N
N

N

HAL

open science

Time-Efficient Read /Write Register in Crash-Prone
Asynchronous Message-Passing Systems
Achour Mostefaoui, Michel Raynal

» To cite this version:

Achour Mostefaoui, Michel Raynal. Time-Efficient Read /Write Register in Crash-Prone Asynchronous
Message-Passing Systems. The 4th International Conference on Networked Systems, May 2016, Mar-

rakech, Morocco. pp.250-265. hal-02056397

HAL Id: hal-02056397
https://hal.science/hal-02056397
Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02056397
https://hal.archives-ouvertes.fr

Time-Efficient Read/Write Register
in Crash-prone Asynchronous Message-Passing Systems

Achour Mostéfaoui Michel Raynat*

fLINA, Université de Nantes, 44322 Nantes, France
*Institut Universitaire de France
HRISA, Université de Rennes, 35042 Rennes, France

Tech Report #2031, 14 pages, January 2016
IRISA, University of Rennes 1, France

Abstract

The atomic register is certainly the most basic object of mating science. Its implementation
on top of ann-process asynchronous message-passing system has dexéivef attention. It has
been shown thdt< n/2 (wheret is the maximal number of processes that may crash) is a reegess
and sufficient requirement to build an atomic register orofcgpcrash-prone asynchronous message-
passing system. Considering such a context, this papés th& notion of a fast implementation of
an atomic register, and presents a new time-efficient asgnols algorithm. Its time-efficiency is
measured according to two different underlying synchrasuanptions. Whatever this assumption,
a write operation always costs a round-trip delay, whileareperation costs always a round-trip
delay in favorable circumstances (intuitively, when it @& ooncurrent with a write). When design-
ing this algorithm, the design spirit was to be as close asiplesto the one of the famous ABD
algorithm (proposed by Attiya, Bar-Noy, and Dolev).

Keywords: Asynchronous message-passing system, Atomic read/kegister, Concurrency, Fast
operation, Process crash failure, Synchronous behaviog-€fficient operation.

1 Introduction

Since Sumer time [7], and —much later— Turing’s machine tape [13], readbijigets are certainly the
most basic memory-based communication objects. Such an object, usuallyagatigster, provides its
users (processes) with a write operation which defines the new value @fglster, and a read operation
which returns the value of the register. When considering sequentialutomgpregisters are universal
in the sense that they allow to solve any problem that can be solved [13].

Register in message-passing systemsn a message-passing system, the computing entities communi-
cate only by sending and receiving messages transmitted through a comtonmedwork. Hence, in
such a system, a register is not a communication object given for freepbstitutes a communication
abstraction which must be built with the help of the communication network anddberteemories of
the processes.

Several types of registers can be defined according to which pescass allowed to read or write
it, and the quality (semantics) of the value returned by each read operdf®nonsider here registers
which are single-writer multi-reader (SWMR), and atomic. Atomicity means thatgeh read or write
operation appears as if it had been executed instantaneously at a simgleffihe time line, between
is start event and its end event, (b) no two operations appear at the samefpthe time line, and
(c) a read returns the value written by the closest preceding write opge(atidhe initial value of the
register if there is no preceding write) [8]. Algorithms building multi-writer mul@&der (MWMR)
atomic registers from single-writer single-reader (SWSR) registers witkeaker semantics (safe or
regular registers) are described in several textbooks (e.g., [3])9, 12

Many distributed algorithms have been proposed, which build a registepar éomessage-passing
system, be it failure-free or failure-prone. In the failure-prone céseaddressed failure models are the
process crash failure model, or the Byzantine process failure modgltfeetextbooks [3, 9, 10, 11]).
The most famous of these algorithms was proposed by H. Attiya, A. Bay-&lay D. Dolev in [2].
This algorithm, which is usually called ABD according to the names its authansjaers am-process
asynchronous system in which upttec n/2 processes may crash (it is also shown in [2] that n /2
is an upper bound of the number of process crashes which can badd)erd@his simple and elegant
algorithm, relies on (a) quorums [14], and (b) a simple broadcast/reply coimation pattern. ABD
uses this pattern once in a write operation, and twice in a read operation impilegnen SWMR
register.

Fast operation To our knowledge, the notion offast implementationf an atomic register operation,
in failure-prone asynchronous message-passing systems, was aadd(i5] for process crash failures,
and in [6] for Byzantine process failures. These papers considegettomponent model, namely there
are three different types of processes: a set of writéra set of reader®, and a set of serverswhich
implements the register. Moreover, a client (a writer or a reader) can coicateionly with the servers,
and the servers do not communicate among themselves.

