusions and presents future developments.

II. EGMDO description

A. Overview

Objective of this paper is to solve an MDO problem involving nd disciplines as follows:

min
x∈X

yobj(x, yi) i = 1, · · · , nd (1)

where yobj is the objective function (to minimize in this case) depending of x and yi. The design variables
x belongs to a design space X ⊂ Rn. The coupling variables yi, i = 1, · · · , nd are solution of the non linear
system of nd equations, called multidisciplinary analysis (MDA),

yi = fi(x, yc(i)), i = 1, · · · , nd ∀x ∈ X (2)

where yc(i) is the vector of the coupling variables for the discipline i. The set of indexes denoted by c(i)

identifies the coupling variables i.e. #(c(i)) ≤ (nd−1) and i /∈ c(i). Finally, fi is the solver of discipline i. Let
us note that, with the previously introduced notations, disciplines i and j are said to have a feedback loop
if i ∈ c(j) and j ∈ c(i). In the following, it is assumed that Eq. (2) contains at least one feedback coupling.

In order to illustrate such a problem, Figure 1 presents on the left a graphical representation of an MDO
problem involving two disciplines and two coupling variables y1 and y2.

Discipline 1
y1 = f1(x, y2)

Discipline 2
y2 = f2(x, y1)

y1

y2

Objective
yobj = f3(x, y1, y2)

EGMDO

GP Discipline 1
Ỹ1 = Gpy1(x, Ỹ2)

GP Discipline 2
Ỹ2 = Gpy2(x, Ỹ1)

Ỹ1

Ỹ2

Random Objective
Yobj = f3(x, Ỹ1, Ỹ2)

Figure 1. MDO problem involving two coupling disciplines and an objective function. On the left, the
disciplines are given by some costly black-boxes. On the right, the disciplines have been replaced by some
surrogate models (Gaussian Process denoted by GP).

Among the various MDO formulations proposed in the literature (see 7 for a review), one of the most
straightforward to implement, while being quite efficient, is the MultiDisciplinary Feasible (MDF) approach.
This method basically consists in optimizing the objective function with respect to the design variable x
by solving the MDA at each optimization iteration (leading to feasible solutions at each iteration of the
optimizer). Main drawback of this approach is the numerical cost involved in the resolution of the non linear
system that must be repeated at every optimization iteration. Hence, in the context of costly disciplinary
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solvers fi, MDF approach can lead to intractable computational time. It should be noted that this drawback
is amplified in the case of global derivative free optimization problems which is the context of the present
study. The direct use of the EGO method1 combined with the MDF formulation will therefore imply a large
number of disciplinary solver calls.

In order to tackle this issue, the starting point of the proposed approach is to apply the MDF approach
on surrogate models of the disciplinary solvers (as presented by the right hand side of Figure 1). Indeed,
the numerical cost involved by the resolution of the MDA on surrogate models is negligible. However, in
order to be effective, these surrogate models must be accurate near the solution of the optimization problem.
Based on previous studies on optimization of black-box functions by surrogate models, one can conclude that
adaptive approaches (iterative construction of the surrogate models) are preferable to guarantee accuracy of
the solution of the optimization problem at convergence.

In the following, such an adaptive approach is proposed for the particular case of MDO. This approach
is inspired by the EGO1 algorithm, however specific difficulties must be tackled. In particular, contrarily
to the EGO approach, in the proposed method, it is not the objective function yobj which is approximated
by a Gaussian process but each disciplinary solver fi. Hence, the probability distribution of the objective
function can not be derived analytically and an uncertainty quantification step has to be performed. Next
section details these specific difficulties as well as the specific development we propose in order to tackle
them.

B. Description of the main steps

1. Gaussian process modelling and random MDA

As explained in the previous part, the basic idea of the proposed approach is to replace each disciplinary
solver fi by a surrogate model and to solve the MDA (see Eq. (2)) using these surrogate models. In order
to track the uncertainty associated with the use of surrogate models we proposed to use nd independent
Gaussian processes to approximate each disciplinary solver. Indeed, based on a given Design of Experiments
(DoE), this approach (see 2,8) proposes to model the unknown function as a Gaussian process conditioned
on the DoE. Thus, the surrogate model of the unknown function not only provides a prediction of the value
of the function but also an uncertainty measure (Gaussian) associated to this prediction. In practice, the
disciplinary solver fi is sampled over X and C(i) (where C(i) denoted the space of the coupling variables
for the discipline i) in order to create an initial DoE, denoted by DoEfi . Consequently, for a given design

variable x(0) ∈ X and a given coupling variable y
(0)

c(i)
∈ C(i) that do not belong to DoEfi , the deterministic

solution yi = fi(x
(0), y

(0)

c(i)
) is approximated by the Gaussian random variable,

Ỹi(x
(0), y

(0)

