
HAL Id: hal-02056791
https://hal.science/hal-02056791v1

Submitted on 4 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Adiabatic Foehn Mechanism
Florentin Damiens, François Lott, Christophe Millet, Riwal Plougonven

To cite this version:
Florentin Damiens, François Lott, Christophe Millet, Riwal Plougonven. An Adiabatic Foehn Mech-
anism. Quarterly Journal of the Royal Meteorological Society, 2018, 144 (714), pp.1369-1381.
�10.1002/qj.3272�. �hal-02056791�

https://hal.science/hal-02056791v1
https://hal.archives-ouvertes.fr


An Adiabatic Foehn Mechanism

Florentin Damiensa, Francois Lotta, Christophe Milletb, and Riwal
Plougonvenc

aLMD Ecole Normale Supérieure, 75231 Paris, France
bCEA DAM DIF, 91297 Arpajon, France

cLMD Ecole Polytechnique, 91128 Palaiseau, France

Received∗: 14 June 2017; Accepted: 14 February 2018

Keywords: Foehn, mountain meteorology, mesoscale dynamics, gravity waves, critical level

Abstract

Atmospheric mountain flows produced when the incoming wind is small near the surface and
continuously increases with altitude are evaluated with models of increasing complexity. All
models confirm that foehn can be produced by a mountain gravity wave critical level mechanism,
where the critical level is located below the surface. This mechanism does not involve humidity,
upper level wave breaking, upstream blocking, downward wave reflections or hydraulic control
as often suggested by popular theories. The first model used is a theoretical model which
combines linear gravity wave dynamics with a nonlinear boundary condition: in this model
the wave breaking does not feedback onto the dynamics by construction. Partial linear waves
reflection are also minimized by using smooth profiles of the incident wind and a uniform
stratification N2 = cte, and can even be suppressed when the incident wind shear is also
constant, Uz = cst. The second model is a numerical mesoscale model (Weather Research and
Forecast), and we show that it predicts mountain wave fields that can be reproduced by the
theoretical model, provided that we specify an adequate boundary layer depth in the theoretical
model.

1 Introduction

Foehn flows are characterized by downslope winds that are warm, dry and strong and that gen-
erally occur on the lee side of mountains [Richner and Hachler(2013), ]. For more than a century
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they have been studied worldwide (see for three different mountain ranges [Brinkmann(1974),
McGowan et al.(2002), Drobinski and Coauthors(2007)]), because they have strong economical
impacts, for instance through increase in fire danger [Takane and Kusaka(2011), Sharples et al.(2010),
Cannon et al.(2017), ]), pollution [Seibert et al.(2000), ] or weather hazards. They can also ac-
tively contribute to the climate change through their local impacts on sea ice melting [Elvidge et al.(2015),
].

One long-standing question about foehn concerns the origin of the warming of the air
masses, and it is generally admitted that there are two dominant mechanisms that can ex-
plain it [Richner and Hachler(2013), ]. The first mechanism is along the line of meteorological
textbooks [Seibert(2005), ] when the example of the foehn is used to illustrate the signifi-
cance of moist processes by using thermodynamical diagrams. In this ”diabatic” theory, the
warming of the air masses results from the forced condensation that occurs upstream of the
ridge, the large temperature and dry air result from the flow descent on the lee side. As
observational evidence suggests that warming has a more adiabatic cause [Seibert(1990), ], a
second mechanism, named ”isentropic drawdown” is often proposed. In this mechanism, the
foehn air comes from warmer and dryer altitudes upwind of the mountain because there is low
level flow blocking. These two types of foehn, one diabatic with strong upstream ascent and
one adiabatic with upstream flow blocking are sometimes referred to as Swiss and Austrian
foehn respectively [Wursch and Sprenger(2015), ]. With the progress of Lagrangian analysis,
the relative amplitude of these two mechanisms is now better established [Smith et al.(2003),
Miltenberger et al.(2016), ] and it seems that the adiabatic mechanism is often more efficient
that the diabatic one. The Lagrangian analyses also reveal that other irreversible processes can
play a role, like the vertical mixing occurring when the air passes the mountain summit, and
the radiative impact of the upstream clouds [Elvidge and Renfrew(2016), ].