In these paperdastmeans that a read or write operation must entail exactly one communication
round-trip delay between a client (the writer or a reader) and the sefdren considering the process
crash failure model (the one we are interested in in this paper), it is shof@j that, when(|W| =
)A(t > 1)A(|R| > 2), the condition(|R| < @ — 2) is necessary and sufficient to have fast read
and write operations (as defined above), which implement an atomic regfisgealso shown in [5] that
there is no fast implementation of an MWMR atomic registel(Ji¥'| > 2) A (|R| > 2) A (t > 1)).

Content of the paper The work described in [5, 6] is mainly on the limits of the three-component
model (writers, readers, and servers constitute three independemif ggocesses) in the presence of
process crash failures, or Byzantine process failures. These limitsprered by predicates involving

2

the set of writers1’), the set of readerdR), the set of serversS(), and the maximal number of servers
that can be faulty#]. Both the underlying model used in this paper and its aim are differemt fints
previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is tdgteatime-efficient
implementation of an atomic register in the classical model used in many articlesximobtes (see,
e.g., [2, 3, 9, 12]). This model, where any process can communicate withraoess, can be seen as
a peer-to-peer model in which each process is both a client (it can immkeations) and a server (it
manages a local copy of the register that is bdilt).

Adopting the usual distributed computing assumption that (a) local progetssias are negligible
and assumed consequently to have zero duration, and (b) only commumiedis time, this paper fo-
cuses on the communication time needed to complete a read or write operatitims Feason the term
time-efficiencys defined here in terms on message transfer delays, namely, the costaof arrwrite
operation is measured by the number of “consecutive” message trdekigs they require to terminate.
Let us notice that this includes transfer delays due to causally relatedgesg$ar example round trip
delays generated by request/acknowledgment messages), but alsowiksee in the proposed algo-
rithm) message transfer delays which occur sequentially without beingseardg causally related. Let
us notice that this notion of a time-efficient operation does not involve the npadametet.

In order to give a precise meaning to the notion of a “time-efficient implementatioa register
operation, this paper considers two distinct ways to measure the duratieacoind write operations,
each based on a specific additional synchrony assumption. One is theddxb delay” assumption,
the other one the “round-based synchrony” assumption. More phgcibese assumptions and the
associated time-efficiency of the proposed algorithm are the following.

e Bounded delagssumption.
Let us assume that every message takes at mdsne units to be transmitted from its sender
to any of its receivers. In such a context, the algorithm presented in gex pas the following
time-efficiency properties.

— A write operation takes at mo8A time units.

— A read operation which is write-latency-free takes at n@&sttime units. (The notion of
write-latency-freedom is defined in Section 3. Intuitively, it captures dlaethat the behav-
ior of the read does not depend on a concurrent or faulty write operatitich is the usual
case in read-dominated applications.) Otherwise, it takes at 3do$ime units, except in
the case where the read operation is concurrent with a write operatidghenditer crashes
during this write, where it can take up 4@\ time units. (Let us remark that a process can
experience at most once thé read operation scenario.)

e Round-based synchroagsumption.

Here, the underlying communication system is assumed to be round-basbdasyus [3, 8, 11].
In such a system, the processes progress by executing conseguatibeamous rounds. In every
round, according to its code, a process possibly sends a messagebsea &uprocesses, then
receives all the messages sent to it during the current round, atigl &racutes local computa-
tion. At the end of a round, all processes are directed to simultaneowsjygsss to the next round.
In such a synchronous system, everything appears as if all messkgdakdavery same time to
go from their sender to theirs receivers, namely the duratiassociated with a round. When
executed in such a context, the proposed algorithm has the following tinseeedy properties.

— The duration of a write operation 2 time units.

!Considering the three-component model where each reader is atsvea 6.e.,R = S), we obtain a two-component
model with one writer and reader-server processes. In this modeletiessary and sufficient conditigiz| < @ —2)can
never be satisfied, which means that, it is impossible to design a fast imgktina of a SWMR atomic register in such a
two-component model.

— The duration of a read operationds time units, except possibly in the specific scenario
where the writer crashes while executing the write operation concurreittiythve read, in
which case the duration of the read can3bdime units (as previously, let us remark that a
process can experience at most once3theead operation scenario.)

Hence, while it remains correct in the presence of any asynchronossage pattern (e.g., when
each message takes one more time unit than any previous message), tseg@rmporithm is particu-
larly time-efficient when “good” scenarios occur. Those are the oaBsat! by the previous synchrony
patterns where the duration of a read or a write operation correspoadsigle round-trip delay. More-
over, in the other synchronous scenarios, where a read operatmmcisreent with a write, the maximal
duration of the read operation is precisely quantified. A concurrent aditis uncertainty whose reso-
lution by a read operation requires one more message transfer delay (tvecciaise of thé synchrony
assumption, if the concurrent write crashes).

