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Abstract

Atomic registers are certainly the most basic objects of computing science. Their implementation on
top of ann-process asynchronous message-passing system has received a lot of attention. It has been
shown thatt < n/2 (wheret is the maximal number of processes that may crash) is a necessary and
sufficient requirement to build an atomic register on top of acrash-prone asynchronous message-passing
system. Considering such a context, this paper presents an algorithm which implements a single-writer
multi-reader atomic register with four message types only,and where no message needs to carry control
information in addition to its type. Hence, two bits are sufficient to capture all the control information
carried by all the implementation messages. Moreover, the messages of two types need to carry a data
value while the messages of the two other types carry no valueat all. As far as we know, this algorithm
is the first with such an optimality property on the size of control information carried by messages. It is
also particularly efficient from a time complexity point of view.

Keywords: Asynchronous message-passing system, Atomic read-writeregister, Message type, Pro-
cess crash failure, Sequence number, Upper bound.



1 Introduction

Since Sumer time [9], and –much later– Turing’s machine tape [20], read/writeobjects are certainly the most
basic communication objects. Such an object, usually called aregister, provides its users (processes) with a
write operation which defines the new value of the register, and a read operation which returns the value of
the register. When considering sequential computing, registers are universal in the sense that they allow to
solve any problem that can be solved [20].

Register in message-passing systemsIn a message-passing system, the computing entities communicate
only by sending and receiving messages transmitted through a communication network. Hence, in such a
system, a register is not a communication object given for free, but constitutes a communication abstraction
which must be built with the help of the underlying communication network and the local memories of the
processes.

Several types of registers can be defined according to which processes are allowed to read or write the
register, and the quality (semantics) of the value returned by each read operation. We consider here registers
which are single-writer multi-reader (SWMR), and atomic. Atomicity means that (a) each read or write
operation appears as if it had been executed instantaneously at a single point of the time line, between its
start event and its end event, (b) no two operations appear at the same point of the time line, and (c) a
read returns the value written by the closest preceding write operation (orthe initial value of the register if
there is no preceding write) [10]. Algorithms building multi-writer multi-reader (MWMR) atomic registers
from single-writer single-reader (SWSR) registers with a weaker semantics (safe or regular registers) have
been introduced by L. Lamport in [10, 11] (such algorithms are described in several papers and textbooks,
e.g., [4, 12, 18, 21]).

Many distributed algorithms have been proposed, which build a register on top of a message-passing
system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models are the
process crash failure model, or the Byzantine process failure model (see, the textbooks [4, 12, 16, 17]). The
most famous of these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [3]. This algorithm,
which is usually called ABD according to the names of its authors, considers an n-process asynchronous
system in which up tot < n/2 processes may crash (it is also shown in [3] thatt < n/2 is an upper bound
of the number of process crashes which can be tolerated). This simple andelegant algorithm, relies on (a)
quorums [22], and (b) a simple broadcast/reply communication pattern. ABD uses this pattern once in a
write operation, and twice in a read operation implementing an SWMR register (informal presentations of
ABD can be found in [2, 19]).

Content of the paper ABD and its successors (e.g., [1, 15, 22]) associate an increasing sequence number
with each value that is written. This allows to easily identify each written value. Combined with the use
of majority quorums, this value identification allows each read invocation to return a value that satisfies the
atomicity property (intuitively, a read always returns the “last” written value).

Hence, from a communication point of view, in addition to the number of messages needed to implement
a read or a write operation, important issues are the number of different message types, and the size of the
control information that each of them has to carry. As sequence numbersincrease according to the number
of write invocations, this number is not bounded, and the size of a message that carries a sequence number
can become arbitrarily large.

A way to overcome this drawback consists in finding a modulo-based implementation of sequence num-
bers [8], which can be used to implement read/write registers. Consideringthis approach, one of the algo-
rithms presented in [3] uses messages that carry control information whose size is upper bounded byO(n5)
bits (wheren is the total number of processes). The algorithm presented in [1] reduced this size toO(n3)
bits. Hence the natural question: “How many bits of control information, a message has to carry, when one
wants to implement an atomic read/write register?”.

This is the question that gave rise to this paper, which shows that it is possibleto implement an SWMR
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atomic register with four types of message carrying no control information in addition to their type. Hence,
the result: messages carrying only two bits of control information are sufficient to implement an SWMR
atomic register in the presence of asynchrony and up tot < n/2 unexpected process crashes. Another
important property of the proposed algorithm lies in its time complexity, namely, in a failure-free context
and assuming a bound∆ on message transfer delays, a write operation requires at most2∆ time units, and
a read operation requires at most4∆ time units.

Roadmap The paper is made up of 5 sections. The computing model and the notion of an atomic register
are presented in Section 2. The algorithm building an SWMR atomic register, where messages carry only two
bits of control information (their type), in an asynchronous message-passing system prone to any minority
of process crashes is presented in Section 3. Its proof appears in Section 4. Finally, Section 5 concludes the
paper.

2 Computation Model and Atomic Read/Write Register
2.1 Computation model

Processes The computing model is composed of a set ofn sequential processes denotedp1, ..., pn. Each
process is asynchronous which means that it proceeds at its own speed, which can be arbitrary and remains
always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctlyits local algorithm until it possibly
crashes. The model parametert denotes the maximal number of processes that may crash in a run. A process
that crashes in a run is said to befaulty. Otherwise, it iscorrector non-faulty. Given a run,C denotes the set
of correct processes.

