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Abstract

The purpose of this paper is to investigate the identification of the water depth and the water velocity potential in a coastal region
by using the linearized water wave equation (LWWE). Existence and uniqueness of the solutions to the partial differential equation
LWWE are shown by using the semigroup theory. Moreover the analytical solution is found by the separation of variables method.
We assume that the surface wave elevation is measurable. We like to recover the water depth and the water velocity potential from
the measurement. This identification problem is shown to be well-posed by proving the parameters’ identifiability by the surface
elevation. Based on the classical gradient descent method we elaborate an identification algorithm to recover simultaneously both
the water depth and the velocity potential. Numerical simulations are carried out to illustrate effectiveness of the algorithm.

Keywords: Water wave equation, infinite dimensional system, water depth, velocity potential, parametric identification, gradient
descent method.

1. Introduction

Detailed knowledge of the ocean bottom topography and hy-
drological characteristics are of great importance in various
coastal engineering problems. Previous studies have shown that
the bathymetry problem in coastal region can be solved by di-
rect and indirect approaches. In [1] and [2], the water depth is
measured by the infrared and the blue-green scanning LIDAR
(light detection and ranging). However, sometimes the bottom
topography is not visible due to turbidity or bubbles. Moreover
the energy consumption of blue-green laser is important. The
indirect approach proposed in [3] and in [4] was based on the
dispersion relation, written as ω2 = gk tanh(kh), where h is the
water depth, ω the angular frequency defined by 2π/T , with T
the wave time period, k the wave number defined by 2π/L with
L the wavelength, and g the gravity acceleration constant. Once
we have k and ω we compute directly h by the dispersion re-
lation. However, this approach is useful only for the case of
single wave.

Our objective consists of surveying nearshore bathymetry by
using the infrared scanning LIDAR mounted on a UAV (un-
manned aerial vehicle). We expect to use the system identifi-
cation technology [5] [16] to recover the water depth and water
velocity potential in the coastal region. Parametric identifica-
tion of a dynamical system is an algorithm based on the math-
ematical model of the system that allows to recover the param-
eters by processing available measurement records. In our case
we propose to identify the water depth and velocity potential
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China University of Technology, Guangzhou, 510640, China.
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through the mathematical model of water waves and measuring
the surface wave elevation.

The water wave equation consists in describing the motion
of the water waves occupying a domain delimited below by a
fixed bottom and by a free surface above. To write down the
water wave equation, let Ωt = {(x, z) ∈ R+ × (−h, η(x, t)) } de-
note the water domain in 2-dimensional euclidian framework as
illustrated in Fig.??, where R+ = [0,∞), η(x, t) is the surface
elevation of water wave at position x and time t, and h the water
depth. We assume that the water and the water waves satisfy
the following assumptions: (A1) The water is incompressible
; (A2) There is no surface tension and the water is inviscid;
(A3) The water particles do not cross the bottom and the sur-
face; (A4) The external pressure is constant; (A5) The seabed
is flat, so that h is positive constant; (A6) The water wave is
irrotational. Since the irrotational assumption has been made,
consequently there exists a flow potential φ = φ(x, z, t) such
that the velocity field V is written by V = (φx, φz)T , where φx,
φz denote the partial derivative of φ with respect to x and to z,
respectively. Thus, the mass conservation is expressed by the
Laplace equation

∆φ = φxx + φzz = 0, ∀(x, z) ∈ Ωt, (1)

with the boundary condition at the bottom

φz = 0, on z = −h. (2)

The Neumann condition (2) means that at the bottom of seabed,
the normal component of the velocity is zero. The dynami-
cal and kinematical boundary conditions on the free surface are
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given by φt +
1
2

(
φ2

x + φ2
z

)
+ gη = 0

ηt + φxηx − φz = 0
∀x ∈ R+, z = η(x, t), t > 0. (3)

In previous studies such as [7, 8], the water wave is assumed
to be at rest at infinity. Alternatively, we choose the periodical
condition for water waves

φ(x, z, t) = φ(x + L, z, t), ∀(x, z) ∈ Ωt, t > 0. (4)

The detailed development of water wave equations (1)-(4)
can be found in [6]. Indeed, following Craig and Sulem
[10, 11], the water wave dynamic can be described by the
state representation equation with ξ and η as states, where
ξ(x, t) = φ (x, η(x, t), t). This fact was noticed by Zakharov [9]
in 1968. Indeed where ξ(x, t) is the evaluation of the velocity
potential on the free surface, i.e., ξ(x, t) = φ (x, η(x, t), t). Once
η fixed, the Dirichlet-Neumann operator Gη maps each ξ non-
linearly onto (φz − φxηx)|z=η(x,t), where φ is the solution of the
following problem ∆φ = 0, ∀(x, z) ∈ Ωt, φ|z=η= ξ,

φz|z=−h= 0, φ(x, z, t) = φ(x + L, z, t), ∀x ∈ R.
(5)

The major breakthrough of Lannes [12] was to prove the ex-
istence of local solutions of system (3), without restrictions on
the size of the initial data and without the periodical bound-
ary condition. Recently the bathymetry problem based on the
water wave equations (3) has been studied in [13], in which
η(x, t), ηt(x, t) and ξ(x, t) are assumed to be measurable at a
fixed time t0 > 0. However, from the point of view of appli-
cations, the measurement of the velocity potential is difficult.
And we expect to extract simultaneously the water depth and
the velocity potential by measuring only the surface elevation.
Notice that, the LWWE is often used in oceanography as an al-
ternative choice of the water wave equation, where the former
corresponds to the linearized version of the latter around the
equilibrium state (ξ, η)T = (0, 0)T .