Roadmap The paper consists of 6 sections. Section 2 presents the system modeh Seeimes the
atomic register abstraction, and the notion of a time-efficient implementation, ¥leetion 4 presents
an asynchronous algorithm providing an implementation of an atomic registetinvékefficient oper-

ations, as previously defined. Section 5 proves its properties. Finadiiip8& concludes the paper.

2 System Model

Processes The computing model is composed of a setnasequential processes denoigd ..., py,.
Each process is asynchronous which means that it proceeds at itpegdh svhich can be arbitrary and
remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes corrieztigcal algorithm until it
possibly crashes. The model parameétdenotes the maximal number of processes that may crash in a
run. A process that crashes in a run is said tédodty. Otherwise, it iscorrector non-faulty

Communication The processes cooperate by sending and receiving messageshthraligectional
channels. The communication network is a complete network, which meansnthat@ess; can
directly send a message to any proges§ncluding itself). Each channel is reliable (no loss, corruption,
nor creation of messages), not necessarily first-in/first-out, anc¢chsymous (while the transit time of
each message is finite, there is no upper bound on message transit times).

A processp; invokes the operationsénd TAG(m) to p;” to sendp; the message taggedG and
carrying the valuen. It receives a message taggeds by invoking the operationréceive TAG()". The
macro-operation roadcast TAG(m)” is a shortcut for for each j € {1,...,n} send TAG(m) to p;
end for”. (The sending order is arbitrary, which means that, if the sender esashile executing this
statement, an arbitrary — possibly empty— subset of processes willeédbeivnessage.)

Let us notice that, due to process and message asynchrony, nospraodsiow if an other process
crashed or is only very slow.

Notation In the following, the previous computation model, restricted to the case where /2, is
denotedC AMP,, +[t < n/2] (Crash Asynchronous Message-Passing).

It is important to notice that, in this model, all processes are a priori “eqéed’we will see, this
allows each process to be at the same time a “client” and a “server”. In tige s@nd as noticed in the
Introduction, this model is the “fully connected peer-to-peer” model &ehstructure is different from
other computing models such as the client/server model, where procesgastdioned into clients and
servers, playing different roles).

3 Atomic Register and Time-efficient Implementation

3.1 Atomic register

A concurrent objects an object that can be accessed by several processes (possildiarséously).

An SWMR atomic register (sayREG) is a concurrent object which provides exactly one process
(called the writer) with an operation denot@& G .write(), and all processes with an operation denoted
REG.read(). When the writer invoke® EG.write(v) it definesv as being the new value GtEG. An
SWMR atomic register (we also say the registeliniearizable[4]) is defined by the following set of
properties [8].

e Liveness. An invocation of an operation by a correct process ternginate

e Consistency (safety). All the operations invoked by the processespegossibly —for each faulty
process— the last operation it invoked, appear as if they have beemtedeequentially and this
sequence of operations is such that:

— each read returns the value written by the closest write that precedestie(imitial value
of REG if there is no preceding write),

— if an operatiorvpl terminated before an operatiop2 started, thepl appears beforep2
in the sequence.

This set of properties states that, from an external observer poiewf the object appears as if it
was accessed sequentially by the processes, this sequence (alimgdpe real time access order, and
(ii) belonging to the sequential specification of a read/write register.

3.2 Notion of a time-efficient operation

The notion of a time-efficient operation is not related to its correctnesss aytroperty of its implemen-
tation. It is sometimes calleabn-functionalproperty. In the present case, it captures the time efficiency
of operations.

As indicated in the introduction, we consider here two synchrony assursptiotefine what we
mean by time-efficient operation implementation. As we have seen, both a&e tashe duration of
read and write operations, in terms of message transfer delays. Lehesr that, in both cases, it is
assumed that the local processing times needed to implement these highdevehdewrite operations
are negligible.

3.2.1 Bounded delaypased definition of a time-efficient implementation

Let us assume an underlying communication system where message tdatafesrare upper bounded
by A.

Write-latency-free read operation and interfering write Intuitively, a read operation igrite-latency-
freeif its execution does “not interleave” with the execution of a write operatiorelvprecisely, let
7, be the starting time of a read operation. This read operatiomiis-latency-freef (a) it is not con-
current with a write operation, and (b) the closest preceding write dictrash and started at a time
Tw < Tr — A.

Let opr be a read operation, which started at timelLet opw be the closest write precedingr. If
opw started at time, > 7. — A, it is said to benterferingwith opr.

2Another example of a non-functional propertygisiescenceThis property is on algorithms implementing reliable com-
munication on top of unreliable networks [1]. It states that the numbendérying implementation messages generated by
an application message must be finite. Hence, if there is a time after whigpptication process sends messages, there is a
time after which the system is quiescent.