Communication Each pair of processes communicate by sending and receiving messagesthrough two uni-
directional channels, one in each direction. Hence, the communication network is a complete network: any
processpi can directly send a message to any processpj .A processpi invokes the operation “send TYPE(m)
to pj” to send topj the messagem, whose type isTYPE. The operation “receive TYPE() from pj” allows pi
to receive frompj a message whose type isTYPE.

Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily first-in/first-out,
and asynchronous (while the transit time of each message is finite, there is noupper bound on message transit
times).

Let us notice that, due to process and message asynchrony, no process can know if an other process
crashed or is only very slow.

Notation In the following, the previous computation model is denotedCAMPn,t[∅] (unconstrainedCrash
AsynchronousMessage-Passing).

2.2 Atomic read/write register

Definition A concurrent objectis an object that can be accessed by several processes (possibly simulta-
neously). An SWMRatomicregister (sayREG) is a concurrent object which provides exactly one process
(called the writer) with an operation denotedREG .write(), and all processes with an operation denoted
REG .read(). When the writer invokesREG .write(v) it definesv as being the new value ofREG . An
SWMR atomic register is defined by the following set of properties [10].

• Liveness. An invocation of an operation by a correct process terminates.

• Consistency (safety). All the operations invoked by the processes, except possibly –for each faulty
process– the last operation it invoked, appear as if they have been executed sequentially and this
sequence of operations is such that:
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– each read returns the value written by the closest write that precedes it (or the initial value of
REG if there is no preceding write),

– if an operationop1 terminates before an operationop2 starts, thenop1 appears beforeop2 in the
sequence.

This set of properties states that, from an external observer point of view, the read/write register appears
as if it is accessed sequentially by the processes, and this sequence (a)respects the real time access order,
and (ii) belongs to the sequential specification of a register. More formal definitions can be found in [10, 14].
(When considering any object defined by a sequential specification, atomicity is also called linearizability [7],
and it is then said that the object islinearizable.)

Necessary and sufficient condition The constraint(t < n/2) is a necessary and sufficient condition to
implement an atomic read/write register inCAMPn,t[∅] [3]. Hence, the corresponding constrained model
is denotedCAMPn,t[t < n/2].

3 An Algorithm with Two-Bit Messages

A distributed algorithm implementing an SWMR atomic register inCAMPn,t[t < n/2] is described in Fig-
ure 1. As already indicated, this algorithm uses only four types of messages, denotedWRITE0(), WRITE1(),
READ(), andPROCEED(). The messagesWRITE0() andWRITE1() carry a data value, while the messages
READ() andPROCEED() carry only their type.

3.1 Notation and underlying principles

Notation pw denotes the writer process,vx denotes thexth value written bypw, andv0 is the initial value
of the registerREG that is built.

Underlying principles The principle that underlies the algorithm is the following. First, each process (a)
manages a local copy of the sequential history made up of the values written by the writer, and (b) forwards,
once to each process, each new value it learns. Then, in order that allprocesses obtain the same sequential
history, and be able to read up to date values, each processpi follows rules to forward a value to another
processpj , and manages accordingly appropriate local variables, which store sequence numbers.

• Rule R1. When, while it knows the first(x − 1) written values, and only them,pi receives thexth

written value, it forwards it to all the processes that, from its point of view,know the first(x − 1)
written values and no more. In this way, these processes will learn thexth written value (if not yet
done when they receive the corresponding message forwarded bypi).

• Rule R2. The second forwarding rule is whenpi receives thexth written value from a processpj ,
while it knows the firsty written values, wherey > x. In this case,pi sends the(x + 1)th written
value topj , and only this value, in orderpj increases its local sequential history with its next value (if
not yet done when it receives the message frompi).

• Rule R3. To ensure a correct management of the local histories, and allowa process to help other pro-
cesses in the construction of their local histories (Rules R1 and R2), eachprocess manages a sequence
number-based local view of the progress of each other process (as far as the construction of their local
history is concerned).

As we are about to see, translating these rules into an algorithm, provides uswith a distributed algorithm
where, while each process locally manages sequence numbers, the only control information carried by each
message is its type, the number of different message types being very small (namely4, as already indicated)1.

1Such a constant number of message types is not possible from a “modulo f(n)” implementation of sequence numbers carried
by messages. This is because, from a control information point of view, each of the values in{0, 1, . . . , f(n)− 1} defines a distinct
message type.
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3.2 Local data structures
Each processpi manages the following local data structures.

• historyi is the prefix sequence of the values already written, as known bypi; historyi is accessed
with an array like-notation, and we havehistoryi[0] = v0. As there is a single writerpw, historyw
represents the history of the values written so far.

• w_synci[1..n] is an array of sequence numbers;w_synci[j] = α means that, topi’s knowledge,pj
knows the prefix ofhistoryw until historyw[α]. Hence,w_synci[i] is the sequence number of the
most recent value known bypi, andw_syncw[w] is the sequence number of the last value written (by
pw).

• r_synci[1..n] is an array of sequence numbers;r_synci[j] = α means that, topi’s knowledge,pj
answeredα of its read requests.

• wsn, rsn and sn are auxiliary local variables, the scope of each being restricted to the algorithm
implementing an operation, or the processing of a message, in which it occurs.

3.3 Channel behavior with respect to the message typesWRITE0() and WRITE1()
As far as the messagesWRITE0() and WRITE1() are concerned, the notationWRITE(0, v) is used for
WRITE0(v), and similarly,WRITE(1, v) is used forWRITE1(v).