Without ambiguity we keep the same notations in the L-
WWE as in the nonlinear water wave equation. Let Ω =

{(x, z) ∈ R+ × (−h, 0) } denote the linearized water domain,
where z = 0 corresponds to the still water surface. The sum-
mary of LWWE is given by

∆φ = 0, ∀(x, z) ∈ Ω,

φz|z=−h= 0, φt |z=0= −gη, ηt = φz|z=0,

φ(x, z, t) = φ(x + L, z, t), ∀(x, z) ∈ Ω, t > 0.
(6)

In the literature, several mathematical models for the motion
of water waves have been established, see [6, 14]. In our paper,
we consider the LWWE as the mathematical model of water
waves in the coastal region. In some sense dynamics of wa-
ter waves that we study here are similar to those of mechanical
systems governed by PDE, see [21, 17]. The methodology for
identification and observation of finite dimensional nonlinear
systems has been developed in [15] and successfully applied to

deal with some interesting practical problems. However, there
is no general methodology for the identification and observa-
tion of infinite-dimensional systems. Nevertheless the works of
[19], [20] and [18] have inspired us a lot for the present study.

Different from previous studies in the literatures, we are in-
terested in elaborating an algorithm on the bathymetry which
enables us to identify simultaneously both the velocity potential
and the water depth by measuring the water surface elevation
only. The contribution of our paper is threefold: (i) we prove
that the direct problem of periodical (w.r.t. space) water wave
system described by LWWE (6) is well-posed in some Hilbert
state space and that the corresponding identification problem
has a unique solution; (ii) we design an algorithm of identifica-
tion for both the water depth and the water velocity potential;
(iii) we validate our proposed algorithm by numerical simula-
tions.

The rest of the paper is organized as follows. In Section 2,
we give an analytical solution of the LWWE (6), which is ob-
tained by the separation of variables method. There, we prove
the well-posedness of the LWWE in some Hilbert state space.
In Section 3, we show that the water depth and the water ve-
locity potential are simultaneously identifiable by measuring
the surface elevation. Section 4 is devoted to presenting our
identification algorithm. We use the classical gradient descen-
t method to seek the minimum of a cost function. Numerical
simulations are provided in Section 5 to show effectiveness of
the algorithm. Our conclusion and future perspective are given
in Section 6.

2. Well-posedness of LWWE

Let us consider the PDE (6). We use the method of anal-
ysis of Craig and Sulem in [11] to write down the dynamical
system of the linearized water waves. That is to say that we
will define a similar linear Dirichlet-Neumann operator G. Let
ξ(x, t) denote the water velocity potential on the surface, i.e.,
ξ(x, t) = φ(x, 0, t). Let G be the linear operator which map-
s each ξ onto φz|z=0 by solving the following elliptic boundary
value problem

∆φ = 0, ∀ (x, z) ∈ Ω,

φz|z=−h= 0,
φ(x, 0, t) = ξ(x, t), ∀x ∈ R+, t > 0,
φ(x, z, t)=φ(x + L, z, t), ∀z ∈ (−h, 0), t > 0.

(7)

Then we write LWWE (6) as a dynamical system in the fol-
lowing form:
ξt = −gη,

ηt = G(ξ),

ξ(x, 0) = ξ0(x), η(x, 0) = η0(x),
y(x, t) = η(x, t), (x, t) ∈ (0, L) × (0,∞),

(8)

where y(x, t) is the output measurement. As the water wave is
periodic in x with period L, we can restrict the observation field
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to [0, L] that corresponds to the information in one period. Ob-
viously the operator G plays a central role in the well-posedness
problem of (8). We will show that, given ξ, the Laplace equa-
tion (7) has a unique solution, and so that the operator G is well
defined. Then the well-posedness of the dynamical system (8)
will be proven by the semigroup theory.

2.1. Laplace equation

We define the set C∞p (0, L) as follows

C∞p (0, L) =

{
f ∈ C∞

(
R+) ∣∣∣ f (x + L) = f (x),∀ x ∈ R+

}
.

Let L2(0, L) denote the Hilbert space of square summable func-
tions defined in (0, L) that is equipped with the inner produc-
t 〈 f , g〉 =

∫ L
0 f (x)g(x)dx and the induced norm ‖ f ‖2= 〈 f , f 〉.