Bounded delaypased definition An implementation of a read/write registertime-efficientfrom a
bounded delay point of view) if it satisfies the following properties.
e A write operation takes at moStA time units.
e Aread operation which is write-latency-free takes at n2astime units.
e Aread operation which is not write-latency-free takes at most
— 3A time units if the writer does not crash while executing the interfering write,

— 4A time units if the writer crashes while executing the interfering write (this sceiario
appear at most once for each process).

3.2.2 Round synchronpased definition of a time-efficient implementation

Let us assume that the underlying communication system is round-basgd@yous, where each mes-
sage transfer delay is equal&@oWhen considering this underlying synchrony assumption, it is assumed
that a process sends or broadcasts at most one message per nouhis & done at the beginning of a
round.

An implementation of a read/write registertime-efficienf{from the round-based synchrony point
of view) if it satisfies the following properties.

e The duration of a write operation time units.

e The duration of a read operationds time units, except possibly in the “at most once” scenario
where the writer crashes while executing the write operation concurreitbytive read, in which
case the duration of the read candeime units.

What does the proposed algorithm As we will see, the proposed algorithm, designed for the asyn-
chronous system modéAMP,, ,[t < n/2], provides an SWMR atomic register implementation which
is time-efficient for both its “bounded delay”-based definition, and its fidbaynchrony”-based defini-
tion.

4 An Algorithm with Time-efficient Operations

The design of the algorithm, described in Figure 1, is voluntarily formulate tastclose as possible
to ABD. For the reader aware of ABD, this will help its understanding.

Local variables Each procesg; manages the following local variables.
e reg; contains the value of the constructed regigtérG;, as currently known by;. It is initialized
to the initial value ofREG (e.g., the default value).
e wsn,; IS the sequence number associated with the valuegn
e rsn; is the sequence number of the last read operation invokegl by

e swsn; IS a synchronization local variable. It contains the sequence numbee ohdist recent
value of REG that, top;’s knowledge, is known by at least — t) processes. This variable
(which is new with respect to other algorithms) is at the heart of the time-efficigolementation
of the read operation.

e res; is the value ofREG whose sequence numbersis sn;.

local variables initialization: reg; < L; wsn; < 0; swsn; < 0; rsn; < 0.

operation write(v) is

(1) wsn; < wsn; + 1; reg; + v; broadcast WRITE(wsn;, v);

(2) wait (WRITE(wsn;, —) received from(n — t) different processgs
(3) return()

end operation

operation read() is % the writer may directly returneg; %

(4) rsn; < rsn; + 1; broadcast READ(rsn;);

(5) wait ((messagesTATE(rsn, —) received from(n — t) different processes) (swsn; > mazwsn)
wheremazwsn is the greatest sequence number in the prevBouwsE(rsn, —) message)s

(6) return(res;)

end operation

%

whenwRITE(wsn, v) is received do

(7) if (wsn > wsn;) thenreg; < v; wsn; < wsn end if;

(8) if (notyet done}hen broadcast WRITE(wsn, v) end if;

(9) if (WRITE(wsn, —) received from(n — t) different processgs

(20) then if (wsn > swsn;) A (not already donehen swsn; < wsn; res; < v end if
(11) end if.

whenREAD(rsn) is received fromp; do
(12) send STATE(rsn,wsn;) to p;.

Figure 1: Time-efficient SWMR atomic register WM P,, +[t < n /2]

Client side: operation write() invoked by the writer When the writerp; invokes REG .write(v), it
increasesvsn;, updates-eg;, and broadcasts the messagrITE(wsn;, v) (line 1). Then, it waits until

it has received an acknowledgment message ffam- ¢) processes (line 2). When this occurs, the
operation terminates (line 3). Let us notice that the acknowledgment massagepy of the very same
message as the one it broadcast.

Server side: reception of a messagerite(wsn,v) when a procesg; receives such a message, and
this message carries a more recent value than the one currently stoteg, ip; updates accordingly
wsn; andreg; (line 7). Moreover, if this message is the first message carrying thesegonambetvsn,
p; forwards to all the processes the messageTE(wsn, v) it has received (line 8). This broadcast has
two aims: to be an acknowledgment for the writer, and to inform the otheepses thap; “knows”
this value?

Moreover, wherp; has received the messag&ITE(wsn, v) from (n — t) different processes, and
swsn; is smaller thanvsn, it updates its local synchronization variablesn; and accordingly assigns
v tores; (lines 9-11).

Server side: reception of a messagreAD(rsn) When a procesg; receives such a message from a
procesy;, it sends by return tp; the messagsTATE(rsn, wsn;), thereby informing it on the freshness
of the last value ofREG it knows (line 12). The parametesn allows the sendep; to associate the
messagesTATE(rsn, —) it will receive with the corresponding request identifiedrsy..