The fact that dynamics play such a central role in the foehn motivates the present paper.
Actually, behind the apparently simple idea that upstream blocking elevates the air parcels
before they abruptly descent on the lee side are hidden quite subtle nonlinear processes. These
processes are controlled by the non dimensional mountain height, HN = HN

U∞
, where H is

the maximum mountain height, N the buoyancy frequency and U∞ a scale for the incident
wind. When HN is large, the vertical wavelength of the mountain waves U∞/N is small com-
pared to the mountain height H, the mountain waves break near above the mountain top, and
the resulting nonlinear dynamics produce strong downslope winds and foehn (see the review
by [Durran(1990)] and recent simulations in [Smith and Skyllingstad(2011)]). The mixing pro-
duced by the breaking waves can induce a well mixed stagnant layer, which allows to establish a
correspondence with the fully nonlinear hydraulic jump theory ([Baines (1998), Smith(1985)]).
The presence of the stagnant layer also permits to argue that nonlinear reflections at the
self-induced critical level present in the mixed layer can reflect downward the waves and
amplify the response [Laprise and Peltier(1989), Smith and Skyllingstad(2011), ]. Also, for
large HN , part of the low level flow is blocked upstream making upstream blocking concomi-
tant to the onset of foehn. All these efforts to interpret dynamically the onset of foehn
in terms of breaking waves or blocking, hide the simple fact that some foehn can be pro-
duced by [Long(1953)]’s model for hydrostatic linear waves forced by a nonlinear bound-
ary condition [Lilly and Klemp(1979), Muraki(2011), ]. Interestingly, using such a model,
[Lilly and Klemp(1979)] predict that the wave response is enhanced for mountains with a small
windward and large leeward slopes, which is a form of ”isentropic drawdown” mechanism pro-
duced by blocking, if we assume that the blocked air can be represented dynamically by a gentle
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windward slope. Nevertheless, the results using [Long(1953)]’s type models are not much used
to interpret foehn, essentially because when they produce foehn, they also predict intense wave
breaking aloft which undermines all the linear interpretations of what occur downstream of
the breaking zone (e.g which includes the foehn zone). As we shall see, low level wind shears
can mitigate this upper level wave breaking because the mountain waves become less and less
unstable with altitude when the wind increases.

Concerned with the recurrent problem in mountain meteorology theory that the near surface
winds are ill defined ([Vergeiner(1971), Lott(2007)]) and can become very small, [Lott(2016)]
(hereinafter L16) adapts the model of [Long(1953)] to incident shear flow that are null in
z = 0. L16 shows that this induces a critical level dynamics near below the surface that
produces downslope windstorm and foehn without upper level wave breaking. L16 also shows
that downslope winds and foehn are favored when the surface flow is stable, i.e. when the
surface Richardson number J = N2/U2

z is large compared to its critical value, J = 0.25. As the
model is linear, it also suggests that there is no need to interpret the onset of foehn in terms of
upstream blocking, nonlinear internal wave reflections, or using hydraulic theory, which are all
the ingredients that are often mentioned to explain adiabatic foehn.

The results in L16 have several limitations. The first is that the model in L16 is only adapted
to situations when the shear layer depth, d, is much larger than the maximum mountain height,
H, i.e. as long as the near critical level solutions in [Booker and Bretherton(1967)] can be used
to treat the critical level. The second is that L16 does not explain why the results found are so
sensitive to J . The third is that it does not exclude the possibility that reflections can play a
role on foehn, because linear reflections can be present. The fourth is that the inflow equations
used in [Long(1953)] are only rigorously valid when the incident flow is uniform. The last is the
representation of boundary layer absorptive effects: L16 uses Raighleigh drag and Newtownian
cooling with a free slip boundary condition. Some earlier studies have explored more realistic
boundary conditions, e.g. for turbulent flow over hills [Hunt et al.(1988a), Hunt et al.(1988b),
], or with viscous solutions [Lott(2007)]. In L16, these simplifications are made to ease the
numerical treatment of the problem. They are in part justified by the fact that in the atmosphere
the low level wind shears are often due to horizontal gradients in temperature, they do not solely
result from boundary layer dynamics: they can extend well above it, and there the inviscid
dynamics can be applied.

The purpose of the present paper is to fill these gaps by extending the L16’s theory to taller
mountains, and by validating it against fully nonlinear simulations. For this purpose, section
2 reformulates the results in L16 for a mountain of arbitrary height (not only for H << d) but
still for small dissipation (when the linear drags correspond to a boundary layer depth zb << d).
Section 3 exposes the dry foehn mechanism proposed and shows that it is entirely related to the
near-surface critical level dynamics. Section 4 presents fully nonlinear simulations done with
WRF and explains how the value of zb is chosen to enable a comparison of the theory with
the numerical simulations. Section 5 characterizes systematically the results in terms of foehn
intensity, downslope winds amplitude, and gravity wave stress. To check if the results remain
robust beyond our simplified treatment of the boundary layer, it also presents tests where (i)
the incident wind is not null at the surface and (ii) where a conventional atmospheric boundary
layer scheme is used. Section 6 concludes and discusses further the relations with observations.
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2 Theoretical model

To analyze the mountain waves produced by a stably stratified shear flow when the incident
wind is null at z = 0, L16 considers the background flow profiles