c(i)
) = µfi(x

(0), y
(0)

c(i)
) + ξi(0, σfi(x

(0), y
(0)

c(i)
)) (3)

where µfi(x
(0), y

(0)

c(i)
) is the mean value and ξi(0, σfi(x

(0), y
(0)

c(i)
)) is a Gaussian random variable of zero

mean and standard deviation σfi that depends on the position (x(0) and y
(0)

c(i)
) where the Gaussian process is

evaluated. It should be noted that the expressions of µfi and σfi are fully specified by the kind of Gaussian
process approximation used. For conciseness we choose here not to detail the theory of Gaussian process
interpolation and refer the reader to 8 instead. In the following, Gaussian process with constant mean and
squared exponential covariance function is used (parameters are classically estimated by maximization of
the likelihood function).

The main consequence of using Gaussian processes to approximate each disciplinary solver is that the
deterministic non linear system of equations (Eq. (2)) is transformed into a random non linear system of nd
equations which reads

Ỹi(x, Ỹc(i)) = µfi(x, Ỹc(i)) + ξi(0, σfi(x, Ỹc(i))), i = 1, · · · , nd ∀x ∈ X (4)

whose solution is the joined probability distribution of the random vector of the coupling variables{
Ỹi, i = 1, · · · , nd

}
. In Eq. (4) the notation Ỹc(i) stands for the random vector of coupling variables affecting

the discipline i.
Numerical strategies to approximate the solution of such random non linear system of equations have

been studied by several authors (see for example 9, 10, 11). In the following we rely on the method proposed
in 11 in which each random response Ỹi is assumed to be of second order and approximated on an Hermite
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polynomial chaos expansion (see 12, 13). This formulation leads to a non linear system of equations where
unknowns are the coefficients of each polynomial expansion. In 11 this non linear system of equations is
solved by a fixed-point algorithm over the coefficients of the polynomial chaos expansions (at each iteration
of the fixed-point algorithm, these coefficients are computed by a classical projection approach, see 11 for
details).

Using this approach one obtains an approximation of the solution of the random non linear system of
equations Eq. (4) into a polynomial chaos expansion which reads

Ŷi(x,Ξ) =

P∑
j=1

a
(i)
j (x)Hj(Ξ), i = 1, · · · , nd ∀x ∈ X

where Ξ = {ξi, i = 1, · · · , nd} with ξi a standard Gaussian random variable, Hj , j = 1, · · · , P are the nd
variate Hermite polynomials and P is the number of selected polynomial terms. The retained truncation

strategy consists in keeping all the polynomials with a degree less or equal to d, thus P = (nd+d)!
nd!d! . Hence,

the objective function whose expression in the original deterministic problem reads yobj = fobj(x, yi) is
transformed into a random field over the design space X that can be approximated by a polynomial chaos
expansion

Ŷobj(x,Ξ) =

P∑
j=1

a
(obj)
j (x)Hj(Ξ) ∀x ∈ X . (5)

It should be noted that the randomness of Ŷobj translates the uncertainty associated to the use of
disciplinary surrogate models. This information is valuable as one looks for the construction of accurate
disciplinary surrogate models near the minimum of the objective function. In the following this information
will be used to enrich the disciplinary surrogate models in relevant areas of the design space with respect to
the search of the deterministic optimum of the objective function.

Remarks:

• Once the polynomial chaos approximations of the coupling variables are obtained, it is straightforward
to compute the polynomial chaos approximation of the objective function (by a non intrusive approach
such as projection or regression14).

• In theory the accuracy of the polynomial chaos approximation can be increased arbitrary by increasing
the degree of the expansion (i.e. the number of polynomial terms P ). However, in practice, increasing
the degree of the expansion often leads to numerical stability issues, therefore in the following it
is assumed that an accurate polynomial chaos expansion Ŷobj can be obtained while a low degree
polynomial chaos expansion is used (polynomials of degree less or equal to 5).

• It should be noted that polynomial chaos coefficients a
(obj)
j (x), j = 1, · · · , P are mapping from X to R.

However they can only be computed pointwise, for a fixed value x ∈ X . In order to solve this difficulty,
next part presents an original approximation of the random field Ŷobj(x,Ξ) allowing a fast exploration
of the design space X .