Let L2
p(0, L) denote the set of square summable and period-

ic functions with period L that is obtained by the comple-
tion of C∞p (0, L) in the L2(0, L) norm. It is easy to see that
L2

p(0, L) = L2(0, L). As usual Hn(0, L) denotes the Sobolev
space normed by ‖ f ‖2Hn=

∑n
m=0‖ f

(m)‖2 where f (0) = f . Thus,
for each n ∈ N∗, Hn

p(0, L) is the Hilbert space by the completion
of C∞p (0, L) in the Hn(0, L) norm.

We solve the Laplace equation (7) by the separation of vari-
ables method. The main result is given by the following the-
orem. And the corresponding proof is presented in Appendix
A.

Theorem 2.1 Let ξ ∈ C∞p (0, L) such that

ξ(x) =
a0
√

L
+

∞∑
m=1

√
2
L

(
am cos(kmx) + bm sin(kmx)

)
.

Then the Laplace equation (7) has a unique solution φ ∈ C∞(Ω)
given by

φ(x, z) =
a0
√

L
+

∞∑
m=1

√
2
L

(
am cos(kmx) + bm sin(kmx)

)cosh(km(h + z))
cosh(kmh)

,

(9)

where km = 2mπ
L ∀ m ∈ N∗ (N∗ = N\{0}) and

a0 =
〈
ξ,
√

L−1
〉

L2
p
,

am =
〈
ξ,
√

2L−1 cos(kmx)
〉

L2
p
, bm =

〈
ξ,
√

2L−1 sin(kmx)
〉

L2
p
.

Indeed, the unique solution φ(x, z) belongs to C∞([0, L] ×
[−h, 0]), and it is periodic with respect to x. From Theorem
2.1, if ξ ∈ C∞p (0, L), then G(ξ) = φz|z=0 is well defined, and we
have

G(ξ) =

∞∑
m=1

√
2
L

(
am cos(kmx) + bm sin(kmx)

)ω2
m

g
(10)

where ω2
m = gkm tanh(kmh).

From (10), we get

∥∥∥G(ξ)
∥∥∥2

L2
p

=

∞∑
m=1

(
a2

m + b2
m

)ω4
m

g2 . (11)

Recall that

‖ξ‖2H1
p
= a2

0 +

∞∑
m=1

(
a2

m + b2
m

) (
1 + k2

m

)
. (12)

By Theorem 2.1 and (11)-(12), the operator G is continuous
from H1

p(0, L) to L2
p(0, L). Hence it admits a unique extension

onto the whole space H1
p(0, L), as C∞p (0, L) is dense in H1

p(0, L).
We introduce the Hilbert space Hn

p,0(0, L) ⊂ Hn
p(0, L) defined

by Hn
p,0(0, L) =

{
f ∈ Hn

p(0, L);
∫ L

0 f dx = 0
}
, ∀ n ∈ N. We claim

that G is continuously invertible from H1
p,0(0, L) onto L2

p,0(0, L).
Indeed, let f1, f2 be two functions in H1

p,0(0, L). For j = 1, 2, f j

is written as

f j(x) =

∞∑
m=1

a j,m cos(kmx) + b j,m sin(kmx).

Then the image of f j under the mapping G is given by

G( f j) =

∞∑
m=1

(
a j,m cos(kmx) + b j,m sin(kmx)

)ω2
m

g
.

Obviously, G( f1) = G( f2) implies that a1,m = a2,m and b1,m =

b2,m ∀ m ∈ N∗. It is implied that f1 = f2. Thus the operator G
is one-to-one. The onto part can be proved similarly. Hence G
is continuous and bijective from H1

p,0(0, L) onto L2
p,0(0, L). It is

implied that G is invertible with G−1 continuous from L2
p,0(0, L)

to H1
p,0(0, L) (see [22, p.19]). So the claim is proved.

2.2. Well-posedness of the dynamical system

Now we prove the well-posedness of the dynamical system
(8). First we define the state space for the system. For each
f ∈ C∞p (0, L) such that

f (x) =

∞∑
m=1

√
2
L

(
am cos(kmx) + bm sin(kmx)

)
,

we define the norm ‖ f ‖2
H

1
2

by

‖ f ‖2
H

1
2
=

∞∑
m=1

(
a2

m + b2
m

)ω2
m

g2 . (13)

Let H
1
2
p,0(0, L) be the completion of C∞p,0(0, L) in the H

1
2 norm.

A more general definition of H
1
2
p,0 can be found in [24, section

3.4]. Then the state space of the system (8) is the Hilbert space

X = H
1
2
p,0(0, L) × L2

p,0(0, L) equipped with the following norm∥∥∥(u, v)T
∥∥∥2

X = ‖u‖2
H

1
2
+‖v‖2L2 . (14)

3



We define the system operator A : D(A) ⊂ X → X by

D(A) =

{
( f1, f2)T ∈ H1

p,0(0, L) × H
1
2
p,0(0, L)

}
and for all ( f1, f2)T ∈ D(A),

A
(

f1
f2

)
=

(
−g f2
G( f1)

)
.

