
HAL Id: hal-02056397
https://hal.science/hal-02056397v1

Submitted on 5 Mar 2019 (v1), last revised 11 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time-Efficient Read/Write Register in Crash-Prone
Asynchronous Message-Passing Systems

Achour Mostefaoui, Michel Raynal

To cite this version:
Achour Mostefaoui, Michel Raynal. Time-Efficient Read/Write Register in Crash-Prone Asynchronous
Message-Passing Systems. The 4th International Conference on Networked Systems, May 2016, Mar-
rakech, Morocco. pp.250-265, �10.1007/978-3-319-46140-3_21�. �hal-02056397v1�

https://hal.science/hal-02056397v1
https://hal.archives-ouvertes.fr

Time-Efficient Read/Write Register
in Crash-prone Asynchronous Message-Passing Systems

Achour Mostéfaoui†, Michel Raynal⋆,‡

†LINA, Université de Nantes, 44322 Nantes, France
⋆Institut Universitaire de France

‡IRISA, Université de Rennes, 35042 Rennes, France

Tech Report #2031, 14 pages, January 2016
IRISA, University of Rennes 1, France

Abstract

The atomic register is certainly the most basic object of computing science. Its implementation
on top of ann-process asynchronous message-passing system has received a lot of attention. It has
been shown thatt < n/2 (wheret is the maximal number of processes that may crash) is a necessary
and sufficient requirement to build an atomic register on topof a crash-prone asynchronous message-
passing system. Considering such a context, this paper visits the notion of a fast implementation of
an atomic register, and presents a new time-efficient asynchronous algorithm. Its time-efficiency is
measured according to two different underlying synchrony assumptions. Whatever this assumption,
a write operation always costs a round-trip delay, while a read operation costs always a round-trip
delay in favorable circumstances (intuitively, when it is not concurrent with a write). When design-
ing this algorithm, the design spirit was to be as close as possible to the one of the famous ABD
algorithm (proposed by Attiya, Bar-Noy, and Dolev).

Keywords: Asynchronous message-passing system, Atomic read/writeregister, Concurrency, Fast
operation, Process crash failure, Synchronous behavior, Time-efficient operation.

1

1 Introduction

Since Sumer time [7], and –much later– Turing’s machine tape [13], read/writeobjects are certainly the
most basic memory-based communication objects. Such an object, usually calleda register, provides its
users (processes) with a write operation which defines the new value of the register, and a read operation
which returns the value of the register. When considering sequential computing, registers are universal
in the sense that they allow to solve any problem that can be solved [13].

Register in message-passing systemsIn a message-passing system, the computing entities communi-
cate only by sending and receiving messages transmitted through a communication network. Hence, in
such a system, a register is not a communication object given for free, butconstitutes a communication
abstraction which must be built with the help of the communication network and the local memories of
the processes.

Several types of registers can be defined according to which processes are allowed to read or write
it, and the quality (semantics) of the value returned by each read operation.We consider here registers
which are single-writer multi-reader (SWMR), and atomic. Atomicity means that (a) each read or write
operation appears as if it had been executed instantaneously at a single point of the time line, between
is start event and its end event, (b) no two operations appear at the same point of the time line, and
(c) a read returns the value written by the closest preceding write operation (or the initial value of the
register if there is no preceding write) [8]. Algorithms building multi-writer multi-reader (MWMR)
atomic registers from single-writer single-reader (SWSR) registers with a weaker semantics (safe or
regular registers) are described in several textbooks (e.g., [3, 9, 12]).

Many distributed algorithms have been proposed, which build a register on top of a message-passing
system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models are the
process crash failure model, or the Byzantine process failure model (see, the textbooks [3, 9, 10, 11]).
The most famous of these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [2].
This algorithm, which is usually called ABD according to the names its authors, considers ann-process
asynchronous system in which up tot < n/2 processes may crash (it is also shown in [2] thatt < n/2
is an upper bound of the number of process crashes which can be tolerated). This simple and elegant
algorithm, relies on (a) quorums [14], and (b) a simple broadcast/reply communication pattern. ABD
uses this pattern once in a write operation, and twice in a read operation implementing an SWMR
register.