2. Representation of the random field Ŷobj(x,Ξ)

From now on it is assumed that one is able to compute an accurate polynomial chaos expansion of Yobj(x)
for a fixed value of x. Let us assume that the uncertainty quantification has been carried out at nUQ points
x(k), k = 1, · · · , nUQ of the design space. Hence, we concatenate the polynomial chaos approximations into
a random vector,

Ŷobj(Ξ) =
{
Ŷobj(x

(k),Ξ), k = 1, · · · , nUQ
}

(6)

The random vector Ŷobj is a discretization of the random field Ŷobj(x,Ξ). This section describes an
original continuous approximation of this random field proposed in 15 that will be further used to explore
the design space. This continuous representation is based on the Karhunen Loève expansion of the random
vector Ŷobj that can be easily obtained thanks to the coefficients of the polynomial chaos expansions and
reads,

Ŷobj(Ξ) = µŶobj
+

nUQ∑
k=1

 P∑
j=2

atjϕ̂kφj(Ξ)

 ϕ̂k (7)
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where aj =
{
a

(obj)
j (x(1)), · · · , a(obj)

j (x(k)), · · · , a(obj)
j (x(nUQ))

}
, j = 2, · · · , P , µŶobj

= a1 and ϕ̂k are the nUQ

eigenvectors of the covariance matrix KŶ =
∑P
i=2 aia

t
i.

From Eq. (7) it is proposed in 15 to approximate the random field Ŷobj(x,Ξ) by Gaussian process in-
terpolation of the mean value and of the eigenvectors based on the vectors µŶobj

and ϕ̂j respectively. This

leads to the following representation of the random field,

Ŷobj(x,Ξ) ≈ Ỹ (x,Ξ,η) = µ̃Ŷobj
(x, η0) +

nUQ∑
k=1

(
P∑
i=2

atiϕ̂kφi(Ξ)

)
ϕ̃k(x, ηk) (8)

where µ̃Ŷobj
(x, η0) and ϕ̃k(x, ηk) are respectively the Gaussian process interpolation of the mean vector µŶobj

and of the eigenvectors ϕ̂k. η = [η0, · · · , ηk, · · · , ηnUQ
]t is a random vector of nUQ + 1 independent normal

random variables modeling the uncertainty associated with these Gaussian process interpolations.
Remark:

• In practice we observed that the random vector Ŷobj(Ξ) is generally strongly correlated. Hence the
Karhunen Loève expansion, given by Eq. (7), can be accurately approximated by truncating it to the M
eigenvectors associated to the M highest eigenvalues of the covariance matrix. In practical applications
we often observed M � nUQ while M is chosen so that the summation of the neglecting eigenvalues
is less than 10−3% of the total eigenvalues sum. This remark is very important in practice as it allows
to limit the number of Gaussian process interpolations to construct.

One can note that the approximation of the random field modeling the objective function (Eq. (8))
depends on two sources of uncertainty. The first one, modeled by the random vector Ξ, is due to the use of
disciplinary Gaussian process surrogate models in the multidisciplinary analysis. The second one, modeled
by the random vector η, is due to the interpolation of the discretization of the random field modelling the
random objective function.

It is also notable that Eq. (8) can be evaluated analytically for all points of the design space and for
all realizations of the random vectors Ξ and η. Thus, it is a valuable tool to rapidly explore the objective
function with respect to the design variable by considering both sources of uncertainty previously introduced.

Next section presents a criterion that exploits the approximation defined by Eq. (8) in order to find
the relevant point of the design space where the accurracy of the disciplinary approximations should be
increased, in order for the surrogate based optimum to be more accurate.

3. Enrichment criterion, uncertainty reduction

In this section, it is assumed that each disciplinary solver fi has been approximated by a Gaussian process
constructed from DoEfi and that uncertainty quantification by polynomial chaos expansion has been carried
out at nUQ points x(k), k = 1, · · · , nUQ; in the following this DoE is denoted by DoEUQ. Hence an
approximation of the random field modelling the objective function (Eq. (8)) is computed. One is now
interested in reducing the uncertainty of this random field in the areas of the design space X where the
minimum of the optimization objective function is likely to be.

To do so we first introduce the random variable Ŷ
(obj)
min (Ξ)|x ∈ DoEUQ which is defined by,

Ŷ
(obj)
min (Ξ)|x ∈ DoEUQ = min

k=1,···,nUQ

{
Ŷobj(x

(k),Ξ), k = 1, · · · , nUQ
}

which is the discretized version of the random variable Ŷ
(obj)
min (Ξ) modelling the minimum value of the random

field Ŷ (obj)(x,Ξ) used to approximate the objective function and defined by

Ŷ
(obj)
min (Ξ) = min

x∈X
Ŷobj(x,Ξ)

As our objective is to increase our knowledge on the random variable Ŷ
(obj)
min (Ξ) the following Expected

Improvement (EI) with respect to both sources of uncertainty previously introduced is defined,

EI(x) = E
[(
Ŷ

(obj)
min (Ξ)|x ∈ DoEUQ − Ỹ (x,Ξ,η)

)
1
Ỹ (x,Ξ,η)6Ŷ (obj)

min (Ξ)|x∈DoEUQ

]
∀x ∈ X (9)
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where
1
Ỹ (x,Ξ,η)6Ŷ (obj)

min (Ξ)|x∈DoEUQ
= 0 if Ỹ (x,Ξ,η) > Ŷ

(obj)
min (Ξ)|x ∈ DoEUQ and

1
Ỹ (x,Ξ,η)6Ŷ (obj)

min (Ξ)|x∈DoEUQ
= 1 if Ỹ (x,Ξ,η) 6 Ŷ

(obj)
min (Ξ)|x ∈ DoEUQ.