U(z) = U∞ tanh(z/d), N2(z) = const, (1)

incident on a 2-dimensional mountain, the height of which follows the Witch of Agnesi profile

h(x) =
H

1 + x2

2L2

. (2)

In (1), U(z) is the background horizontal wind, N(z) the Brunt Vaisala frequency, z the altitude,
d is the vertical scale of the shear and U∞ the incident wind maximum amplitude. In (2) H
is the maximum mountain height, L its characteristic horizontal length, and x the horizontal
coordinate. When scaling time by N−1 and distances by U∞/N the 2-dimensional non-rotating
linear dynamics can be expressed in term of a non dimensional vertical velocity, w(x, z) of the
form,

w(x, z) =

∫ +∞

−∞
f(k)ŵc(k, z)eikxdk, (3)

where overbars denote dimensionless variables, and ŵc(k, z) is a canonical monochromatic solu-
tion of ”unit” amplitude in the far field which satisfies the dissipative Taylor Goldstein equation,

d2ŵc
dz2

+

 1(
U − i zk√

J

)2 − U zz

U − i zk√
J

− k2
 ŵc = 0. (4)

In (3) the amplitude term f(k) is obtained by numerical inversion of the non-linear free-slip
boundary condition:

w(x, h(x)) =
(
U(h) + u(x, h(x))

)
∂xh(x), (5)

where u(x, z) is the horizonatl wind disturbance. In (4)-(5)

U(z) = tanh

(
z√
J

)
, and h(x) =

HN

1 + x2/2F 2
r

(6)

where

J =
N2d2

U2
∞
, HN =

HN

U∞
, and Fr =

LN

U∞
(7)

are the surface and minimum Richardson number, a non-dimensional mountain height, and a
Froude number respectively. Still in (4) the dissipative vertical scale for each harmonics,

zk =
zb
2

(
1

Frk
+ Frk

)
. (8)

has been expressed in terms of a global scale zb, with the first term in parenthesis resulting
from Rayleigh drag and Newtonian cooling of coefficient zb/Fr ∗

√
J/2 and the second term

from a viscous dissipation which acts in the x-direction only of coefficient zbFr/
√
J/2 (see

also the right hand sides of Eqs.4 in L16). They are introduced to regularize the critical level
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dynamics for all the harmonics, i.e. the longer and the shorter ones respectively. Note that zk is
written differently than in L16 to make clear that when the formula is applied to the dominant
wavenumber Fr−1, zk in (8) compares to the dissipative scale zb

1.
To construct ŵc, L16 uses for each k an exact solution of the inviscid version of (4),

ŵinv(k, z), which is based on hypergeometric functions (see [Lott et al.(1992)] and (34) in
L16), and which asymptotic behaviors are

ŵinv(k, z >> 1) ≈ e−mz/
√
J , (9)

ŵinv(k, z << 1) ≈ a1(k)z1/2−iµ + a2(k)z1/2+iµ (10)

where,

m =
√
J

√
|k2 − 1|, µ =

√
|J − 1

4
|, (11)

and where a1(k) and a2(k) have analytical forms once the ”unit” amplitude condition (9) is

satisfied. Also, when k
2
< 1, m is changed in −isign(k)m, where the sign is to ensure upward

group speed. Near the surface, L16 also uses the asymptotic solution of the damped Taylor-
Goldstein Equation (4) valid when z << 1:

ŵsrf(k, z) = a1(k)(z − zk)1/2−iµ + a2(k)(z − zk)1/2+iµ, (12)

where a1 and a2 are the same as in (10) to ensure matching. To establish how these aproximate
solutions can be combined to provide a uniformly valid approximation of ŵc(k, z), Fig. 1 shows
ŵinv(k, z) (thin solid), its approximation near z = 0 ((10), thick dashed) and ŵsrf(k, z) (thick
dashed and dots). For the three values of J selected, J = 0.5, 2, 4, we see that below around
z ≈ J/4 the inviscid exact solution ŵinv and its inviscid approximation on the right of (10)
almost coincide whereas above this altitude the asymptotic damped approximation (ŵsrf in
(12)) and the asymptotic inviscid solutions (10) are very close. This suggests that we can take
the altitude J/4 to make a transition between the exact inviscid solution and the asymptotic
damped solution. In the following, this transition is made by patching these two functions using
tanh tapers centered at z = J/4 and of depth ∆z = J/5, i.e. by writting,

ŵc(k, z) =

(
1 + tanh

(
5z
J
− 5

4

))
2

ŵinv(k, z) +

(
1− tanh

(
5z
J
− 5

4

))
2

ŵsrf(k, z). (13)

The thick gray curves in Figs. 1a, b, c show these new approximations, and illustrate how well
they behave for all z, permitting a smooth passage from the damped solutions near the ground
to the exact inviscid one in the far-field. Compared to L16, we use this approximation in the
inversion of (5), ∫ +∞

−∞
f(k)

[
ŵc(k, h)− ûc(k, h)

dh

dx

]
eikxdk = U

dh

dx
(14)

rather than using (12) to express ŵc and ûc in the terms between brackets in (14). This formally
permits to consider more elevated ridges than in L16.