When considering the two uni-directional channels connectingpi and pj , the algorithm, as we will
see, requires (a)pi to send topj the sequence of messagesWRITE(1, v1), WRITE0(0, v2), WRITE(1, v3),
..., WRITE(x mod2, vx), etc., and (b)pj to send topi the very same sequence of messagesWRITE(1, v1),
WRITE0(0, v2), WRITE(1, v3), ..., WRITE(x mod2, vx), etc.

Moreover, the algorithm forces processpi to send topj the messageWRITE(x mod2, vx), only when
it has received frompj the messageWRITE((x − 1) mod2, vx−1). From the point of view of the write
messages, these communication rules actually implement thealternating bitprotocol [6, 13], which ensures
the following properties:

• Property P1: each of the two uni-directional channels connectingpi andpj allows at most one message
WRITE(−,−) to bypass another messageWRITE(−,−), which, thanks to the single control bit carried
by these messages allows the destination process (e.g.,pi) to process the messagesWRITE(−,−) it
receives from (e.g.,pj) in their sending order.

• Property P2:pi andpj are synchronized in such a way that0 ≤ |w_synci[j] − w_syncj [i]| ≤ 1.
This is the translation of Property P1 in terms of the pair of local synchronization-related variables
〈w_synci[j], w_syncj [i]〉.

Let us insist on the fact that this “alternating bit” message exchange patternis only on the write messages.
It imposes no constraint on the messages of the typesREAD() andPROCEED() exchanged betweenpi and
pj , which can come in between, at any place in the sequence of the write messages sent by a processpi to a
processpj .

3.4 The algorithm implementing thewrite() operation
This algorithm is described at lines 1-4, executed by the writerpw, and line 11-18, executed by any process.

Invocation of the operationwrite() Whenpw invokeswrite(vx) (we have thenw_syncw[w] = x − 1),
it increasesw_syncw[w] and writesvx at the tail of its local history variable (line 1). This value is locally
identified by its sequence numberx = wsn.

Then pw sends the messageWRITE(b, vx), whereb = (wsn mod2), to each processpj that (from
its point of view) knows all the previous write invocations, and only to these processes. According to the
definition ofw_syncw[1..n], those are the processespj such thatw_syncw[j] = wsn−1 = w_syncw[w]−1
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(line 2). Let us notice that this ensures the requirementpi needs to satisfy when it sends a message in order
to benefit from the properties provided by the alternating bit communication pattern.

Finally,pw waits until it knows that a quorum of at least(n−t) processes knows the valuevx is it writing.
The fact that a processpj knows thisxth value is captured by the predicatew_syncw[j] = wsn(= x) (line 3).

local variables initialization:
historyi[0]← v0; w_synci[1..n]← [0, . . . , 0]; r_synci[1..n]← [0, . . . , 0].

operationwrite(v) is % invoked bypi = pw (the writer) %
(1) wsn← w_syncw[w] + 1; w_syncw[w]← wsn; historyw[wsn]← v; b← wsn mod2;
(2) for each j such thatw_syncw[j] = wsn− 1 do send WRITE(b, v) to pj end for;
(3) wait

(

z ≥ (n− t) wherez is the number of processespj such thatw_syncw[j] = wsn
)

;
(4) return()
end operation.

operation read() is % the writer can directly returnshistoryi[w_synchi[i]] %
(5) rsn← r_synci[i] + 1; r_synci[i]← rsn;
(6) for each j ∈ {1, ...n} \ {i} do send READ() to pj end for;
(7) wait

(

z ≥ (n− t) wherez is the number of processespj such thatr_synci[j] = rsn
)

;
(8) letsn = w_synci[i];
(9) wait

(

z ≥ (n− t) wherez is the number of processespj such thatw_synci[j] ≥ sn
)

;
(10) return(historyi[sn])
end operation.
%————————————————————————————————————————————-

when WRITE(b, v) is received frompj do
(11) wait

(

b = (w_synci[j] + 1) mod2
)

;
(12) wsn← w_synci[j] + 1;
(13) if (wsn = w_synci[i] + 1)
(14) thenw_synci[i]← wsn; historyi[wsn]← v; b← wsn mod2;
(15) for each ℓ such thatw_synci[ℓ] = wsn− 1 do send WRITE(b, v) to pℓ end for
(16) else if(wsn < w_synci[i]) then b← (wsn+ 1) mod2; send WRITE(b, historyi[wsn+ 1]) to pj end if
(17) end if;
(18)w_synci[j]← wsn.

when READ() is received frompj do
(19) sn← w_synci[i];
(20) wait (w_synci[j] ≥ sn);
(21) send PROCEED() to pj .

when PROCEED() is received frompj do
(22) r_synci[j]← r_synci[j] + 1.

Figure 1: Single-writer multi-reader atomic register inCAMPn,t[t < n/2] with counter-free messages

Reception of a messageWRITE(b, v) from a processpj Whenpi receives a messageWRITE(b, v) from a
processpj , it first waits until the waiting predicate of line 11 is satisfied. This waiting statement is nothing
else than the the reception part of the alternating bit algorithm, which guarantees that the messagesWRITE()
from pj are processed in their sending order. When, this waiting predicate is satisfied, all messages sent bypj
beforeWRITE(b, v) have been received and processed bypi, and consequently the messageWRITE(b, v) is the
swnth message sent bypj (FIFO order), wherewsn = w_synci[j]+1, which means thathistoryj [wsn] = v
(line 12).