The main result about the well-posedness problem to the dy-
namical system (8) is given by the following theorem.

Theorem 2.2 The operator A is the generator of a C0 semi-
group on X noted by (S A(t))t≥0. For each

(
ξ0, η0

)T
∈ D(A),

there exists a unique solution (ξ(t), η(t)) to the system (8) such
that (ξ, η)T ∈ C1([0,∞), X) ∩ C([0,∞),D(A)). Moreover, the
solution is given by (ξ(·, t), η(·, t))T = S A(t)(ξ0, η0)T .

Proof It is sufficient to apply the Hille-Yosida theorem (Theo-
rem 7.4, p.105, [22]). We first show that A is dissipative. In-
deed, let f = ( f1, f2)T ∈ D(A). The inner product between A f
and f gives us the following

〈A f , f 〉X =

〈(
−g f2
G( f1)

)
,

(
f1
f2

)〉
X

= − 〈g f2, f1〉H 1
2

+ 〈G( f1), f2〉L2 .

Since ( f1, f2) ∈ H1
p,0(0, L) × H

1
2
p,0(0, L), we can express f j, j =

1, 2, as Fourier series

f j =

∞∑
m=1

√
2
L

(
a j,m cos(kmx) + b j,m sin(kmx)

)
,

where the sequences (kma1,m), (kmb1,m), (ωma2,m), and (ωmb2,m)
are in `2. It is easy to check that

〈g f2, f1〉H 1
2

= 〈G( f1), f2〉L2 =

∞∑
m=1

ω2
m

g

(
a1,ma2,m + b1,mb2,m

)
.

Hence 〈A f , f 〉X = 0, which implies that A is dissipative.
Next we show that A is maximal. To that end, let u =

(u1, u2)T ∈ X written as

u j =

∞∑
m=1

√
2
L

(
α j,m cos(kmx) + β j,m sin(kmx)

)
, j = 1, 2,

where (ωmα1,m), (ωmβ1,m), (α2,m), (β2,m) ∈ `2. We want to solve
the resolvent equation for f ∈ D(A)(

f1
f2

)
− A

(
f1
f2

)
=

(
f1 + g f2

f2 −G( f1)

)
= u. (15)

Simple computations allow us to find that for each m ∈ N∗, the
Fourier coefficients of f1 and f2 are given by

a1,m =
α1,m − gα2,m

1 + ω2
m

, b1,m =
β1,m − gβ2,m

1 + ω2
m

,

a2,m =
α2,m + α1,mω

2
mg−1

1 + ω2
m

, b2,m =
β2,m + β1,mω

2
mg−1

1 + ω2
m

.

From these coefficients and by ω2
m = gkm tanh(kmh), we con-

clude that ( f1, f2)T ∈ D(A). Therefore A is maximal dissi-
pative. By the Hille-Yosida theorem, A is the generator of
a C0 semigroup and there exists a unique solution (ξ, η)T ∈

C1([0,∞); X) ∩C([0,∞); D(A)).

Next, we develop the exact solution to the PDE (8). First, the

orthonormal bases for H
1
2
p,0(0, L) and for L2

p,0(0, L) are given by,
respectively,√

2
L

g
ωm

(
cos(kmx), sin(kmx)

)
m∈N∗

,

√
2
L

(
cos(kmx), sin(kmx)

)
m∈N∗

.

Then we express the solutions ξ(x, t) and η(x, t) as

ξ(x, t) =

∞∑
m=1

√
2
L

g
ωm

(
Am(t) cos(kmx) + Bm(t) sin(kmx)

)
,

η(x, t) =

∞∑
m=1

√
2
L

(
Cm(t) cos(kmx) + Dm(t) sin(kmx)

)
.

(16)

Differentiate Am(t), Bm(t), Cm(t) and Dm(t) with respect to t to
obtain the following ODEs

Ȧm(t) = −ωmCm(t); Ḃm(t) = −ωmDm(t)
Ċm(t) = ωmAm(t); Ḋm(t) = ωmBm(t).

(17)

The initial values for (17) are found to be

Am(0)=
〈
ξ0,
√

2L−1gω−1
m cos(kmx)

〉
H

1
2
p,0

,

Bm(0)=
〈
ξ0,
√

2L−1gω−1
m sin(kmx)

〉
H

1
2
p,0

,

Cm(0)=
〈
η0,
√

2L−1 cos(kmx)
〉

L2
p,0
,

Dm(0)=
〈
η0,
√

2L−1 sin(kmx)
〉

L2
p,0
.

(18)

The ODE (17) together with the initial values gives
Am(t) = Am(0) cos(ωmt) −Cm(0) sin(ωmt) ,
Bm(t) = Bm(0) cos(ωmt) − Dm(0) sin(ωmt) ,
Cm(t) = Am(0) sin(ωmt) + Cm(0) cos(ωmt) ,
Dm(t) = Bm(0) sin(ωmt) + Dm(0) cos(ωmt) .