Fast operation To our knowledge, the notion of afast implementationof an atomic register operation,
in failure-prone asynchronous message-passing systems, was introduced in [5] for process crash failures,
and in [6] for Byzantine process failures. These papers consider a three-component model, namely there
are three different types of processes: a set of writersW , a set of readersR, and a set of serversS which
implements the register. Moreover, a client (a writer or a reader) can communicate only with the servers,
and the servers do not communicate among themselves.

In these papers,fast means that a read or write operation must entail exactly one communication
round-trip delay between a client (the writer or a reader) and the servers. When considering the process
crash failure model (the one we are interested in in this paper), it is shown in[5] that, when(|W | =

1) ∧ (t ≥ 1) ∧ (|R| ≥ 2), the condition(|R| < |S|
t
− 2) is necessary and sufficient to have fast read

and write operations (as defined above), which implement an atomic register.It is also shown in [5] that
there is no fast implementation of an MWMR atomic register if

(

(|W | ≥ 2) ∧ (|R| ≥ 2) ∧ (t ≥ 1)
)

.

Content of the paper The work described in [5, 6] is mainly on the limits of the three-component
model (writers, readers, and servers constitute three independent sets of processes) in the presence of
process crash failures, or Byzantine process failures. These limits arecaptured by predicates involving

2

the set of writers (W), the set of readers (R), the set of servers (S), and the maximal number of servers
that can be faulty (t). Both the underlying model used in this paper and its aim are different from this
previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is to design atime-efficient
implementation of an atomic register in the classical model used in many articles and textbooks (see,
e.g., [2, 3, 9, 12]). This model, where any process can communicate with any process, can be seen as
a peer-to-peer model in which each process is both a client (it can invokeoperations) and a server (it
manages a local copy of the register that is built).1

Adopting the usual distributed computing assumption that (a) local processing times are negligible
and assumed consequently to have zero duration, and (b) only communication takes time, this paper fo-
cuses on the communication time needed to complete a read or write operation. Forthis reason the term
time-efficiencyis defined here in terms on message transfer delays, namely, the cost of a read or write
operation is measured by the number of “consecutive” message transferdelays they require to terminate.
Let us notice that this includes transfer delays due to causally related messages (for example round trip
delays generated by request/acknowledgment messages), but also (aswe will see in the proposed algo-
rithm) message transfer delays which occur sequentially without being necessarily causally related. Let
us notice that this notion of a time-efficient operation does not involve the modelparametert.

In order to give a precise meaning to the notion of a “time-efficient implementation” of a register
operation, this paper considers two distinct ways to measure the duration ofread and write operations,
each based on a specific additional synchrony assumption. One is the “bounded delay” assumption,
the other one the “round-based synchrony” assumption. More precisely, these assumptions and the
associated time-efficiency of the proposed algorithm are the following.

• Bounded delayassumption.
Let us assume that every message takes at most∆ time units to be transmitted from its sender
to any of its receivers. In such a context, the algorithm presented in the paper has the following
time-efficiency properties.

– A write operation takes at most2∆ time units.
– A read operation which is write-latency-free takes at most2∆ time units. (The notion of

write-latency-freedom is defined in Section 3. Intuitively, it captures the fact that the behav-
ior of the read does not depend on a concurrent or faulty write operation, which is the usual
case in read-dominated applications.) Otherwise, it takes at most3∆ time units, except in
the case where the read operation is concurrent with a write operation andthe writer crashes
during this write, where it can take up to4∆ time units. (Let us remark that a process can
experience at most once the4∆ read operation scenario.)

• Round-based synchronyassumption.
Here, the underlying communication system is assumed to be round-based synchronous [3, 8, 11].
In such a system, the processes progress by executing consecutive synchronous rounds. In every
round, according to its code, a process possibly sends a message to a subset of processes, then
receives all the messages sent to it during the current round, and finally executes local computa-
tion. At the end of a round, all processes are directed to simultaneously progress to the next round.
In such a synchronous system, everything appears as if all messages take the very same time to
go from their sender to theirs receivers, namely the durationδ associated with a round. When
executed in such a context, the proposed algorithm has the following time-efficiency properties.