Client side: operationread() invoked by a processp; When a process invoke3E G .read(), it first
broadcasts the messageAD(rsn;) with a new sequence number. Then, it waits until “some” predicate

3Let us observe that, due to asynchrony, it is possibledhat; > wsn whenp; receives a messagerITE(wsn, v) for
the first time.

is satisfied (line 5), and finally returns the current value®f,. Let us notice that the value:s; that is
returned is the one whose sequence numbewis;.

The waiting predicate is the heart of the algorithm. Its first part stateptmtist have received a
messagsTATE(rsn, —) from (n—t) processes. Its second part, nam@lysn; > mazwsn), states that
the value inp;'s local variableres; is as recent or more recent than the value associated with the greatest
write sequence humbersn received byp; in a messageTATE(rsn, —). Combined with the broadcast
of messagesvRITE(wsn, —) issued by each process at line 8, this waiting predicate ensures both the
correctness of the returned value (atomicity), and the fact that the redéehiraptation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and atomicity

The properties proved in this section are independent of the messasfet@elays (provided they are
finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is @ut, all its read
invocations terminate.

Proof Let us first consider the writer process. As by assumption it is corrdmdtdcasts the message
WRITE(sn, —) (line 1). Each correct process broadcastsTE(sn, —) when it receives it for the first
time (line 8). As there are at least — t) correct processes, the writer eventually recewesTe(sn, —)
from these processes, and stops waiting at line 2.

Let us now consider a correct reader proggsdt follows from the same reasoning as before that
the reader receives the messageTe(rsn, —) from at leastn — t) processes (lines 5 and 12). Hence,
it remains to prove that the second part of the waiting predicate, nasnely; > mazwsn (line 5)
becomes eventually true, whereaxzwsn is the greatest write sequence number receiveg;bp a
messageTATE(rsn, —). Letp; be the sender of this message. The following list of items is such that
itema — item (x 4 1), from which follows thatswsn; > mazwsn (line 5) is eventually satisfied.

1. p; updatedwsn; to mazwsn (line 7) before sendingTATE(rsn, mazwsn) (line 12).

2. Hencep; received previously the messag®&ITE(mazwsn, —), and broadcast it the first time it
received it (line 8).

3. It follows that any correct process receives the messagee(mazwsn, —) (at least fromp;),
and broadcasts it the first time it receives it (line 8).

4. Consequentlyp; eventually receives the messageITE(maxwsn, —) from (n — t) processes.
When this occurs, it updatesvsn; (line 10), which is then> maxwsn, which concludes the
proof of the termination of a read operation.

I:'Lemma 1

Lemma 2 The registerREG is atomic.

Proof Letread]i, x| be a read operation issued by a proggsshich returns the value with sequence
numberz, andwrite[y] be the write operation which writes the value with sequence numbéihe
proof of the lemma is the consequence of the three following claims.

e Claim 1. Ifread[i, z] terminates beforerite[y| starts, therr < y.

e Claim 2. Ifwrite[x] terminates beforecad|i, y| starts, therr < y.

e Claim 3. Ifread[i,] terminates beforeead|[j, y] starts, then: < y.

Claim 1 states that no process can read from the future. Claim 2 state®theiaess can read over-
written values. Claim 3 states that there is no new/old read inversions [3, 11]

Proof of Claim 1.

This claim follows from the following simple observation. When the writer exeswrite[y], it first
increases its local variablkesn which becomes greater than any sequence number associated with its
previous write operations (line 1). Hence-#fad[i, x] terminates beforerite[y| starts, we necessarily
haver < y.

Proof of Claim 2.

It follows from line 2 and lines 7-8 that, whenrite[x] terminates, there is a s, of at least(n — t)
processep; such thatwsn; > z. On another side, due to lines 4-5 and line #2;d]i, y] obtains a
messagesTATE() from a sety), of at least{n — ¢) processes.

As |Qu| > n—t, Q. > n—t, andn > 2t, it follows that@,, N @, is not empty. There is
consequently a procegg € Q, N Q,, such that thatvsn, > x. Hence,p, sent top; the message
STATE(—, z), wherez > z.

Due to (a) the definition ofnaxwsn > z, (b) the predicatewsn; > mazwsn > z (line 5), and
(c) the value ofswsn; = y, it follows thaty = swsn; > z whenread|i, y| stops waiting at line 5. As,
z > z, it follows y > x, which proves the claim.

Proof of Claim 3.
Whenread|i, z] stops waiting at line 5, it returns the values; associated with the sequence number
swsn; = x. Procesy; previously received the messag®&ITE(z, —) from a set),; of at least(n — ¢)
processes. The same occurszgrwhich, before returning, received the messageTE(y, —) from a
set@,, of at least(n — t) processes.