(19)

3. Identifiability

In this section, we show that the water depth and the wa-
ter velocity potential can be simultaneously extracted from the
surface elevation measurement. That is to show that the map-
ping

(
h, ξ0

)
7→ η(x, t) is one-to-one. We suppose that the wave-

length L is known. Our result concerning the identifiability is
described as follows.

Theorem 3.1 Let h j > 0 be water depths and let(
ξ j(·, t), η j(·, t)

)
∈ X be the solution of the dynamical system

(8) from the initial value
(
ξ0

j , η
0
j

)
∈ X, j = 1, 2. Let T > 0 and

let (ξ0
j , η

0
j ) 6= 0 ∀ j = 1, 2. Then η1(·, t) = η2(·, t) in L2

p,0(0, L)

∀t ∈ [0,T ] implies that h1 = h2 and ξ0
1 = ξ0

2 in H
1
2
p,0.
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Remark 1 For non-zero initial conditions, the water depth h
and the velocity potential ξ(x, t) are simultaneously identifiable
from measuring η(x, t) on any positive interval [0,T ]. The case(
ξ0

j , η
0
j

)
= (0, 0), which corresponds to the still water, is exclud-

ed. Clearly, in this case it is not possible to identify the water
depth and the velocity potential.

Proof Assume that for j = 1, 2, the initial value (ξ0
j , η

0
j ) ∈ X of

system (8) are written as

ξ0
j (x) =

∞∑
m=1

√
2
L

g
ω j,m

(
a j,m cos(kmx) + b j,m sin(kmx)

)
η0

j (x) =

∞∑
m=1

√
2
L

(
c j,m cos(kmx) + d j,m sin(kmx)

)
,

(20)

where ω j,m =

√
gkm tanh(kmh j). By using the exact solution

(16)-(19), the velocity potential and the surface elevation are
given by

ξ j(x, t) =

√
2
L

∞∑
m=1

g
ω j,m

[(
a j,m cos(ω j,mt) − c j,m sin(ω j,mt)

)
·

cos(kmx) +

(
b j,m cos(ω j,mt) − d j,m sin(ω j,mt)

)
sin(kmx)

]
, (21)

η j(x, t)=

√
2
L

∞∑
m=1

[(
a j,m sin(ω j,mt)+c j,m cos(ω j,mt)

)
cos(kmx)

+

(
b j,m sin(ω j,mt) + d j,m cos(ω j,mt)

)
sin(kmx)

]
.

If η1(x, t) = η2(x, t) ∀t ∈ [0,T ] , we have that for all m ∈ N∗(
a1,m c1,m
b1,m d1,m

) (
sin(ω1,mt)
cos(ω1,mt)

)
=

(
a2,m c2,m
b2,m d2,m

) (
sin(ω2,mt)
cos(ω2,mt)

)
. (22)

In particular, at t = 0, we have

c1,m = c2,m, d1,m = d2,m ∀m ∈ N∗. (23)

Computing successively the first order, second order and third
order derivative of (22) and evaluating the results at t = 0, we
obtain(
a1,m, b1,m

)T
ω1,m =

(
a2,m, b2,m

)T
ω2,m ∀m ∈ N∗, (24)(

c1,m, d1,m

)T
ω2

1,m =
(
c2,m, d2,m

)T
ω2

2,m ∀m ∈ N∗, (25)(
a1,m, b1,m

)T
ω3

1,m =
(
a2,m, b2,m

)T
ω3

2,m ∀m ∈ N∗. (26)

If η0
j 6= 0, by (23), there exists some l ∈ N∗ such that

(c j,l, d j,l) 6= 0, j = 1, 2. From (25), we have ω1,l = ω2,l. Hence
h1 = h2 and ω1,m = ω2,m ∀m ∈ N∗. From (24), we deduce
that a1,m = a2,m and b1,m = b2,m ∀m ∈ N∗. It is implied that
ξ1(·, t) = ξ2(·, t) ∀t ∈ [0,T ].

If ξ0
j 6= 0, there exists some l ∈ N∗ such that (a1,l, b1,l) 6= 0.

Multiplying (24) by ω2
2,m and subtracting the product from (26)

give us

ω1,m
(
ω2

1,m − ω
2
2,m

) (a1,m
b1,m

)
= 0 ∀m ∈ N∗. (27)

By our assumption, we deduce that ω1,l = ω2,l. Hence h1 = h2
and ω1,m = ω2,m ∀m ∈ N∗. From (24), we have a1,m = a2,m and
b1,m = b2,m ∀m ∈ N∗. It is implied that ξ0

1 = ξ0
2 or ξ1(·, t) =

ξ2(·, t), ∀ t ∈ [0,T ].