When this occurs,pi learns thatv is the next value to be added to its local history if additionally we have
w_synci[i] = wsn − 1. In this case (predicate of line 13),pi (a) addsv at the tail of its history (line 14),
and (b) forwards the messageWRITE(b, v) to the processes that, from its local point of view, know the first
(wsn− 1) written values and no more (line 15, forwarding Rule R1).
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If wsn < w_synci[i], from pi’s local point of view, the history known bypj is a strict prefix of its
own history. Consequently,pi sends topj the messageWRITE(b′, v′), whereb′ = ((wsn + 1) mod2) and
v′ = historyi[wsn + 1] (line 16 applies the forwarding Rule R2 in order to allowpj to catch up its lag, if
not yet done when it will receive the messageWRITE(b′, v′) sent bypi). Finally, aspj sends topi a single
message per write operation, whatever the value ofwsn, pi updatesw_synci[j] (line 18).

Remark As far as the written values are concerned, the algorithm implementing the operationwrite() can
be seen as a fault-tolerant “synchronizer” (in the spirit of [5]), whichensures the mutual consistency of the
local histories between any two neighbors with the help of an alternating bit algorithm executed by each pair
of neighbors [6, 13].

3.5 The algorithm implementing theread() operation
This algorithm is described at lines 5-10 executed by a readerpi, and lines 19-22 executed by any process.

Invocation of the operation read() The invoking processpi first increments its local read request sequence
numberr_synci[i] and broadcasts its read request in a messageREAD(), which carries neither additional
control information, nor a data value (lines 5-6). Ifpi crashes during this broadcast, the messageREAD() is
received by an arbitrary subset of processes (possibly empty). Otherwise,pi waits until it knows that at least
(n− t) processes received its current request (line 7).

When this occurs,pi considers the sequence number of the last value in its history, namelysn =
w_synci[i] (line 8). This is the value it will return, namelyhistoryi[sn] (line 10). But in order to en-
sure atomicity, before returninghistoryi[sn], pi waits until at least(n − t) processes know this value (and
may be more). Frompi’s point of view, the corresponding waiting predicate translates in “at least (n − t)
processespj are such thatw_synci[j] ≥ sn”.

Reception of a messageREAD() sent by a processpj When a processpi receives a messageREAD()
from a processpj (hence,pj issued a read operation), it considers the most recent written value it knows
(the sequence number of this value issn = w_synci[i], line 19), and waits until it knows thatpj knows this
value, which is locally captured by the sequence number-based predicatew_synci[j] ≥ sn (line 20). When
this occurs,pi sends the messagePROCEED() to pj which is allowed to progress as far aspi is concerned.

The control messagesREAD() andPROCEED() (whose sending is controlled by a predicate) implement a
synchronization which –as far aspi is concerned– forces the reader processpj to wait until it knows a “fresh”
enough value, where “freshness” is locally defined bypi as the last value it was knowing when it received
the messageREAD() from pj (predicate of line 20).

Reception of a messagePROCEED() sent by a processpj Whenpi receives a messagePROCEED() from
a processpj , it learns that its local history is as fresh aspj ’s history whenpj received its messageREAD().
Locally, this is captured by the incrementation ofr_synci[j], namelypj answered all the read requests ofpi
until the(r_synci[j])th one.

4 Proof of the Algorithm

Let us remind thatC is the set of correct processes,pw the writer, andvx thexth value written bypw. Due to
page limitation, the missing proofs are given in an Appendix.

Lemma 1 ∀i, j: w_synci[j] increases by steps equal to1.

Lemma 2 ∀i, j : w_synci[i] ≥ w_syncj [i].

Lemma 3 ∀i: w_synci[i] = max{w_synci[j]}1≤j≤n.

Lemma 4 ∀i: history[0..w_synci[i]] is a prefix ofhistory[0..w_syncw[w]].
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Lemma 5 ∀i ∈ C, ∀j : we have:
R1: (w_synci[i] = w_synci[j] = x) ⇒ pi sentx messagesWRITE(−,−) to pj ,
R2: (w_synci[i] > w_synci[j] = x) ⇒ pi sentx+ 1 messagesWRITE(−,−) to pj .

Lemma 6 ∀i, j ∈ C, if w_synci[i] = x, there is a finite time after whichw_synci[j] ≥ x.

Proof Let us first notice that, due to Lemma 7, allWRITE(−,−) messages received by correct processes
will eventually satisfy the predicate line 11 and will be processed.

The proof is by contradiction. Let us assume that there exists some correct processpj such thatw_synci[j]
stops increasing forever at some valuey < x. Let us first notice that there is no messageWRITE(−,−) in
transit frompj to pi otherwise its reception bypi will entail the incrementation ofw_synci[j] from y to
y + 1, contradicting the assumption. So, let us consider the last messageWRITE(−,−) sent bypj to pi and
processed bypi. There are three cases to consider when this message is received bypi at line 11. (Let us
remind that, due to to Lemma 3,w_synci[i] ≥ w_synci[j].)