1For consistency, note also that the boundary layer depth zB used in L16 is related to the one here by
zB = 5zb.
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3 A dry foehn mechanism

As the numerical results obtained with this new formulation of the model are consistent with
those in L16 we will only emphasize on the descents of warm air that characterize foehn. In the
following we take a domain of length 800 spanned by 1024 equally spaced points, the Froude
number Fr = 5 and the boundary layer scale zb = 0.05. The three panels in the left column
of Fig. 2 shows that when J increases the foehn effect increases, as expected from the results
in L16, where the same behavior was discussed in terms of downslope windstorms. The reader
is referred to this paper for more complete sensitivity tests to HN and zb, but it is worthwhile
to note here that when J passes 1 typically, an isentropic surface initially at the altitude of
the ridge is not much displaced upward when it approaches the ridge but easily reaches the
surface along the downslope side of the ridge (lowest dashed line in Fig. 2c). This ”foehn”
effect becomes extremely pronounced when J = 4 in Fig. 2e: almost all the air located between
HN < z < 2HN upstream of the ridge descent below the mountain top z < HN in the lee-side.
Near the surface downstream, the theory predicts highly distorted isentropes and potential
temperatures that are below the minimum value upstream: this is not realistic so they are not
shown but this indicates where the dynamics may trigger breaking.

If the foehn effect proposed is purely related to the critical level dynamics, then it should
be present in a theory that is even simpler than the one used to produce the panels on the left
in Fig. 2. For this purpose we next derive the theory when the wind shear Uz and buoyancy
frequency are both constant, in the hydrostatic approximation and when the boundary layer
depth is identical for all harmonics zk = zb. As we will see in this ”constant shear” case we can
also formally eliminate the reflected waves, proving that they also play a minor role. To make
clear that the dynamics in this case is only controlled by J and zb, the two parameters that
control the critical level dynamics, we introduce a scaling suited to the constant wind shear
configuration by taking for the horizontal and vertical scales those of the mountain. We also
scale the horizontal velocity disturbance by the background velocity at the mountain top,

x = Lx̃, z = Hz̃, u = UzHũ, w = UzH
2/Lw̃, p = ρrU

2
zH

2p̃, and b = U2
zHb̃. (15)

In this new set-up and scaling, the Boussinesq dynamics writes

z̃∂x̃ũ+ w̃ = −∂x̃p̃, ∂z̃p̃ = b̃, z̃∂x̃b̃+ Jw̃ = 0, (16a)

∂x̃ũ+ ∂z̃w̃ = 0, w̃(z̃ = h̃) =
(
h̃+ ũ

) ∂h̃
∂x̃
, (16b)

h̃ =
1

1 + x̃2/2
, (16c)

it is only controlled by the Richardson number J . In this setup, we know that for each
harmonics the vertical velocity is exactly,

ŵ = z̃1/2+isign(k̃)µ, (17)

where we have only retain the upward propagating solution [Booker and Bretherton(1967), ]:
there is no reflected wave by construction. We then incorporate a dissipative scale z̃k = z̃b
which we also take constant, a simplification that permits to define a canonical solution

ŵc(z, k) =
(
z̃ − isign(k̃)z̃b

)1/2+isign(k̃)µ
. (18)
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We will next use this solution to evaluate the wave field in (3) and the boundary condition
in (5). To ease comparison, the results will be shown using the dimensionless variables of the
more complete theory,

x = Frx̃, z = HN z̃, u =
HN√
J
ũ, w =

H2
N

Fr
√
J
w̃. (19)

The results from the simplified theory are shown in the right panels of Fig. 2, the resolutions
being identical to those used to build the corresponding panels on the left. To have comparable
results nevertheless we have taken a boundary layer scale that is smaller than that used in
Section 2, zb = 0.02, a difference that is only related to our choice to take a constant boundary
layer scale (if we adopt the formula (8) we need to return to the value zb = 0.05 to obtain the
same results). With this scale, the simplified theory gives almost exactly the same results as the
more complete one, at least at low level. As we emphasized previously, in this simplified theory,
there is no reflected waves by construction, proving that the onset of foehn can be entirely due
to the near surface critical level dynamics i.e. a mechanism summarized mathematically by
(18), a mechanism that exclude pre-conditionning of a well mixed layer by upper level wave
breaking, non-linear and now linear wave reflections.