4. The algorithm of identification

From the section 3, we see that the identification of ξ(x, t) is
equivalent to that of ξ0(x). Hence, we design an algorithm of
identification for ξ0(x) and for h. Let J be the cost functional
defined by

J : H1
p,0(0, L) × R+ → R+

(
ξ0, h

)
7→

1
2

∫ T

0

∫ L

0

(
η(x, t) − η̂(x, t)

)2
dxdt,

where η(x, t) is the solution of the system (8) from the initial
condition (ξ0, η0) with the water depth h and η̂(x, t) is the output
measurement.

We use the gradient descent method, see [23] and Annexe C
of [26], to seek the minimum of J. The key step of this algorith-
m is to find the descent direction of J at the point

(
ξ0, h

)
. This

direction is opposite to the gradient of J, denoted by dJ(ξ0, h).
The expression of dJ(ξ0, h) is given by the following formulas
(30)-(32).

We want to compute the differential dJ(ξ0, h)
(
∆ξ0

∆h

)
. For the

purpose, let us put

J
(
ξ0 + ε∆ξ0, h + ε∆h

)
=

1
2

∫ T

0

∫ L

0

(̃
η(x, t) − η̂(x, t)

)2
dxdt,

where the surface elevation η̃(x, t) is the solution of the system
(8) from the initial value (ξ0 + ε∆ξ0, η0) with the water depth
(h + ε∆h). By using (16)-(19), η̃(x, t) is written by

η̃(x, t)=

√
2
L

∞∑
m=1

[(̃
Am(0)sin(ω̃mt)+Cm(0) cos(ω̃mt)

)
cos(kmx)

+

(
B̃m(0)sin(ω̃mt) + Dm(0) cos(ω̃mt)

)
sin(kmx)

]
,

(28)

where (Cm(0), Dm(0)) is the same as that of (18), ω̃m =√
gkm tanh (km(h + ε∆h)) and
Ãm(0) =

〈
ξ0 + ε∆ξ0,

√
2L−1gω̃−1

m cos(kmx)
〉

H
1
2
p,0

,

B̃m(0) =
〈
ξ0 + ε∆ξ0,

√
2L−1gω̃−1

m sin(kmx)
〉

H
1
2
p,0

.
(29)

Direct computation gives us the following formula

dJ(ξ0, h)
(
∆ξ0

∆h

)
=

∫ T

0

∫ L

0

[
η(x, t) − η̂(x, t)

]dη̃(x, t)
dε

∣∣∣∣∣
ε=0

dxdt.
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where

dη̃(x, t)
dε

∣∣∣∣∣
ε=0

=

√
2
L

∞∑
m=1

[∂Ãm(0)
∂ε

∣∣∣∣∣
ε=0

sin(ωmt)+

(
tAm(0) cos(ωmt) − tCm(0) sin(ωmt)

)
∂ω̃m

∂ε

∣∣∣∣∣
ε=0

]
cos(kmx)

+

[
∂B̃m(0)
∂ε

∣∣∣∣∣
ε=0

sin(ωmt) +

(
tBm(0) cos(ωmt)

−tDm(0) sin(ωmt)
)
∂ω̃m

∂ε

∣∣∣∣∣
ε=0

]
sin(kmx)

}
,

dω̃m

dε

∣∣∣∣∣
ε=0

=
gk2

m sech 2(kmh) ∆h
2ωm

.

Hence, the differential of J at (ξ0, h) is given by

dJ(ξ0, h)
(
∆ξ0,∆h

)T
=

〈
∆ξ0, F1

〉
H

1
2
p,0

+ ∆hF2 (30)

where

F1(x) =

∞∑
m=1

2g
Lωm

∫ T

0

∫ L

0

(
η(s, t) − η̂(s, t)

)
sin(ωmt)

cos (km(s − x)) dsdt,

(31)

F2=

∞∑
m=1

gk2
msech 2(kmh)

ωm
√

2L

∫ T

0

∫ L

0

(
η(x, t) − η̂(x, t)

)
×{[

−

(
Am(0)ω−1

m +Cm(0)t
)

sin(ωmt) + Am(0)t cos(ωmt)
]

cos(kmx)

+

[
−

(
Bm(0)ω−1

m + Dm(0)t
)

sin(ωmt) + Bm(0)t cos(ωmt)
]
×

sin(kmx)
}
dxdt.

(32)

Based on the gradient descent method, our designed algo-
rithm of identification is provided by the following algorithm.

Algorithm of identification

(1) Choose an initial data
(
ξ0, 1, h1

)
and a small parameter ε.

Initialize the counter j = 1.

(2) Realize a convergence test: if
∣∣∣∣J (

ξ0, j, h j
)∣∣∣∣ < ε, stop the

algorithm.

(3) Determine a descent direction. In the paper, this direction
is opposite to the differential of J at the point

(
ξ0, j, h j

)
.

(4) Determine two steps α1 and α2 sufficiently small such that
the functional J decreases sufficiently.