As|Qr1| > n—t,|Qr2| = n—t,andn > 2t, it follows that@,1 N Q2 is not empty. Hence, there is
a procespy, which sentSTATE(, z) to p;, and later sen$ TATE(—, y) to p;. AS swsny, never decreases,
it follows thatz < y, which completes the proof of the lemma. OLemma 2

Theorem 1 Algorithm 1 implements alsWMR atomic register irCAMP,, ¢ [t < n/2].

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity). OTheorem 1

5.2 Time-efficiency: thebounded delagssumption

As already indicated, this underlying synchrony assumption considdrevbiy message takes at most
A time units. Moreover, let us remind that a read (which started at tjinis write-latency-free if it is
not concurrent with a write, and the last preceding write did not cradlstamted at time, < 7. — A.

Lemma 3 A write operation takes at mo8iA time units.

Proof The case of the writer is trivial. The messageITE() broadcast by the writer takes at mdst
time units, as do the acknowledgment messagese() sent by each process to the writer. In this case
2A correspond to a causality-related maximal round-trip delay (the recegdtmmessage triggers the
sending of an associated acknowledgment). OLemma 3

When the writer does not crash while executing a write operation The cases where the writer does
not crash while executing a write operation are captured by the next two lemma

Lemma 4 A write-latency-free read operation takes at m2At time units.

Proof Let p; be a process that issues a write-latency-free read operation;. dalits starting time.
Moreover, Letr,, the starting time of the last preceding write. As the read is write latency-free, w
haver, + A < 7,.. Moreover, as messages take at mxstime units, and the writer did not crash
when executing the write, each non-crashed proggssceived the messagerITE(z, —) (sent by the
preceding write at time,, + A < 7,.), broadcast it (line 8), and updated its local variables such that
we havewsny = x (lines 7-11) atimer, + A < 7,.. Hence, all the messagesATE() received by the
readerp; carry the write sequence numherMoreover, due to the broadcast of line 8 executed by each
correct process, we hasvevsn; = x at some timer,, + 2A < 7. + A. It follows that the predicate of
line 5 is satisfied agp; within 2A time units after it invoked the read operation. Oremma 4

Lemma5 A read operation which is not write-latency-free, and during which the wdtes not crash
during the interfering write operation, takes at mas\.

Proof Let us consider a read operation that starts at timeoncurrent with a write operation that starts
at timer,, and during which the writer does not crash. From the read operatiohgfoirew, the worst
case occurs when the read operation is invoked just afterjmeA, let us say attime, = 7, — A +e.

As a messageTATE(rsn, —) is sent by return when a messagieaD(rsn) is received, the messages
STATE(rsn, —) received byp; by time 7. + 2A can be such that some carry the sequence number
(due to last previous write) while others carry the sequence numbdr(due to the concurrent writ&)
Hence,mazwsn = x or maxwsn = x + 1 (predicate of line 5). lfmaxwsn = x, we also have
swsn; = x andp; terminates its read. lhazwsn = x + 1, p; must wait untilswsn; = = + 1, which
occurs at the latest af, + 2A (whenp; receives the last message of the— t) message®/RITE(y, —)
which makes true the predicates of lines 9-10, thereby allowing the predichibe 5 to be satisfied).
When this occurgy; terminates its read operation. As = 7.+ A —e, p; returns at the latest +3A —e¢
time units after it invoked the read operation. OLemma 4

When the writer crashes while executing a write operation The problem raised by the crash of the
writer while executing the write operation is when it crashes while broadgasmessageRITE(x, —)
(line 1): some processes receive this messag& biyne units, while other processes do not. This issue
is solved by the propagation of the messagaTE(z, —) by the non-crashed processes that receive it
(line 8). This means that, in the worst case (as in synchronous systeas)efisage/RITE(z, —) must

be forwarded by(t + 1) processes before being received by all correct processeswolss scenario
may entail a cost oft + 1) A time units.

Figure 2 presents a simple modification of Algorithm 1, which allows a fast impletien of read
operations whose executions are concurrent with a write operatiorgduhiich the writer crashes. The
modifications are underlined.

When a procesp; receives a messageEAD(), it now returns a messagerATE() containing an
additional field, namely the current valuerafy;, its local copy of REG (line 12).

When a procesp; receives from a procegs a messageTATE(—, wsn, v), it uses it in the waiting
predicate of line 5, but executes before the lines 7-11, as if this messayerRwNTE(wsn, v). According
to the values of the predicates of lines 7, 9, and 10, this aljgwie expedite the update of its local
variableswsn;, reg;, swsn;, andres;, thereby favoring fast termination.

‘MessagessTATE(rsn,z) are sent by the processes that receivemaD(rsn) before 7,,, while the messages
STATE(rsn, z + 1) are sent by the processes that receredb(rsn) betweenr,, andr, + A = 7, + €.