Finally to understand further why the near-surface critical level dynamics makes the foehn
so sensitive to J it is worthwhile to notice that for large J , the [Booker and Bretherton(1967)]’s
solution (17) has an interpretation in terms of vertical wavenumber. To make this transparent
we approximate it near the mountain top by writing z = HN + δz, which yields

z1/2+iµ = z1/2eiµ ln z ≈ z1/2H iµ
N e

i µ
HN

δz
. (20)

Near the mountain top, the disturbance has a characteristic wavenumber m ≈ µ/HN . Now, we
know that mountain flow dynamics becomes nonlinear when the disturbance’s vertical wave-
length m−1 becomes smaller than the mountain height HN . The argument often given is that
in this case the linear theory predicts that vertical velocities change sign before the air parcels
reach the mountain top. If we apply this condition here, we have that nonlinear effect become
large when HN/µ < HN , which approximately simplifies to the condition J > 1, which is the
condition that favors foehn in the theory here and the downslope winds in L16.

Another point we make is that foehn is not associated with upper level wave breaking, i.e.
that some form of wave breaking can occur below the mountain top without occurring aloft. To
illustrate this qualitatively we next use the same line of arguments as before. We compare the
wave vertical wavelength mB and the vertical displacement ηB produced by the wave around a
”breaking” altitude HB, yet to be found, and by writing z = HB + δz. This yields

mb ≈ µ/HB and ηB ≈ H
−1/2+iµ
B H

3/2−iµ
N . (21)

respectively. Qualitatively, breaking occurs when |ηB| ≥ m−1B , which gives,

HB ≤ µ2/3HN . (22)

Wave breaking is confined to the lowest layers, and inhibited above the mountain summit HN

at least when µ < 1. This is the basic reason due to which the foehn mechanism described here
is not associated with upper level wave breaking. Of course this effect simply translates the
fact that in presence of shear, the vertical wavelength increases with altitude.
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The result in (22) also illustrates that the depth of the layer over which breaking occurs
increases with J . To a certain extent this suggests that the dissipative layer depth should
increase with J . As we will see next this is in fact the case when we compare to fully nonlinear
simulations.

4 Verification with fully nonlinear model

To extend the above results beyond the inflow-linear and Boussinesq approximations, we next
use the WRF model in the 2D mountain flow configuration available on line2[Skamarock et al.(2008),
]. It is configured here for a 100km long and 12km height domain gridded by 1000×1000 points
yielding resolutions of 100m and 12m in the horizontal and vertical directions respectively. At
the lateral bounds the domain is open and below the model top a 6km deep absorbing layer
prevents the gravity waves to be reflected downward. These quite high resolutions are to en-
sure that the near surface critical level dynamics is well represented. They require a time step
∆t = 0.5s. Note also that all the results from WRF shown next have been verified against simu-
lations where the horizontal and vertical gridspacing are divided by two. As the WRF model is
fully compressible, it is mandatory to recall that in it the stratification is represented by a Brunt
Vaisala frequency given by N2 = g

θ0

dθ0
dz

, where θ0 is a background potential temperature. To
ensure that it is constant and to minimize the vertical variations of the background fields that
could result in partial reflections, we consider an isothermal atmosphere Tr = 290K, yielding
N2 = κg2

RTr
= 3.10−4s−2, where κ, R, and g have their conventional dry air and earth-values. We

will then impose the background wind (1) and always take U∞ = 10m/s, the minimum Richard-
son number will then be changed by varying the shear layer depth d. Also, the mountain height
will be given by (2) with L = 2.8km to ensure Fr = 5.

Finally, in all the WRF simulations presented the dissipative coefficients are set to 0 and the
surface boundary condition is free slip. This does not mean that the simulations are inviscid,
because irreversible and diabatic processes will necessarily occur if the model confirms the onset
of convective overturnings like those found in the theoretical model in the previous section. All
the experiments presented in the next section prove that the WRF dynamical core is stable
and dissipative enough to handle these irreversible processes. When we return to the theory,
it is a priori difficult to say how these irreversible processes can be translated in the theorety.
Nevertheless, as the theory has a free parameter to represent dissipations, the boundary layer
scale zb, we can vary it and try to identify a value for which there is a match between the
nonlinear simulations and the theory. To sort out this issue we have undertaken a systematic
comparison between the WRF model and the theoretical one, varying the boundary layer depth
in the latter. We found a good agreement when we take a boundary layer depth varying like

zb/
√
J = 0.05. (23)

The 0.05 factor is purely empirical and little sensitive to the resolution in both models, but the√
J term suggests that between the simulations and the theory, the penetration of the boundary

layer depth into the shear layer needs to be the same.