(5) Determine a new iteration

ξ0, j+1(x) = ξ0, j(x) − α1F j
1(x), h j+1 = h j − α2F j

2,

where F j
1(x) and F j

2 are defined by (31)-(32).

(6) Put j = j + 1 and return to step 2.

5. Numerical Simulations

In this section, we present an example to show the effective-
ness of the proposed algorithm, where the implementation of
the algorithm is carried out by using the software Matlab.

Due to lack of actual data, we use the exact solution η(x, t)
in (16) to generate the measurement records by adding some
random noise. First we give the relevant coefficients as

g = 9.8 m/s2; L = 3 m; T = 2.047 s,

where g is the gravitational acceleration, L the wavelength and
T the duration of measurement. The initial values are chosen as

ξ0(x) =

3∑
m=1

0.1 cos(kmx); η0(x) =

3∑
m=1

0.1 cos(kmx), (33)

where km = 2mπ/L, for m = 1, 2, 3. Then the surface elevation
η(x, t) is expressed by

η(x, t) =

3∑
m=1

[
0.1

ωm

g
sin(ωmt) + 0.1 cos(ωmt)

]
cos(kmx) , (34)

where ωm =
√

gkm tanh(kmh) with the water depth h = 2. In
the computational process, the surface elevation ηn

i = η(xi, tn)
is obtained at the points of mesh grid: ∆x = 0.1m, ∆t = 0.01s.
Then the measurement records are given by

η̃n
i = ηn

i + δ max(η) · rand
(
size(ηn

i )
)
,

for i = 0, 1, . . . , L/∆x; n = 0, 1, . . . ,T/∆t,

where rand(zise(ηn
i )) is a random matrix in [0, 1] to indicate the

measurement noise, δ denotes the percentage error level.
The initial iteration for the algorithm of identification is cho-

sen as

ξ0,1(x) = 0.5 cos
(

2πx
L

)
, h1 = 1. (35)

The step sizes for the algorithm are α1 = 0.01 and α2 = 0.3853.
The convergence criterion is ε = 10−6.

The true value of ξ0(x) in (33) is displayed in Fig.1 in solid
line and ξ0,1(x) is shown in dash line. It can be seen, from
the figure, that ξ0(x) and ξ0,1(x) are quite different. Before we
apply the algorithm, the value of cost functional is J

(
ξ0,1, h1

)
=

0.5839. The difference between the water depth h and h1 is
J2 = |h − h1|= 1. And the difference between ξ0(x) and ξ0,1(x)
is computed by the norm J3 = 1

2

∫ L
0

(
ξ0(x) − ξ0,1(x)

)2
dx = 0.27.

Fig.2 presents the identification results without measurement
noise, i.e., δ = 0. The convergence is achieved by using 280
iterations of descent. The comparison between the true val-
ue ξ0(x) and identified ξ0, 280(x) is shown in Fig.2(a), where
the exact values are given by the solid line (red) and the es-
timated results are shown in dash line (blue). Fig.2(a) shows
that the result of identification is quite satisfactory. The evo-
lution of the identified water depth is shown in Fig.2(c). The
identified water depth (in dash line) quickly converges to the
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Figure 1: Initial values of ξ0(x) in solid line and ξ0,1(x) in dash line

true value (h = 2), though their initial values are quite dif-
ferent. The evolution of J2 (with J2 = |h − h j|) and evolu-
tion of J3 (with J3 = 1

2

∫ L
0

(
ξ0(x) − ξ0, j(x)

)2
dx) are presented in

Fig.2(d) and Fig.2(b), respectively. The minimum obtained is
Jmin = 9.99 · 10−7, J2min = 2.3 · 10−3 and J3min = 8.62 · 10−7.

For the case of δ 6= 0, we give the simulation results in Table
1. According to the values of δ, we list the iterations needed to
realise the convergence criterion ε < 10−6 in the second line,
and we list Jmin, J2min and J3min in the third, the forth, and the
fifth line of Table 1. From this table, we can see that the al-
gorithm is robust if δ ≤ 18%. If δ > 18%, then the term of
measurement noise is important. Consequently, the algorithm
cannot converge to the desired values.

6. Conclusions

Three tasks have been carried out in this paper. First, we
have proven the well-posedness of LWWE and found out the
exact solution by the separation of variables method. Second,
we have shown that the water depth and the water velocity po-
tential are identifiable from the water surface elevation records.
Third, the numerical simulations based on the gradient descent
method have been done to show the effectiveness of the pro-
posed algorithm.

Future work is focused on improving the convergence rate of
the identification algorithm by combining the classic gradient
method with the Newton method [25][5]. As we have point-
ed out in the Introduction, our initial objective is to realize the
bathymetry in the coastal region by using the infrared scanning
LIDAR. The water depth identification algorithm that we have
developed here will be tested with the field real measurement
data.