10

whenwRITE(wsn, v) Or STATE(rsn, wsn, v) is received do

(7) if (wsn > wsn;) thenreg; < v; wsn; < wsn; broadcast WRITE(wsn, v) end if;

(8) if (not yet done}hen broadcast WRITE(wsn, v) end if;

(9) if (WRITE(wsn, —) received from(n — t) different processgs

(10) thenif (wsn > swsn;) A (not already donethen swsn; < wsn; res; < v end if
(11) end if.

when READ(rsn) is received fromp; do
(12) send STATE(rsn, wsn;, reg;) to p;.

Figure 2: Modified algorithm for time-efficient read in case of concurvaiter crash

The reader can check that these modifications do not alter the proo&whh 1 (termination) and
Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the weitashes during
the interfering write operation, takes at mask time units.

Proof Let 7, be the time at which the read operation starts. As in the proof of Lemma 4, the mes-
SagessTATE(rsn, —, —) receivedp; by timer, + 2A can be such that some carry the sequence number
wsn = x (due to last previous write) while some others carry the sequence numbet x + 1 (due
to the concurrent write during which the writer crashes). If all these agesscarrywsn = =z, the
read terminates by time. + 2A. If at least one of these messagesT®TE(rsn,z + 1,—), we have
mazwsn = x + 1, andp; waits until the predicatewsn; > mazwsn (= x + 1) becomes true (line 5).
When it receive&TATE(rsn, + 1, —), if not yet donep; broadcast the messagRITE(rsn, x +
1, —), (line 8 of Figure 2), which is received by the other processes withiime units. If not yet done,
this entails the broadcast by each correct process of the same messagérsn, « + 1, —). Hence, at
mostA time units laterp; has received the messag®ITE(rsn, z + 1) from (n — t) processes, which
entails the update ofwsn; to (x + 1). Consequently the predicate of line 5 becomes satisfiedpand
terminates its read operation.
When counting the number of consecutive communication steps, we haaendd$sagREAD(7sn)
by p;, followed by a messagerATE(rsn, z+ 1, —) sent by some process and receivegpyollowed by
the messag@/RITE(rsn, z + 1) broadcast by;, followed by the messageRITE(rsn, x + 1) broadcast
by each non-crashed process (if not yet done). Hence, wherriiee erashes during a concurrent read,
the read returns within at most + 4A time units. OLemma 6

Theorem 2 Algorithm 1 modified as indicated in Figur@ implements inCAMP,,;[t < n/2] an
SWMR atomic register with time-efficient operations (where the time-efficientgmis based on the
bounded delagssumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3, Lemnh&dhma 5,

and Lemma 6 (time-efficiency). UTheorem 2

5.3 Time-efficient implementation: theround-based synchrorgssumption

As already indicated, this notion of a time-efficient implementation assumes anlying round-based
synchronous communication system, where the duration of a round (ducdtall message transfer
delays) isd.

Lemma 7 The duration of write operation i25.

11

Proof The proof follows directly from the observation that the write operation tesitemafter a round-
trip delay, whose duration 9. Uremma 7

Lemma 8 The duration of a read operation &) time units if the writer does not crash while executing
a write operation concurrent with the read. Otherwise, it carBbe

Proof Considering a read operation that starts at timdet us assume that the writer does not crash
while concurrently executing a write operation. At timeg+ ¢ all processes receives the message
READ(rsn) sent by the reader (line 4), and answer with a messagee(rsn, —) (line 12). Due the
round-based synchrony assumption, all these messages carry thaegueace number, which is
equal to both their local variablesn; andswsn;. It follows that at timer,. + 20, the predicate of line 5
is satisfied at the reader, which consequently returns from the reaatiope

If the writer crashes while concurrently executing a write operation, it $sipte that during some
time (a round duration), some processes know the sequence numtigte other processes know only
x — 1. But this synchrony break in the knowledge of the last sequence nustnended during the next
round thanks to the messag®RITE(z, v) sent by the processes which are aware ¢6ee Figure 2).
After this additional round, the read terminates (as previously) in two muddnce, the read returns at
the latest at time,. + 30. O Lemma 8

Theorem 3 Algorithm 1 modified as indicated in Figur@ implements inCAMP,, [t < n/2] an
SWMR atomic register with time-efficient operations (where the time-efficientgmis based on the
round-based synchromssumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 7, andrha 8 (time-
efficiency). UTheorem 3

6 Conclusion

This work has presented a new distributed algorithm implementing an atomic réadagister on top
of an asynchronous-process message-passing system in which up<on/2 processes may crash.
When designing it, the constraints we imposed on this algorithm were (a) fnoeffiaiency point of
view: provide time-efficient implementations for read and write operationgnr(@ from a design prin-
ciple point of view: remain “as close as possible” to the flagship ABD algorititroduced by Attiya,
Bar-Noy and Dolev [2].