2www2.mmm.ucar.edu/wrf/users/downloads.html
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4.1 Fixed mountain height

To confirm that theory can match the fully nonlinear simulation, we present experiments with
a fixed mountain height H = 250m, (HN = 0.5), and vary the minimum Richardson number
between J = 0.5 and J = 5. Figure (3) shows the horizontal wind disturbances from the linear
model (left) and the WRF model (right) for 3 different Richardson numbers (J = 0.5, 2, and
4). In each figure the contour interval is proportional to the background wind amplitude at
the top of the Hill (≈ HN/

√
J), a value representative of the disturbance amplitude needed to

satisfy the lower boundary condition. The first striking result is that the left hand and right
hand panels share strong similarities: the wave amplitude and phase line tilts with altitude are
comparable. Also, when J increases, the phase line tilts with altitude become more and more
vertical above the ridge, which means that the characteristic horizontal scale of the wave field
decreases when J increases: this behavior is consistently reproduced by the theory and by the
WRF model. In all panels, we also note that the horizontal wind disturbances are substantially
larger on the downstream side (x > 0). This upstream/downstream difference becomes very
pronounced near the ground, contrasting the two flanks of the mountain. It is this difference
in horizontal winds that explains why low level shears can produce intense downslope winds
(L16), and we see here that it is also present in the simulations.

Returning to the foehn effect, Fig. 4 shows the isentropic surfaces corresponding to the
experiments shown in Fig. 3. Again, the results between the theory and WRF are quite consis-
tent, some qualitative discrepancies emerge downstream where the simulations start to predict
potential temperature jumps. These figures also illustrate another feature: the theoretical re-
sults shown in Fig. 2 and in Fig. 4 differ by the value of zb, which increases with J for the
comparison with WRF (see eq. 23). Comparison of figures 2 and 4 shows that the increase of
zb limits the onset of foehn.

4.2 Fixed penetration of the mountain into the shear

As said before, to match the WRF simulations, we had to keep constant in the theoretical
model, the ratio between the shear layer depth

√
J and the boundary layer scale zb. This limits

the amplitude of foehn in the theoretical model, but does not make it disappear. To make the
Foehn effect more evident in the simulations, we next keep the ”penetration” of the mountain
into the shear constant between the experiments by keeping HN/

√
J constant. In this case,

at the top of the hill, the incident wind is the same in all the experiments, and to a certain
extent, it is only the stratification that is changed. Note also that in these experiments the
ratio between the boundary layer depth and the mountain height zb/HN is also constant, which
allows cleaner comparisons of results since zb now changes with

√
J .

The results are shown in Fig. 5 for (J = 0.5, HN = 0.25) and (J = 4, HN = 0.71),
the corresponding plots for (J = 2, HN = 0.5) being already in Figs 4c–d. Again, a good
match between the theory and WRF is found, which is important since we are now using non-
dimensional mountain height that are near 1. In both the theoretical model and in WRF, the
foehn downstream is now slightly more substantial when J = 4 than when J = 0.5, but the
difference are more in terms of horizontal distance over which the air descends on the lee-side.
In the simulation with J = 4 the isentrope which is at the altitude of the mountain summit
upstream rapidly descends below half the mountain top downstream, before returning to its
upstream altitude after the passage through an hydraulic jump. Importantly both this behavior
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and the location of the jump are well predicted by the theory. When J = 0.5 the descent of
air in WRF is less abrupt, in agreement with theory but the total descent is still about half
the mountain height. Another point is worth noticing. In Figs. 5a-d, but this is also true
in all the other Figures, there is very little uplift of the air parcels in front of the ridge, the
most spectacular vertical displacements occur after the passage of the summit. This small
uplift could suggest that diabatic effects should not much affect the results, at least when the
atmosphere is not close to water vapor saturation.

In this paper we try to make the point that upper level wave breaking is not needed for foehn
to occur. The basic argument is that the theory is linear, yet shows a very good agreement
with the fully non linear simulations. Nonetheless, we can go one step further and diagnose if
upper level wave breaking actually occurs in WRF and in the theory. The answer is simply
that it does not,and to illustrate this the Figs. 5e-f display the isentropic surfaces over a much
larger domain than in Figs. 5c–d. In no place, except in the downstream lee side, the isentropes
become almost vertical. This is in contrast with what is found with the Long’s model with
uniform U (see Fig. 1f in L16). In it, downslope winds and foehn always occur in conjunction
with upper level wave breaking.