Appendix A. Proof of Theorem 2.1

Consider the following Laplace equation ∆φ = 0, ∀(x, z) ∈ Ω, φz|z=−h= 0, ∀x ∈ R+,

φ(x, 0) = ξ(x), φ(x, z) = φ(x + L, z),∀x ∈ R+.
(A.1)

We compute the nontrivial solution of (A.1) by separation of
variables method and then we prove this solution is unique by
variational method.

Assume that the velocity potential of (A.1) is written as
φ(x, z) = φ1(x)φ2(z) 6= 0, where φ1 and φ2 only depend on x and

z, respectively. Substituting this expression into the Laplace e-
quation, we have

φ−1
1 (x)φ

′′

1(x) + φ−1
2 (z)φ

′′

2(z) = 0. (A.2)

Clearly, the first term of (A.2) depends on x alone, while the
second term depends only on z. The only way that the equation
holds is that each term is equal to some constant −k2 ∈ C, that
is

φ−1
1 (x)φ

′′

1(x) = −φ−1
2 (z)φ

′′

2(z) = −k2. (A.3)

The equations (A.3) are now ordinary differential equations and
can be solved separately.

If k ∈ C\{0}, the general solution of ODE (A.3) is given by

φ(x, z) = (C1 cos(kx) + C2 sin(kx))(C3ekz + C4e−kz), (A.4)

where C1, C2, C3 and C4 are any constants in C. We show that
the velocity potential can be expressed by a Fourier series. For
(A.4) to satisfy the Neumann condition (φz|z=−h= 0). we must
have C3 = C4e2kh. Thus the velocity potential is expressed as

φ(x, z) = (C̃1 cos(kx) + C̃2 sin(kx)) cosh k(h + z), (A.5)

where C̃1 = 2C1C4ekh and C̃2 = 2C2C4ekh. For (A.5) to satisfy
the periodical condition (φ(x, z) = φ(x + L, z)), we need the
following:

C̃1 cos(kx) + C̃2 sin(kx)=C̃1 cos(kx + kL) + C̃2 sin(kx + kL).

It implies that k is uniquely determined by k = km = 2mπ
L , for

m ∈ N∗. Finally, consider the Dirichlet boundary condition
(φ(x, 0) = ξ(x)). If ξ(x) ∈ C∞p (0, L) is written as

ξ(x) =

√
2
L

∞∑
m=1

(
am cos(kmx) + bm sin(kmx)

)
,

simple computations allow us to find that the Dirichlet condi-
tion holds if and only if the velocity potential is written by the
following series

φ(x, z)=

√
2
L

∞∑
m=1

(
am cos(kmx)+bm sin(kmx)

)cosh km(h+z)
cosh kmh

. (A.6)

If k = 0, we can prove that φ(x, z) =
a0√

L
if and only if

ξ(x) =
a0√

L
.

Next we show that this solution is unique. Let φ̃ be another
solution of the Laplace equation (A.1). Obviously the error ε =

φ(x, z) − φ̃(x, z) satisfy the following Laplace equation ∆ε = 0, ∀(x, z) ∈ Ω, εz|z=−h= 0, ∀x ∈ R+,

ε(x, 0) = 0, ∀x ∈ R+, ε(x, z) = ε(x + L, z),∀x ∈ R+.
(A.7)

By using the Green formula, we can see that

0 =

∫
Ω

ε4εdΩ =

∫ 0

−h

[
ε
∂ε

∂x

∣∣∣∣∣
x=L
− ε

∂ε

∂x

∣∣∣∣∣
x=0

]
dz−

∫ L

0
ε
∂ε

∂z

∣∣∣∣∣
z=−h

dx

+

∫ L

0
ε
∂ε

∂z

∣∣∣∣∣
z=0

dx −
∫

Ω

‖∇ε‖2dΩ = −

∫
Ω

‖∇ε‖2dxdz.

Hence we have
∫

Ω
‖∇ε‖2dΩ = 0. It is implied that ε is a constan-

t. Furthermore, we have ε = 0 since ε(x, 0) = 0. This complete
the proof of Theorem 2.1.
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δ 0 2% 4% 6% 8% 10% 12% 14% 16% 18%
Iteration 280 281 277 279 296 323 270 291 300 293

Jmin [10−7] 9.99 9.96 9.86 9.94 9.92 9.91 9.79 9.93 9.89 9.99
J2min [10−3] 2.3 2.3 2.6 1.5 1.9 3 1.3 1.3 5.2 3.7
J3min [10−7] 8.62 8.56 8.39 8.66 7.81 7.93 8.36 8.34 6.22 6.82

Table 1: The iterations required to satisfy the convergence criterion ε < 10−6 for different δ.
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Mathématiques appliquées pour la maı̂trise sous la direction de P.G.Ciarlet
et J.L.Lions, Masson, Paris, 1983.

[23] G. Zimmer, A new algorithm for approximating the state of nonlinear sys-
tems, International journal of systems science vol.24, pp.777-788, 1993.

[24] M. Tucsnak, G. Weiss, Observation and control for operator semigroups,
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