– The duration of a write operation is2δ time units.
1Considering the three-component model where each reader is also a server (i.e.,R = S), we obtain a two-component

model with one writer and reader-server processes. In this model, thenecessary and sufficient condition(|R| < |S|
t
− 2) can

never be satisfied, which means that, it is impossible to design a fast implementation of a SWMR atomic register in such a
two-component model.

3

– The duration of a read operation is2δ time units, except possibly in the specific scenario
where the writer crashes while executing the write operation concurrently with the read, in
which case the duration of the read can be3δ time units (as previously, let us remark that a
process can experience at most once the3δ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message pattern (e.g., when
each message takes one more time unit than any previous message), the proposed algorithm is particu-
larly time-efficient when “good” scenarios occur. Those are the ones defined by the previous synchrony
patterns where the duration of a read or a write operation corresponds toa single round-trip delay. More-
over, in the other synchronous scenarios, where a read operation is concurrent with a write, the maximal
duration of the read operation is precisely quantified. A concurrent writeadds uncertainty whose reso-
lution by a read operation requires one more message transfer delay (two inthe case of the∆ synchrony
assumption, if the concurrent write crashes).

Roadmap The paper consists of 6 sections. Section 2 presents the system model. Section 3 defines the
atomic register abstraction, and the notion of a time-efficient implementation. Then, Section 4 presents
an asynchronous algorithm providing an implementation of an atomic register withtime-efficient oper-
ations, as previously defined. Section 5 proves its properties. Finally, Section 6 concludes the paper.

2 System Model

Processes The computing model is composed of a set ofn sequential processes denotedp1, ..., pn.
Each process is asynchronous which means that it proceeds at its own speed, which can be arbitrary and
remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctlyits local algorithm until it
possibly crashes. The model parametert denotes the maximal number of processes that may crash in a
run. A process that crashes in a run is said to befaulty. Otherwise, it iscorrector non-faulty.

Communication The processes cooperate by sending and receiving messages through bi-directional
channels. The communication network is a complete network, which means that any processpi can
directly send a message to any processpj (including itself). Each channel is reliable (no loss, corruption,
nor creation of messages), not necessarily first-in/first-out, and asynchronous (while the transit time of
each message is finite, there is no upper bound on message transit times).

A processpi invokes the operation “send TAG(m) to pj” to sendpj the message taggedTAG and
carrying the valuem. It receives a message taggedTAG by invoking the operation “receive TAG()”. The
macro-operation “broadcast TAG(m)” is a shortcut for “for each j ∈ {1, . . . , n} send TAG(m) to pj
end for”. (The sending order is arbitrary, which means that, if the sender crashes while executing this
statement, an arbitrary – possibly empty– subset of processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can know if an other process
crashed or is only very slow.

Notation In the following, the previous computation model, restricted to the case wheret < n/2, is
denotedCAMPn,t[t < n/2] (Crash Asynchronous Message-Passing).

It is important to notice that, in this model, all processes are a priori “equal”.As we will see, this
allows each process to be at the same time a “client” and a “server”. In this sense, and as noticed in the
Introduction, this model is the “fully connected peer-to-peer” model (whose structure is different from
other computing models such as the client/server model, where processes are partitioned into clients and
servers, playing different roles).

4

3 Atomic Register and Time-efficient Implementation

3.1 Atomic register

A concurrent objectis an object that can be accessed by several processes (possibly simultaneously).
An SWMR atomic register (sayREG) is a concurrent object which provides exactly one process
(called the writer) with an operation denotedREG .write(), and all processes with an operation denoted
REG .read(). When the writer invokesREG .write(v) it definesv as being the new value ofREG . An
SWMR atomic register (we also say the register islinearizable[4]) is defined by the following set of
properties [8].

• Liveness. An invocation of an operation by a correct process terminates.

• Consistency (safety). All the operations invoked by the processes, except possibly –for each faulty
process– the last operation it invoked, appear as if they have been executed sequentially and this
sequence of operations is such that:

– each read returns the value written by the closest write that precedes it (or the initial value
of REG if there is no preceding write),

– if an operationop1 terminated before an operationop2 started, thenop1 appears beforeop2
in the sequence.