5 More systematic comparisons and alternative config-

urations

5.1 Quantitative indices

To provide quantitive measures of our results we have built global indices characterizing our
problem and conducted 64 pairs (theory versus WRF) of experiments, 32 corresponding to the
constant height cases described in 4.1. and 32 to the constant penetration of the mountain
into the shear cases described in 4.2. For the first index, we follow L16 and measure downslope
windstorm intensity by,

A = Max
z<HN/2

0<x<5Fr

(
u(x, z)

U(HN/
√
J)

)
. (24)

The index A indicates to which extent the wind in the flow along the foothills (defined as the
region with z < HN/2 and 0 < x < 5Fr) exceeds the background wind at the top of the
hill (U(H/d)). In terms of foehn it is an important index because when the descent is rapid
there is less time for diabatic effects to mitigate the warming of the air masses. The results in
Fig. 6a somehow reproduce those in L16: the downslope wind intensity increases with stability
J . However the increases are not as spectacular as in [Lott(2016)] where A much more easily
reaches values above 1, but this is consistent with the fact that zb increases with J . This
constraint is the price to pay for our theory to be consistent with the simulations.

As our theory reproduces mountain waves quite well (see Fig 3), we have also evaluated the
wave stress in z = 2

√
J (that is well above the maximum mountain height and the low level

shear) and compare it to the linear hydrostatic wave drag produced by the mountain in (6) in
a uniform flow of intensity U(HN) = HN√

J
:

F z = −
∫∞
−∞ uw dx

π
4

H3
N√
J

. (25)
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Again, the curves in Fig.6b show that the theory and the nonlinear simulations are in good
agreement. Interestingly, when the penetration of the mountain into the shear stays con-
stant and J increases, the normalized wave stress F z increases well beyond 1. This behav-
ior is reminiscent of the high drag states often found in non linear mountain flow theory
[Bacmeister and Pierrehumbert(1988), ].

Finally, to characterize foehn, we identify the highest altitude from which are coming the
isentropic surfaces that arrive along the downstream foothill, and normalize by the mountain
maximum altitude. In our non-dimensional formalism where the background potential temper-
ature varies as z exactly, this is conservatively given by,

Fhn = Max
z<HN/2

0<x<5Fr

(
θ + z

HN

)
. (26)

Interestingly, in our models this factor is always near 1. In other words the dynamics forces
isentropic surfaces that are upstream at the altitude of the ridge to descend along the foothills
downstream. Hereagain simulations and theory compare well. In both, the foehn intensity
increases with J , but as for the downslope winds intensity, it is less pronounced than when zb
is kept small and constant in the theory (not shown).

5.2 Alternative configurations

In the real atmosphere the low level shears have at least two causes: the thermal gradients due to
the presence of fronts and the effect of the boundary layer. The first imposes shears that extend
well above the boundary layer, the second forces the winds to vanish at the surface. There is
no reason, except simplicity, to consider that the shears associated with these two processes
have similar values. In this sense, we could say that our almost inviscid interpretation of the
wave dynamics above the boundary layer is only adapted to the shears produced via thermal
wind balance, Raighleigh friction and Newtownian cooling being an ad hoc parameterizations
of the boundary layer absorptive properties, an absorption that becomes very efficient when
the incident wind is null at z = 0. To show that our results have more generality than this
apparently ”ad-hoc” setup, we next propose three experiments. In the first two, we keep the
same models and setup as in Figs. 5c and 5d but shift vertically the mountain height by HN/10,
e.g. by writing,

h(x) = h =
HN

1 + x2/2F 2
r

+
HN

10
. (27)

Doing so there is no need to rewrite the theory but, from a dynamical point of view there is a
major change: the incident wind is no longer exactly null at the surface. The results in Figs. 7a
and 7b show that in this case the theory and WRF simulations are still consistent and that
the foehn effects are almost identical to those when when the incident wind is null at z = 0 in
Figs. 5c and 5d respectively.

In the third experiment, we return to the exact setup of WRF used in Fig. 5d, but instead of
the free slip boundary layer condition we adopt a planetary boundary layer scheme that has been
extensively used in WRF. The chosen configuration activates the vertical diffusion described
in [Hong and Pan(1996)] with the surface conditions evaluated using similarity theory. At
the surface we impose a constant potential temperature, with value equal to the upstream
temperature value at z = 0 and take a roughness length z0 = 10cm. The results for the
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potential temperature and after a non-dimensional time t ≈ 100, are shown in Fig. 7c. Again
the results in term of foehn compare well with those in Fig. 5d, and this despite the fact
that now the low level winds and temperature adapt themselves to more conventional surface
boundary conditions.

6 Discussion

The central result of this paper is the resemblance between Fig.5c and Fig.5d. It shows that
isentropic ”drawdown”, a dry mechanism of foehn, where air parcels do not ascend significantly
on the upstream side of mountains before descending abruptly on the lee side can be produced
in a model without inflow nonlinear effects. The mechanism at work is related to the near
surface critical level dynamics that occurs for mountain waves, the critical level being located
just below the lower boundary. In this case, the inflow linear dynamics anticipate well where
the wave breaks as is often the case in gravity wave theory. Not surprisingly, in the presence of
low level wind shear, mountain wave breaking is favored in regions located below the mountain
top rather than above.