One can note that EI(x) is positive for x /∈ DoEUQ and that EI(x) = 0 if x ∈ DoEUQ.
The point x(new) where the disciplinary surrogate models should be enriched is thus solution of the

optimization problem,
x(new) = arg max

x∈X
(EI(x)) . (10)

It can be noticed that this criterion realizes a compromise between exploitation and exploration. Indeed,
at a given point x(0) ∈ X , a positive value of the Expected Improvement (as defined by Eq. (9)) could have
two reasons:

• Large uncertainty due to the Gaussian process interpolation of the design space discretization (modelled
by the random vector η) increases the variability of the random variable Ỹ (x(0),Ξ,η), thus the random

event
(
Ŷ

(obj)
min (Ξ)|x ∈ DoEUQ > Ỹ (x(0),Ξ,η)

)
may have a non negligible probability. Enrichment in

such areas helps the exploration of the design space.

• If the uncertainty associated with the Gaussian Process interpolation of the design space discretiza-
tion is low (compared to the one due to Ξ), then a positive value of EI(x) means that the random

variable Ỹ (x(0),Ξ,η) ≈ Ŷobj(x
(0),Ξ) contributes significantly to the random variable Ŷ

(obj)
min (Ξ). This

corresponds to the exploitation of the approximation (defined by Eq. (8)), by proposing enrichment of
the disciplinary surrogate models.

By considering the expectation over the whole random space (Ξ and η) the criterion defined by Eq. (9)
automatically realizes a compromise between exploration and exploitation.

It should be noted that the EI defined by Eq. (9) is different from the one proposed in 1 in the context
of optimization of black-box function. In particular, as the approximation Eq. (8) is not a Gaussian process,
the EI defined by Eq. (9) can not be computed analytically and will be estimated by Monte Carlo sampling
(see 15 for details about estimation and optimization of the EI).

After the definition of this criterion, the iterative algorithm we propose simply consists in adding x(new) =
arg maxx∈X (EI(x)) to the various disciplinary surrogate models DoEfi and to the discretization DoE
denoted DoEUQ. Then, the disciplinary Gaussian surrogate models are updated and a new approximation
Eq. (8) is built in order to evaluate x(new). This procedure is repeated until convergence.

Convergence is either defined by a limited number of iterations or by a threshold on the value of
max
x∈X

(EI(x)). Indeed, once the uncertainty of the approximation of the random field modelling the ob-

jective function (given by Eq. (8)) is reduced in the areas of X where the minimum is likely to be, then
max
x∈X

(EI(x)) is expected to have a very low value (compared to the one at first iteration for example).

Finally, it is important to notice that the information of x(new) is not sufficient to add a point in the
disciplinary surrogate DoEfi . Indeed, these surrogate models are constructed over the design space X and
the coupling variables space C(i). In order to find relevant value of these coupling variables at x(new), the
MDA is solved, at x(new) using the mean values of the disciplinary surrogate models. Then, the solution
yi, i = 1, · · · , nd, is used to add the points

(
x(new), yc(i)

)
to DoEfi .

4. Exploitation of the obtained random field approximation

After convergence of the proposed EGMDO algorithm, the following strategy is proposed in order to estimate
the distribution of the random variables modeling the minimum value of the objective function and its
position. First of all one can note that after convergence, the value of the expected improvement defined
by Eq. (9) is expected to be very low, which means that the possible improvement on the random variable

Ŷ
(obj)
min (Ξ) by adding a new discretization point is negligible. This translates the fact that the random field

representation Ỹ (x,Ξ,η) reaches an acceptable accuracy in the areas of X where the minimum is likely to
be and consequently that uncertainty due to the Gaussian process interpolation (modeled by the η random
variable) is negligible. Hence, we propose to use the mean value of the Gaussian process interpolation in the
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random field representation given by Eq. (8) leading to

Ŷobj(x,Ξ) ≈ Ỹ (x,Ξ) = µµ̃Ŷobj
(x) +

nUQ∑
k=1

(
P∑
i=2

atiϕ̂kφi(Ξ)

)
µϕ̃k

(x) (11)

where µµ̃Ŷobj
(x) and µϕ̃k

(x) are respectively the mean value of the Gaussian process interpolation of the

mean vector µŶobj
and of the eigenvectors ϕ̂k.