• Case 1.w_synci[i] = w_synci[j] = y−1 < x−1. The variablesw_synci[i] andw_synci[j] are both
incremented at lines 14 and 18 respectively to the valuey < x. As by assumption,w_synci[i] will
attain the valuex, it will be necessarily incremented in the future to reachx. The next timew_synci[i]
is incremented, a messageWRITE(−,−) is sent bypi to pj (at line 15). Due to Lemma 5,pi senty+1
messagesWRITE(−,−) to pj and eventuallyw_syncj [i] will be equal toy+1. When the last of these
messages arrives and is processed bypj , there are two cases.

– Casew_syncj [j] = y (aspi senty + 1 messagesWRITE(−,−) to pj , w_syncj [j] cannot be
smaller thany). In this case,w_syncj [j] = y is increased, and a messageWRITE(−,−) is
necessarily sent bypj to pi (line 15). This contradicts the assumption that the message we
considered was the last message sent bypj to pi.

– Casew_syncj [j] ≥ y + 1. In this case, aspi sent previouslyy messages topj , we necessarily
havew_syncj [i] = y. In this case, the predicate of line 13 is false, while the one of line 16 is
satisfied. Hence,pj sends a messageWRITE(−,−) to pi. A contradiction.

• Case 2.w_synci[i] = w_synci[j] + 1 = y < x. In this case, whenpi receives the last message
WRITE(−,−) frompj , the variablew_synci[j] is incremented at line 18 to the valuey < x. Moreover,
by the contradiction assumption, no more messageWRITE(−,−) is sent bypj to pi.

Hence, we have noww_synci[i] = w_synci[j] = y < x, and the variablew_synci[i] will be incre-
mented in the future to reachx. A reasoning similar to the previous one shows thatpj will send a
messageWRITE(−,−) to pi in the future, which contradicts the initial assumption.

• Case 3.w_synci[i] > w_synci[j] + 1. The reception bypi of the last messageWRITE(−,−) from
pj entails the incrementation ofw_synci[j] to its next value. However asw_synci[i] > w_synci[j]
remains true, a messageWRITE(−,−) is sent bypi to pj at line 16. Similarly to the previous cases, the
reception of this message bypj will direct it to send another messageWRITE(−,−) topi, contradicting
the initial assumption.

Hence,w_synci[j] cannot stop increasing before reachingx, which proves the lemma. ✷Lemma 6

Lemma 7 No correct process blocks forever at line11.

Lemma 8 If the writer does not crash during a write operation, it terminates it.

Proof Let us first notice that, due to Lemma 7, the writer cannot block forever at line 11.
When it invokes a new write operation, the writerpw first increases the write sequence numberw_syncw[w]

to its next valuewsn (line 1). If pw does not crash, it follows from Lemma 6 that we eventually have
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w_synci[i] ≥ w_syncw[i] = wsn at each correct processpi. Consequently, the writer cannot block forever
at line 3 and the lemma follows. ✷Lemma 8

Lemma 9 If a process does not crash during a read operation, it terminates it.

Proof Let us first notice that, due to Lemma 7, the reader cannot block forever at line 11.
Each time a processpi executes a read operation it broadcasts a messageREAD() to all the other processes

(line 6). Let us remind that its local variabler_synci[i] counts the number of messagesREAD() it has
broadcast, whiler_synci[j] counts the number of messagesPROCEED() it has received frompj (line 22) in
response to itsREAD messagesREAD().

When the predicate of line 7 becomes true at the readerpi, there are at least(n − t) processes that
answered ther_synci[i] messagesREAD() it sent (note thatr_synci[i] is incremented line 5 andpi does not
send messagesREAD() to itself). We claim that each messageREAD() sent bypi to a correct processpj is
eventually acknowledged by a a messagePROCEED() send bypj to pi. It follows from this claim and line 22
executed bypi when it receives a messagePROCEED(), that the predicate of line 7 is eventually satisfied, and
consequently,pi cannot block forever at line 7.

Proof of the claim. Let us consider a correct processpj when it receives a messageREAD() from pi.
It savesw_synci[i] in sn and waits untilw_syncj [i] ≥ sn (lines 19-20). Due to Lemma 6, the predicate
w_syncj [i] ≥ sn eventually becomes true atpj . When this occurs,pj sends the messagePROCEED() to pi
(line 21), which proves the claim.

Let us now consider the wait statement at line 9, wheresn is the value ofw_synci[i] when the wait
statement of line 7 terminates. Letpj be a correct process. Due to Lemma 6 the predicatew_synci[j] ≥ sn
eventually holds. As this is true for any correct processpj , pi eventually exits the wait statement, which
concludes the proof of the lemma. ✷Lemma 9

Lemma 10 The register that is built is atomic.

Proof Let read[i, x] be a read operation issued by a processpi which returns the value with sequence number
x (i.e.,historyi[x]), andwrite[y] be the write operation which writes the value with sequence numbery (i.e.,
historyw[y]). The proof of the lemma is the consequence of the three following claims.

• Claim 1. If read[i, x] terminates beforewrite[y] starts, thenx < y.

• Claim 2. Ifwrite[x] terminates beforeread[i, y] starts, thenx ≤ y.

• Claim 3. If read[i, x] terminates beforeread[j, y] starts, thenx ≤ y.

Claim 1 states that no process can read from the future. Claim 2 states that no process can read overwritten
values. Claim 3 states that there is no new/old read inversion [4, 18].

Proof of Claim 1.
Due to Lemma 4, the value returned byread[i, x] is historyi[x] = historyw[x] = vx. As each write gener-
ate a greater sequence number, andpw has not yet invokedwrite(vy), we necessarily havey > x.