In essence, the results obtained illustrate the significance of low level wind shears and
stability on mountain flow dynamics, something often noticed in mountain meteorology, at least
in the context of trapped lee waves [Reinecke and Durran(2009), Georgelin and Lott(2001), ].
In this context it is interesting to note that there are many field experiments where upstream
soundings show low level shears [Doyle et al.(2011), Sheridan et al.(2007), ], generally related
to advancing fronts [Lothon et al.(2003), ], when the low level shear is associated with thermal
wind balance. It is also worth noticing that there are cases where foehn is observed in the
absence of upper level wave breaking [Flamant et al.(2002)]. Other aspects of the theory also
have reasonable behavior. According to [Richner and Hachler(2013)] a forecaster’s rule says
that foehn winds rarely descend more than 2000m below the mountain crest. In all figures
when the foehn is strong (for instance when J ≥ 2 in Figs. 4–5) we note a comparable behavior,
the foehn never extend down to z = 0 in the lee side in these cases. Also, downstream where
the isentropic surface become vertical, there is always near the surface a pool of relatively cold
air. It is interesting that such a pool has often been viewed as an active part of the foehn
dynamics [Lothon et al.(2003), ], we see here that it can be a consequence of it.

All these remarks are not to say that we want here to replace the existing theories of
adiabatic foehn by a completely new one, the message is rather to complement them. Actually,
our upstream low level shear can be viewed as a form of blocking, since it imposes slow incident
low level flows. Also, upper level mountain wave breaking tend to decelerate the low level
flow, again our background profiles with slow low level winds can be viewed as a result of
this process. Finally, our results show that linear models forced by a nonlinear boundary
condition potentially have some skill, which can turn out to be useful since simplified linear
models are still sometimes used to predict mountain wave operationally at a cheap numerical
cost [Vosper(2003), Sheridan et al.(2017), ]. Finally, one may note that the equations solved in
the numerical simulations and in the linear theory differ in their treatment of boundary layer
dissipation. For consistency one may wish that the WRF model and the theory be adapted to
use the same dissipative processes. Nevertheless, we explored in Section 5 the sensitivity of the
results to the precise boundary condition at the surface (non-zero surface wind or including a
boundary layer parameterization) and these tests suggested that the foehn effects are robust to
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such changes.
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Figure 1: Vertical profiles of the solutions used to build the canonical solution: inviscid ex-
act solution ŵinv(k, z) (black solid), approximation of ŵinv(k, z) near z = 0 (right of (10),
black dashed), damped approximation ŵsurf (12, black dashed and dot), and approximation

of ŵc(k, z) (thick gray). In all panels, only the real part of the complex functions are shown,
k = 0.1 and zb = 0.05 for J = 0.5, 2, and 4 in a) b) and c) respectively.
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Figure 2: Isentropic surfaces predicted by the linear model when HN = 0.5, Fr = 5 and for
different value of J . Tanh incident wind and zb = 0.05: a) J=0.5, c) J=2, e) J=4. Constant
shear and hydrostatic set-up in (16), zb = 0.02: b) J=0.5, d) J=2, e) J=4. In all panels the thick
curve represent the incident wind U and the thick dashed curves the isentropes that initially
are at the altitudes z = HN and z = 2HN .
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Figure 3: Non-dimensional Horizontal wind disturbances (u) predicted by the theory (a, c,
e) and WRF (b, d, f), for J = 0.5, 2, and 4, respectively. In all simulations HN = 0.5 and
in the linear model in (a), (c), and (e) the boundary layer scale varies as zb = 0.05

√
J . In

each panel the contour interval is proportional to the background wind at the top of the hill,
contours= 0.2 ∗HN/

√
J .
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Figure 4: Isentropic surfaces predicted by the theory and WRF, same parameters as in Fig. 3
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Figure 5: Same as Fig. 4 but leaving HN/
√
J =cte: a) and b) J = 0.5, HN = 0.25; c) and d)

J = 4, HN = 0.71. e) and f) are enlarged views of c) and d).
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Figure 6: Global indices measuring a) the downslope wind amplitudes (24), b) the normalised
wave stress (25), and c) the foehn intensity (26). The results are from 64 numerical experiments,
32 uses with WRF and 32 the ”inflow linear” theory (LT). Half the simulations are done with
constant height HN = 0.71, the other half with constant penetration of the mountain into the
shear HN/

√
J = 0.4.
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Figure 7: Sensitivity test: a) and b) are as Fig. 5c and 5d with the surface h shifted vertically
by HN/10. c) is as Fig. 5d but with a fully parameterized boundary layer.
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