Then, Eq. (11) can be seen as a metamodel of the random field modelling the objective function optimized
to be accurate in the areas of X where the minimum is likely to be. As a consequence it will be used in the
following to estimate the probability distribution of the random variables modeling the minimum value of
the objective function and its position such as,

Ŷ
(obj)
min (Ξ) = min

x∈X

(
Ŷobj(x,Ξ)

)
≈ min
x∈X

(
Ỹobj(x,Ξ)

)
(12)

and
X̂?(Ξ) = arg min

x∈X

(
Ŷobj(x,Ξ)

)
≈ min
x∈X

(
Ỹobj(x,Ξ)

)
Moreover, it should be noted that the random field representation given by Eq. (11) only involves polynomial

functions and thus makes the estimation of Ŷ
(obj)
min (Ξ) and X̂?(Ξ) easily accessible by the Monte Carlo method

(i.e. solving the minimization problem of Eq. (12) for a large number of samples Ξ(j), j = 1, · · · , nsim).
Next section presents two applications of this strategy on an academic test case proposed in 4 and on a

more realistic aircraft design test case in the context of the AGILE European project.5,6

III. Applications

A. The analytical Sellar problem

The analytic test case proposed in 4 is defined by the following set of equations:

min
x1,x2,x3

yobj(x1, x2, x3, y1, y2) = x2
3 + x1 + y1 + exp−y2

subject to :
y1

3.16 − 1 > 0

1− y2
24 > 0

x1 ∈ X1 = [−10, 10]

x2 ∈ X2 = [0, 10]

x3 ∈ X3 = [0, 10]

where :

y1 = f1(x1, x2, x3, y2) = x2
1 + x3 + x2 − 0.2y2

y2 = f2(x1, x2, y1) =
√
y1 + x1 + x2.

The ranges for the design space and the coupling variables are given by

X = X1 ×X2 ×X3 = [−10, 10]× [0, 10]× [0, 10]

C(1) = [−5.0, 24], C(2) = [1.0, 50].

Note that even though all expressions are analytical we consider the test case as representative of an MDO
problem involving expensive black box disciplinary functions, thus considering that we do not know the true
disciplinary functions but can only evaluate them at discrete points of the design space. Accordingly, two
independent Gaussian process surrogate models are built in order to replace the two disciplinary functions
f1 and f2. In order to construct the Gaussian process surrogate model of f1 , the DoEf1 is constructed on
the design and coupling variables space of the first discipline, namely X1×X2×X3×C(1). It should be noted
that one of the difficulties of the proposed approach is the definition of the variation domain of the coupling
variable (in that case y2). In practice, this definition should be provided by an expert of the discipline. In
this simple case, after investigation we simply propose C(1) = [−5.0, 24.0]. We recall that the idea is to
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iteratively improve the surrogate model in the interesting area of the coupling and design variables space,
thus the initial DoEf1 is constructed by LHS sampling of only 5 points. Concerning the second discipline,
f2, the initial DoE is also constructed by LHS and counts 5 points. DoEf2 is sampled over the space of
dimension 3, X1×X2×C(2) where C(2) is the variation domain of y1 and it is set to C(2) = [1.0, 50.0] in that
example. Following the idea presented in section II.B, the objective function is now considered as a random
field over the design variable space X . This random field is discretized on a DoEUQ of 10 points sampled
by LHS over X . Consequently, the minimum value of the objective function is a random variable. This
random variable can be easily evaluated by Monte Carlo sampling thanks to the approximation Eq. (11)
described in section II.B.4 (see 15 for details). Figure 2 presents a histogram (constructed with nsim = 500)
of this random variable at the initial step (we recall that both disciplines are approximated by independent
Gaussian process surrogate models built with only 5 points).

Figure 2. Histogram of the objective function minimum value at the initial step (500 random realizations).

One can note that the dispersion of this random variable is very large (mean ≈ 0.94, coefficient of variation
≈ 790%). This large dispersion is explained by the fact that the surrogate models of the disciplines are not
accurate at all in the area where the minimum of the objective function can be reached (which is expected
as they are constructed with only 5 points sampled over the whole design and coupling variables space).

Objective of the proposed method is now to enrich the surrogate model until the random variable mod-
elling the minimum value of the objective function reaches a sufficiently small dispersion. Application of the
proposed algorithm leads to a convergence after 7 iterations (7 points are added to the disciplinary DoEfi
and to the discretization DoEUQ). Figure 3 presents the dispersion of the random variable modelling the
minimum value of the objective function after convergence of the proposed method (i.e. the histogram is
estimated by the method described in section II.B.4 with nsim = 500). Note that by solving the optimization
problem nsim times, as described section II.B.4, we obtain samples for both the value of the minimum y?obj
and for its position x?.

Figure 3 shows that the proposed iterative approach leads to a strong reduction of the uncertainty on
the minimum value of the objective function (mean ≈ 3.1847, coefficient of variation ≈ 0.3%). Moreover,
one can note that the minimum value is in agreement with the reference result (≈ 3.18339).