Proof of Claim 2.
It follows from lines 1-3 that whenwrite[x] terminates, there is a quorumQw of at least(n − t) processes
pi such thatw_syncw[j] = x. On another side,read[i, y] obtains messagesPROCEED() from a quorumQr

at least(n − t) processes (lines 22 and 7). As|Qw| ≥ n − t, |Qr| ≥ n − t, andn − t > n/2, we have
Qw ∩ Qr 6= ∅. Let pk be a process ofQw ∩ Qr. As w_syncw[k] = x, andw_synck[k] ≥ w_syncw[k]
(Lemma 2), andwrite[x] is the last write beforeread[i, y], we havew_synck[k] = x whenread[i, y] starts.
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Whenpk received the messageREAD() frompi, we hadw_synck[k] = x, andpk waited untilw_synck[i] ≥
x (line 20) before sending the messagePROCEED() that allowedpi to progress in its waiting at line 7. As
w_synci[i] ≥ w_synck[i] (Lemma 2), it follows that we havew_synci[i] ≥ x, whenpi computes at line 8
the sequence numbersn of the value it will return at line 10). Hence, the indexy = sn computed bypi at
line 8 is such thaty = sn = w_synci[i] ≥ x.

Proof of Claim 3.
On one side, whenread[i, x] stops waiting at line 9, there is a quorumQri of at least(n − t) processespk
such thatw_synci[k] ≥ x (predicate of line 9 atpi). Due to Lemma 2, we have thenw_synck[k] ≥ x for
any processpk of Qri, whenread[i, x] terminates.

On the other side, whenread[j, y] stops waiting at line 7 (which defines the value it returns, namely,
historyj [y]), there is a quorumQrj of at least(n− t) processespℓ such that (due to the waiting predicate of
line 20)w_syncℓ[j] ≥ sn(ℓ), wheresn(ℓ) is the value ofw_syncℓ[ℓ] whenpℓ receives the messageREAD()
from pj .

As each ofQri andQrj contains at least(n− t) processes, and there is a majority of correct processes,
there is at least one correct process in their intersection, saypm. It follows that we havew_syncm[m] ≥ x
whenread[i, x] terminates, andw_syncm[j] ≥ sn(m), wheresn(m) is the value ofw_syncm[m], when
pm received the messageREAD() from pj . As w_syncm[m] never decreases, andpm receives the message
READ() from pj after read[i, x] terminated, we necessarily havesn(m) ≥ x. Hence,w_syncm[j] ≥ x,
whenpm sendsPROCEED() to pj . As (Lemma 2)w_syncj [j] ≥ w_syncm[j], it follows that the indexsn
computed bypi at line 8 is such thatsn = y ≥ x. ✷Lemma 10

Theorem 1 The algorithm described in Figure1 implements anSWMRatomic register in the system model
CAMPn,t[t < n/2].

Proof The theorem follows from Lemma 8 and Lemma 9 (Termination properties), and Lemma 10 (Atom-
icity property). ✷Theorem 1

Theorem 2 The algorithm described in Figure1 uses only four types of messages, and those carry no
additional control information. Moreover, a read operation requiresO(n) messages, and a write operation
requiresO(n2) messages.

Proof The message content part of the theorem is trivial. A read generatesn messagesREAD(), and each
of generates a messagePROCEED(). A write operation generates(n − 1) messagesWRITE(b,−) from the
writer to the other processes, and then each process forward once thismessage to each process.✷Theorem 2

5 Concluding Remarks

The aim and the paper
As indicated in the introduction, our aim was to investigate the following question:“How many bits of

control information messages have to carry to implement an atomic registerin CAMPn,t[t < n/2]?”.
As far as we know, all the previous works addressing this issue have reduced the size of control infor-

mation with the use of a “modulon” implementation technique. Table 1 presents three algorithms plus ours.
These three algorithms are the unbounded version of the ABD algorithm [3], its bounded version, and the
bounded algorithm due to H. Attiya [1]. They all associate a sequence number with each written value, but
differently from ours, the last two require each message to carry a “modulo representative” of a sequence
number.
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For each algorithm, the table considers the number of messages it uses to implement the write operation
(line 1), the read operation (line 2), the number of control bits carried by messages (line 3), the size of
local memory used by each process (line 4), the time complexity of the write operation (line 5), and the time
complexity of the read operation (line 6), both in a failure-free context. Fortime complexity it is assumed that
message transfer delays are bounded by∆, and local computations are instantaneous. The values appearing
in the table for the bounded version of ABD and Attiya’s algorithm are from [1, 19]. The reader can see that
the proposed algorithm is particularly efficient from a time complexity point of view, namely, it is as good
as the unbounded version of ABD.

line What is ABD95 [3] ABD95 [3] H. Attiya’s Proposed
number measured unbounded seq. nb bounded seq. nb algorithm [1] algorithm

1 #msgs: write O(n) O(n2) O(n) O(n2)
2 #msgs: read O(n) O(n2) O(n) O(n)
3 msg size (bits) unbounded O(n5) O(n3) 2
4 local memory unbounded O(n6) O(n5) unbounded
5 Time: write 2∆ 12∆ 14∆ 2∆
6 Time: read 4∆ 12∆ 18∆ 4∆

Table 1: A few algorithms implementing an SWMR atomic register inCAMPn,t[t < n/2]

The result presented in the paper As we have seen, our algorithm also uses sequence numbers, but those
remain local. Only four types of messages are used, which means that eachimplementation message carries
only two bits of control information. Moreover, only two message types carry a data value, the other two
carry no data at all. Hence, this paper answers a long lasting question: “it is possible to implement an atomic
register, despite asynchrony and crashes of a minority of processes, with messages whose control part is
constant?”.