The “time-efficiency” property of the proposed algorithm has been ardlnccording to two syn-
chrony assumptions on the underlying system.

e The first assumption considers an upper botndn message transfer delays. Under such an
assumption, any write operation takes then at mdstime units, and a read operation takes at
most2A time units when executed in good circumstances (i.e., when there is no wriggioper
concurrent with the read operation). Hence, the inherent cost giemration is a round-trip delay,
always for a write and in favorable circumstances for a read. A reathtipn concurrent with a
write operation during which the writer does not crash, may require ati@ual cost ofA, which
means that it takes at mo®A time units. Finally, if the writer crashes during a write concurrent
with a read, the read may take at mdst time units. This shows clearly the incremental cost
imposed by the adversaries (concurrency of write operations, andefaifthe writer).

12

e The second assumption investigated for a “time-efficient implementation” is #nprowvided by
a round-based synchronous system, where message transfer(delayted) are assumed to be
the same for all messages. It has been shown that, under this assumptiuration of a write is
26, and the duration of a readds, or exceptionally3o when the writer crashes while concurrently
executing a write operation.

It is important to remind that the proposed algorithm remains correct in tleepce of any asyn-
chrony pattern. Its time-efficiency features are particularly interestingnwhe system has long syn-
chrony periods.

Differently from the proposed algorithm, the ABD algorithm does not disgiffgrent behaviors in
different concurrency and failure patterns. In ABD, the duratiorlafidte operations is upper bounded
by 2A time units (or equal t@J), and the duration of all read operations is upper boundetbyime
units (or equal tald). The trade-off between ABD and our algorithm lies the message complexiigh
is O(n) in ABD for both read and write operations, while it&n?) for a write operation and(n) for
a read operation in the proposed algorithm. Hence our algorithm is parlycuiearesting for registers
used in read-dominated applications. Moreover, it helps us better tao@ibe impact of the adversary
pair “writer concurrency + writer failure” on the efficiency of the reguboations.

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANRd® 40300781 DISCMAT
devoted to connections between mathematics and distributed computing, anméribe ENR project
DISPLEXITY devoted to the study of computability and complexity in distributeahjgoting.

References

[1] Aguilera M.K., Chen W. and Toueg S., On quiescent rekadidmmunicationSIAM Journal of Computing
29(6):2040-2073, 2000.

[2] Attiya H., Bar-Noy A. and Dolev D., Sharing memory roblysh message passing systerdsurnal of the
ACM, 42(1):121-132, 1995.

[3] Attiya H. and Welch J.Distributed computing: fundamentals, simulations andaawbed topics(2d Edi-
tion), Wiley-Interscience, 414 pages, 2004.

[4] Herlihy M.P. and Wing J.M, Linearizability: a correctsecondition for concurrent objec&CM Transac-
tions on Programming Languages and Systel2¢3):463-492, 1990.

[5] Dutta P., Guerraoui R., Levy R., and Chakraborty A., Hastfcan a distributed atomic read dedc. 23rd
ACM Symposium on Principles of distributed computing (PQI2Q, ACM Press, pp. 236-245, 2004.

[6] Dutta P., Guerraoui R., Levy R., and Vukolic M., Fast aax&o distributed atomic memor$IAM Journal
of Computing 39(8):3752-3783, 2010.

[7] Kramer S.N. History Begins at Sumer: Thirty-Nine Firsts in Man’s ReadHistory University of Penn-
sylvania Press, 416 pages, 1956 (ISBN 978-0-8122-1276-1).

[8] Lamport L., On interprocess communication, Part |: bdermalism.Distributed Computing1(2):77-85,
1986.

[9] Lynch N.A., Distributed algorithmsMorgan Kaufmann Pub., San Francisco (CA), 872 pages, 198N
1-55860-384-4).

[10] Raynal M.,Communication and agreement abstractions for fault-t¢asynchronous distributed systems.
Morgan & Claypool Publishers, 251 pages, 2010 (ISBN 978846-293-4).

13

[11] Raynal M.,Distributed algorithms for message-passing systedpsinger, 510 pages, 2013 (ISBN: 978-3-
642-38122-5).

[12] Raynal M.,Concurrent programming: algorithms, principles and foatidns Springer, 515 pages, 2013
(ISBN 978-3-642-32026-2).

[13] Turing A.M., On computable numbers with an applicatiothe Entscheidungsproblefroc. of the London
Mathematical Society12:230-265, 1936.

[14] Vukolic M., Quorum systems, with applications to storage and conseiigian & Claypool Publishers,
132 pages, 2012 (ISBN 978-1-60845-683-3).

14