Table 1 presents comparisons done between an MDF formulation with a gradient optimizer (SLSQP16) or
a gradient free optimizer (COBYLA17) and EGMDO approach in terms of values of optimal design variables
and objective function (mean value and coefficient of variation associated to the EGMDO optimum and its
position) and also the number of calls for each disciplinary solver. Note that for the MDF formulation with
the gradient based algorithm, the number of calls includes the computation of the objective function and its
derivative by finite-differences.

Results of Table 1 shows that EGMDO approach converges towards the same optimum as MDF ap-
proaches by only evaluating 12 times the disciplinary solvers (compared to 532 and 443 for MDF approaches).
This large reduction is explained by the intensive use of disciplinary surrogate models in the EGMDO strat-
egy instead of actual disciplinary solvers in MDF strategies. Note however, that the numerical cost of the
EGMDO strategy should also include the creation of the disciplinary surrogate models, the propagation of
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Figure 3. Histogram of the minimum value of the objective function after convergence of the proposed method
(500 random realizations).

MDF SLSQP MDF COBYLA EGMDO

y?obj 3.1834 3.1835 3.1847 (0.32%)

x?1 1.977 1.977 1.977 (10−11%)

x?2 0.0 0.0 10−14 (10−4%)

x?3 0.0 0.0 10−17 (10−4%)

# calls of each discipline 532 443 12(5+7)

Table 1. Comparisons between a MDF formulation solved with SLSQP or COBYLA (with computation of
disciplinary gradient by finite differences for SLSQP) and the EGMDO approach on the Sellar problem. For
the EGMDO approach, the mean value of each variable if given and the coefficient of variation is mentioned
in parenthesis.

uncertainty by PCE, and the optimization of the enrichment criterion Eq. (10). These steps only involve
surrogate models and their numerical cost depends in large on the numerical implementation of the EGMDO
strategy. We found that these steps were negligible on the expensive disciplinary models we considered but
this will vary from problem to problem. Note also that many parts of EGMDO algorithm can be easily
parallelized in order to increase the efficiency of the overhead computations.

Concerning the position of the minimum in the design and coupling variables space, Figure 4 presents
the points added by the proposed algorithm to DoEf1 and DoEf2 .

First, one can see on Figure 4 that the initial DoE (green lines) is well spread over the whole design and
coupling variables space for both disciplines. Then, the blue lines show the points added by the proposed
method. One can note that after approximately 4 iterations of domain exploration, the interesting area is
found by the proposed algorithm and that convergence to the reference result (red dotted curve) is achieved
in few more iterations.

Finally we access the global character of EGMDO algorithm by using 10 random initial DOE of size 5.
EGMDO algorithm converges towards the global optimum 10 times over the 10 random initial DOE with
a mean number of iterations equals to 7.7 (better 6, worst 12). It should be noted that MDF formulation
with either SLSQP or COBYLA optimizer performed a local search and it is consequently very dependent
of the starting point, using 10 different random starting points both MDF approaches converge only 6 times
towards the global optimum. So in terms of robustness on the Sellar problem, EGMDO is much more efficient
with a higher success rate (global optimum found 10 times out of 10 runs, 100 % of success rate) than an
MDF approach (global optimum found 6 times out of 10 runs, 60 % of success rate).

As a conclusion, this example illustrates the interest of a global MDO approach by an enrichment pro-
cedure. Indeed, by carefully considering the uncertainty associated to the use of Gaussian process surrogate
model, the proposed approach aims at reducing the uncertainty on the minimum value of the objective
function until an acceptable uncertainty remains. This approach allows a strong reduction in the number
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(a) Y1 coupling variable (b) Y2 coupling variable

Figure 4. Evolution of the design and coupling variables DoE for the adaptive construction of disciplinary
surrogate models. The initial DoE is represented by the green lines, the added points are in blue and the
reference solution is in red.

of evaluations of the disciplinary solvers but induces an additional numerical cost for setting up the strat-
egy (construction of disciplinary surrogate models, propagation of uncertainty by PCE, optimization of the
enrichment criterion).

B. The AGILE aircraft design

This test case is developed in the framework of the H2020 European project AGILE18 (Aircraft third Gen-
eration MDO for Innovative Collaboration of Heterogeneous Teams of Experts) and concerns the MDO of a
civil aircraft. The test case consists of the design and optimization task for a large regional jet, with Entry
Into Service 2020. Starting from the specification of the Top Level Aircraft Requirements provided by the
aircraft manufacturer partner (Bombardier), an Overall Aircraft Design (OAD) task targeting conceptual
and preliminary development stages was implemented during the project. Related to the use case, a specific
scenario was considered, related to the investigations of MDO formulations on complex workflows, represen-
tative of an aircraft design process. For that aim, clusters of disciplinary solvers used in the MDA of the
large regional jet were built to derive specific solvers to be used in the scenario.