The unbounded feature of the proposed algorithm (when looking at the local memory size) is due to the
fact that the algorithm introduces a fault-tolerant version of a “synchronizer”2 suited to the implementation
of an atomic register, which disseminates new values, each traveling betweeneach pair of processes in both
directions, in such a way that a strong synchronization is ensured between any pair of processes, indepen-
dently from the other processes, (namely,∀i, j : 0 ≤ |w_synci[j] − w_syncj [i]| ≤ 1). This fault-tolerant
synchronization is strong enough to allow sequence numbers to be eliminated from messages. Unfortu-
nately, it does not seem appropriate to allow a local modulo-based representation of sequence numbers at
each process.

In addition to its theoretical interest, and thanks to its time complexity, the proposedalgorithm is also
interesting from a practical point of view. Due to theO(n) message cost of its read operation, it can benefit
to read-dominated applications and, more generally, to any setting where the communication cost (time and
message size) is the critical parameter3.

A problem that remains open According to the previous discussion, a problem that still remains open is
the following. Is it possible to design an implementation where (a) a constant number of bits is sufficient
to encode the control information carried by messages, and (b) the sequence numbers have a local modulo-
based implementation? We are inclined to think that this is not possible.

2As introduced in [5], and presented in textbooks such as [4, 12, 17].
3In addition to the way they use sequence numbers, an interesting design difference between our algorithm and ABD-like

algorithms is the following. When a process receives a messageREAD(), it has two possibilities. Either send by return the last
written value it knows, as done in ABD-like algorithms. Or wait until it knows that the sender has a value as up to date as it own
value, and only then send it a signal, as done in our algorithm with the message PROCEED().
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A Proof of the Lemmas 1-5 and Lemma 7

Lemma 1 ∀i, j: w_synci[j] increases by steps equal to1.

As this lemma is used in all other lemmas, it will not be explicitly referenced.
Proof Let us first observe that, due to the sending predicates of line 2 (for the writer), and lines 15 and 16
for any processpi, no process sends a messageWRITE(−,−) to itself.

As far asw_synci[i] is concerned, and according to the previous observation,we have the following. The
writer increasesw_syncw[w] only at line 1. Any reader processpi increasesw_synci[i] at line 14, and due
to line 12 and the predicate of line 13, the increment is1. Let us now consider the case ofw_synci[j] when
i 6= j. An incrementation of such a local variable occurs only at line 18, where (due to line 12) we have
wsn = w_synci[j] + 1, and the lemma follows. ✷Lemma 1

Lemma 2 ∀i, j : w_synci[i] ≥ w_syncj [i].

Proof Let us first observe, that the predicate is initially true. Then, a local variablew_syncj [i] is increased
by 1, whenpj receives a messageWRITE(−,−) from pi (lines 12 and 18). Processpi sent this message
at line 2 or 16 ifi = w, and at lines 15 or 16 for anyi 6= w. If the sending of the messageWRITE(b,−)
by pi occurs at line 2 or 15,pi increasedw_synci[i] at the previous line. If the sending occurs at line 16,
w_synci[i] was increased during a previous message reception. ✷Lemma 2

Lemma 3 ∀i: w_synci[i] = max{w_synci[j]}1≤j≤n.

Proof The lemma is trivially true for the writer processpw. Let us consider any other processpi, different
from pw. The proof is by induction on the number of messagesWRITE(−,−) received bypi. Let P (i,m)
be the predicatew_synci[i] = max{w_synci[j]}1≤j≤n, wherem is the number of messagesWRITE(−,−)
processed bypi. The predicateP (i, 0) is true. Let us assumeP (i,m′) is true for anym′ such that0 ≤ m′ ≤
m. Let pj be the process that sends topi the(m+1)th messageWRITE(b,−), and letw_synci[i] = x when
pi starts processing this message. There are four cases to consider.

• Case 1. When the messageWRITE(−,−) from pj is processed bypi, we havew_synci[i] + 1 =
w_synci[j] + 1. As the predicate of line 13 is satisfied when this message is processed,pi updates
w_synci[i] to the value(x + 1) at line 14. Moreover, it also updatesw_synci[j] to the same value
(x+1) at line 18. AsP (i,m) is true, it follows thatP (i,m+1) is true afterpi processed the message.

• Case 2. When the messageWRITE(−,−) from pj is processed bypi, we havew_synci[j] + 1 <
w_synci[i] = x. In this case,pi does not modifyw_synci[i]. It only updatesw_synci[j] to its next
value (line 18), which is smaller thanx. AsP (i,m) is true, it follows thatP (i,m+ 1) is true afterpi
processed the message.

• Case 3. When the messageWRITE(−,−) from pj is processed bypi, we havew_synci[j] + 1 =
w_synci[i] = x. In this case, both the predicates of lines 13 and 16 are false. It follows that pi
executes only the update of line 18, and we have thenw_synci[j] = w_synci[i] = x. As P (i,m) is
true,P (i,m+ 1) is true afterpi processed the message.