On-board systems Solver This solver aims at providing the On Board systems performance, in terms of
weights and power, using the wing design parameters and other inputs such as the Fuel Weight and
other operational weights such as MTOM (Maximum Take-Off Mass).

Structural sizing and Weight Solver This solver provides the OEM (Operating Empty Mass) of the
whole aircraft, using as inputs the wing design parameters, the fuel weight and the systems weight. It
also contains the load and structural sizing competence that sizes the wing structure and computes its
weight.

Weight Update Solver This solver provides the update of the operational weights of the whole aircraft,
using as inputs the fuel weights and the systems weight.

Mission performance Solver This solver provides the Mission performance calculation and uses as inputs,
the wing design parameters, the operational weights and the Aerodynamic look up tables to run the
full mission and provides the fuel weight.
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Eventually, Figure 5 presents both the reference aircraft configuration and the MDA workflows obtained with
4 disciplinary solvers defined above, representative of an aircraft design problem with different disciplines
(Aerodynamic, Structure, Performance) coupled together (more information on the scenario can be found in
19).

(a) AGILE regional jet configuration (b) Workflow of MDA with the 4 disciplinary solvers

Figure 5. AGILE project test case.

This MDA is characterized by 7 coupling variables and 7 design variables. The multidisciplinary analysis
is defined by the following non linear system of equations

mOEM = f1(x,mSystems,mFM ,mTOM )

mSystems = f2(x,mOEM ,mTOM ,mFM )

mFuel,mFM = f3(x,mOEM ,mTOM ,mZFM ,mMLM )

mTOM ,mZFM ,mMLM = f4(mOEM ,mFM ,mFuel)

(13)

where mOEM , mSystems, mFuel, mFM , mTOM , mZFM , mMLM are the coupling variables and x =
{tk, tt, tck, tct, wA, wS , ar} is the vector of design variables that define the wing shape. Table 2 presents
these 14 variables. Solvers fi, i = 1, · · · , 4 are clusters of disciplinary solvers provided by various members
of the AGILE project. It should be noted that these clusters are simplified version of high fidelity numerical
solvers. Indeed, purpose of this test case is to easily test various MDO architectures in a realistic aircraft
design context while maintaining reasonable numerical cost in order to easily access reference results by
standard approach (MDF). In order to evaluate the capability of the EGMDO algorithm the following
unconstrained minimization problem is set up:

min
x∈X

mOEM

such as mOEM is solution of Eq. (13).
Reference results are obtained by an MDF approach with SLSQP algorithm and COBYLA algorithm (as

for the previous example jacobian, is evaluated by finite differences within the SLSQP algorithm). Table 3
presents the results obtained and the number of disciplinary solvers evaluations. It should be noted that the
value of the objective function for x0 located at the middle of the design space is mOEM (x0) ≈ 30073.

One can note on Table 3 that both MDF approaches converge to almost the same minimum.
In order to setup the EGMDO approach, Gaussian process surrogate models of disciplinary solvers f1,

f2 and f4 are build based on three independent DoE of size 30. The Gaussian process surrogate model
of disciplinary solver f3 is build on a DoE of size 50 (this one counts more coupling variables and higher
nonlinearity is observed).

The initial DoEUQ used for the discretization of the random field modeling the objective function counts
30 points. EGMDO algorithm converges after 9 iterations. Figure 6 shows an histogram of the objective
function minimum value after convergence of the EGMDO algorithm obtained by solving 500 optimization
problems using the final surrogate model of the random field modeling the objective function (Eq. (11)). As
for the previous example one can see that at convergence, the minimum value of the objective function almost
reached a Dirac distribution. Table 4 presents the results in terms of variable values obtained at convergence
with the mean value and the coefficient of variation estimated from the 500 random realizations. The relative
error (denoted by ε) between these mean values and the reference ones obtained by MDF-SLSQP approach is
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Design variables

name designation min max

tk twist kink -3 3

tt twist Tip -5 2

tck thickness over chord ratio kink 0.10 0.12

tct thickness over chord ratio tip 0.09 0.11

wA wing area 75.0 95.0

wS wing sweep 30.0 34.0

ar aspect ratio 9.0 10.5

Coupling variables

name designation min max

mOEM Operating Empty Mass 27000 28500

mSystems Systems Mass 7800.0 8400.0

mFuel Mission Fuel Mass 5000 6500

mFM Total Fuel Mass 6800 7600

mTOM Maximum Take Off Mass 43000 46000

mZFM Zero Fuel Mass 35200 37500

mMLM Maximum Landing Mass 36500 39100

Table 2. Description of the design variables and coupling variables of the problem. Note that for the coupling
variables the given ranges of variation are initial guesses based on an expert judgment and that coupling
variables might take values outside these ranges during the MDA resolution.

tk tt tck tct wA wS ar mOEM # calls of each discipline

MDF-SLSQP -3 -5 0.1012 0.09352 75 30 9 29193.107 1149

MDF-COBYLA -3 -5 0.1009 0.09346 75 30 9 29193.110 1057

Table 3. Reference results for the AGILE test case obtained using an MDF based on SLSQP or COBYLA
algorithm.
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also reported. One can note that the EGMDO approach leads to an optimal point close to the reference one
(the worst relative error is for the design variable tct and equals 3.76%) and to an optimal value in agreement
with the reference. Moreover, computing the MDA with the actual disciplinary solver at the optimal point
found by the EGMDO algorithm leads to mOEM = 29196.777 which validates the approximation constructed
by EGMDO, of the objective function near the optimal point of the design space.

Figure 6. AGILE example: Histogram of the minimum value of the objective function after convergence of
the proposed method (500 random realizations).

tk tt tck tct wA wS ar mOEM

EGMDO -3(10−10%) -5(0%) 0.1034(1.08%) 0.09(0%) 75(0%) 30(0%) 9(0%) 29196.852(4.10−3%)

ε 0 0 0.0217 0.0376 0 0 0 10−4

Table 4. Results obtained with the EGMDO approach, the mean value of each variable is given and the
coefficient of variation is mentioned in parenthesis. ε stands for the relative error compared to the results
obtained with MDF-SLSQP approach.

Finally one can conclude on this example that, by only using a few calls to the actual disciplinary solvers
(39 for solvers f1, f2 and f4) and (59 for the solver f3), the proposed EGMDO approach allows to identify
the area of the design space where the deterministic optimum is likely to be (compared to 1149 calls for the
reference MDF-SLSQP approach). Consequently, EGMDO approach can be used either in MDO context in
which the number of disciplinary solvers evaluation is extremely limited or in order to rapidly finds relevant
starting point for local MDO approach (MDF-SLSQP for example). This last point is not developed in the
present article but will be investigated in future development.

IV. Conclusion and perspectives

A multidisciplinary optimization problem has been solved using a proposed surrogate based approach.
Each disciplinary solver is replaced by a surrogate model (a Gaussian process) allowing to use the mean value
and the associated modelling uncertainty in the search of the optimum. This is achieved by propagating the
uncertainties introduced by the use of the surrogate models to the objective function, followed by an iterative
process seeking to enrich the surrogate models by calling the disciplinary solvers at some well chosen points
in order to increase their accuracy in the vicinity of the optimum. This iterative process tends to reduce the
uncertainty in the optimum of the objective function and to converge toward the deterministic minimum of
the initial problem.

This strategy mainly relies on the development of a new random field approximation based on polynomial
chaos expansion and Gaussian process interpolation proposed in 15. Indeed, this approximation eases the
exploration of the design space by taking into account the variability of the random field (due to the modeling
uncertainty on the disciplnary surrogates and modelled by the random vector Ξ) and the interpolation
uncertainty (due to the discretization of the random field and modelled by the random vector η). In order
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to efficiently take advantage of this approximation an adaptation of the expected improvement criterion is
proposed.

The proposed EGMDO strategy has been validated on an analytic MDO test case: the Sellar problem,4

involving two disciplines with two coupling variables. A larger experimentation has been done within the
H2020 AGILE project5 where 7 design variables and 7 coupling variables were involved for an aircraft design
test case. These two applications gave very promising results in terms of number of function evaluations to
find the optimal value of the MDO problem: a reduction by a factor of 30 is obtained by comparison to an
MDF-SLSQP approach.

Finally, the advantages of the EGMDO method can be summarized as:

• Fully uncoupled approach: each disciplinary surrogate model is built independently.

• Numerical efficiency: the MDA is never solved using the disciplinary solvers. This step is replaced by
an uncertainty quantification process involving only the surrogate models.

• The number of calls to the disciplinary solver is reduced by carefully selecting the discretization points
used to build the surrogate models. The surrogate models are thus only accurate in the area of the
design and coupling variables space where the minimum is likely to be. We recall that the previous
results on the Sellar example are obtained by only 12 calls to the disciplinary solvers and for the aircraft
test case 39 or 59 calls (depending on the solver) are necessary.

• As the probabilistic framework is used, the final results (minimum value and position of the minimum)
are random variables, which allow to easily quantifying the confidence on these results.

Some points such as the number of coupling variables and their domain definition are still under study.
Indeed, increasing the number of coupling variables increases the stochastic dimension of the problem which
makes it difficult to solve with our current implementation of polynomial chaos expansion. Some solutions
to deal with larger dimension will be explored in future work.
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