• Case 4. When the messageWRITE(−,−) from pj is processed bypi, we havew_synci[j] + 1 >
w_synci[i] + 1 = x + 1. In this case, due to (a)w_synci[j] ≤ w_synci[i] (induction assumption
satisfied when the messageWRITE(−,−) arrives atpi from pj), and (b) the fact thatw_synci[j]
increases by step1 (Lemma 1), we necessarily havew_synci[i] + 1 ≥ w_synci[j] + 1, when the
message is received. Hence, we obtainw_synci[j] + 1 > w_synci[i] + 1 ≥ w_synci[j] + 1, a
contradiction. It follows that this case cannot occur.
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✷Lemma 3

Lemma 4 ∀i: history[0..w_synci[i]] is a prefix ofhistory[0..w_syncw[w]].

Proof The proof of this lemma rests on the properties P1 and P2 provided by the underlying “alternating
bit” communication pattern imposed on the messagesWRITE(−,−) exchanged by any pair of processes
pi andpj . If follows from these properties (obtained from the use of parity bits carried by every message
WRITE(−,−), and the associated wait statement of line 11) that,pi sends topj the messageWRITE(−, vx),
only after it knows thatpj receivedWRITE(−, vx−1). Moreover, it follows from the management of the local
sequence numbersw_synci[1..n], that no process sends twice the same messageWRITE(−, vx). Finally, due
to the predicate of line 11, two consecutive messagesWRITE(0,−) andWRITE(1,−) sent by a processpi to
a processpj are processed in their sending order.

The lemma then follows from these properties, and the fact that, when at lines13-14 a processpi assigns
a valuev tohistoryi[x], this value was carried byxth messageWRITE(−, v) sent by some processpj , and is
the value ofhistoryj [x]. It follows that no two processes have different histories, from which we conclude
thathistoryi[x] = historyw[x]. ✷Lemma 4

Lemma 5 ∀i ∈ C, ∀j : we have:
R1: (w_synci[i] = w_synci[j] = x) ⇒ pi sentx messagesWRITE(−,−) to pj ,
R2: (w_synci[i] > w_synci[j] = x) ⇒ pi sentx+ 1 messagesWRITE(−,−) to pj .

Proof Both predicates are initially true (w_synci[i] = w_synci[j] = 0 and no message was previously
sent bypi to pj). The variables involved in the premises of the predicates R1 and R2 can bemodified in
the execution of a write operation (ifpi is the writer), or when a messageWRITE(−,−) arrives at processpi
from processpj . Let us suppose that R1 and R2 are true until the valuex, and let us show that they remain
true for the value(x+ 1).

During the execution of a write operation, ifw_syncw[w] = w_syncw[j] = x, the local variable
w_syncw[w] is incremented to(x+1), and the(x+1)th messageWRITE(−,−) is sent bypw topj (lines 1-2).
R1 and R2 remain true. Ifw_syncw[w] > w_syncw[j] = x, the local variablew_syncw[w] is incremented
at line 1, but no message is sent topj at line 2, which falsifies neither R1 nor R2.

When a processpi receives a messageWRITE(−,−) from a processpj , there are also two cases, accord-
ing to the values ofw_synci[i] andw_synci[j] whenpi starts processing the message at line 12.

• Case 1.w_synci[i] = w_synci[j] = x. In this case, the predicate of line 13 is satisfied. It follows
that bothw_synci[i] andw_synci[j] are incremented to(x+1) (at line 14 forw_synci[i] and line 18
for w_synci[j]). Moreover, whenpi executes line 15 we havew_synci[i] = w_synci[j] − 1, and
consequentlypi sends a messageWRITE(−,−) to pj (the fact this message is the(x + 1)th follows
from the induction assumption). Hence, R1 and R2 are true whenpi terminates the processing of the
messageWRITE(−,−) received frompj .

• Casew_synci[i] > w_synci[j] = x. In this case,w_synci[j] is incremented tox+1 at line 18, while
w_synci[i] is not (because the predicate of line 13 is false). Two sub-cases are considered according
to the values ofw_synci[i] andw_synci[j].

– If w_synci[i] = x+1 (this is the valuew_synci[j] will obtain at line 18), the predicate of line 16
is false, and no message is sent topj . R1 and R2 remains true, as, by the induction assumption,
pi already sent(x+ 1) messagesWRITE(−,−).

– If w_synci[i] > x+1, the predicate of line 16 is satisfied, and the(x+2)th messageWRITE(−,−)
is sent topj at this line, maintaining satisfied the predicates R1 and R2.
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✷Lemma 5

Lemma 7 No correct process blocks forever at line 11.

Proof The fact that the waiting predicate of line 11 is eventually satisfied follows from the following obser-
vations.

• As the network is reliable, all the messages that are sent are received. Due to lines 2 and 15-16, this
means that, for anyx, if WRITE(−, vx) is received whilem = WRITE(−, vx−1) has not, thenm will
be eventually received.

• The message exchange pattern involving any two messagesWRITE(0,−) andWRITE(1,−) (sent con-
secutively) exchanged between each pair of processes is the “alternating bit pattern”, from which it
follows that no two messagesWRITE(b,−) (with the sameb) can be received consecutively.

• It follows that the predicate of line 11 is a simple re-ordering predicate for any pair of messages such
that WRITE(−, vx) was received beforeWRITE(−, vx−1). When this predicate is not satisfied for a
messagem = WRITE(b,−), this is because a messagem′ = WRITE(1 − b,−), will necessarily arrive
and be processed beforem. After that, the predicate of line 11 becomes true form.

✷Lemma 7
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