This set of properties states that, from an external observer point of view, the object appears as if it
was accessed sequentially by the processes, this sequence (a) respecting the real time access order, and
(ii) belonging to the sequential specification of a read/write register.

3.2 Notion of a time-efficient operation

The notion of a time-efficient operation is not related to its correctness, butis a property of its implemen-
tation. It is sometimes callednon-functionalproperty. In the present case, it captures the time efficiency
of operations.2

As indicated in the introduction, we consider here two synchrony assumptions to define what we
mean by time-efficient operation implementation. As we have seen, both are based on the duration of
read and write operations, in terms of message transfer delays. Let us remember that, in both cases, it is
assumed that the local processing times needed to implement these high level read and write operations
are negligible.

3.2.1 Bounded delay-based definition of a time-efficient implementation

Let us assume an underlying communication system where message transferdelays are upper bounded
by∆.

Write-latency-free read operation and interfering write Intuitively, a read operation iswrite-latency-
free if its execution does “not interleave” with the execution of a write operation. More precisely, let
τr be the starting time of a read operation. This read operation iswrite-latency-freeif (a) it is not con-
current with a write operation, and (b) the closest preceding write did notcrash and started at a time
τw < τr −∆.

Let opr be a read operation, which started at timeτr. Let opw be the closest write precedingopr. If
opw started at timeτw ≥ τr −∆, it is said to beinterferingwith opr.

2Another example of a non-functional property isquiescence. This property is on algorithms implementing reliable com-
munication on top of unreliable networks [1]. It states that the number of underlying implementation messages generated by
an application message must be finite. Hence, if there is a time after which noapplication process sends messages, there is a
time after which the system is quiescent.

5

Bounded delay-based definition An implementation of a read/write register istime-efficient(from a
bounded delay point of view) if it satisfies the following properties.

• A write operation takes at most2∆ time units.

• A read operation which is write-latency-free takes at most2∆ time units.

• A read operation which is not write-latency-free takes at most

– 3∆ time units if the writer does not crash while executing the interfering write,
– 4∆ time units if the writer crashes while executing the interfering write (this scenariocan

appear at most once for each process).

3.2.2 Round synchrony-based definition of a time-efficient implementation

Let us assume that the underlying communication system is round-based synchronous, where each mes-
sage transfer delay is equal toδ. When considering this underlying synchrony assumption, it is assumed
that a process sends or broadcasts at most one message per round, and this is done at the beginning of a
round.

An implementation of a read/write register istime-efficient(from the round-based synchrony point
of view) if it satisfies the following properties.

• The duration of a write operation is2δ time units.

• The duration of a read operation is2δ time units, except possibly in the “at most once” scenario
where the writer crashes while executing the write operation concurrently with the read, in which
case the duration of the read can be3δ time units.

What does the proposed algorithm As we will see, the proposed algorithm, designed for the asyn-
chronous system modelCAMPn,t[t < n/2], provides an SWMR atomic register implementation which
is time-efficient for both its “bounded delay”-based definition, and its “round synchrony”-based defini-
tion.

4 An Algorithm with Time-efficient Operations

The design of the algorithm, described in Figure 1, is voluntarily formulated to be as close as possible
to ABD. For the reader aware of ABD, this will help its understanding.

Local variables Each processpi manages the following local variables.

• regi contains the value of the constructed registerREG , as currently known bypi. It is initialized
to the initial value ofREG (e.g., the default value⊥).

• wsni is the sequence number associated with the value inregi.

• rsni is the sequence number of the last read operation invoked bypi.

• swsni is a synchronization local variable. It contains the sequence number of the most recent
value ofREG that, topi’s knowledge, is known by at least(n − t) processes. This variable
(which is new with respect to other algorithms) is at the heart of the time-efficient implementation
of the read operation.

• resi is the value ofREG whose sequence number isswsni.

6

local variables initialization: regi ← ⊥; wsni ← 0; swsni ← 0; rsni ← 0.

operationwrite(v) is
(1) wsni ← wsni + 1; regi ← v; broadcast WRITE(wsni, v);
(2) wait

(

WRITE(wsni,−) received from(n− t) different processes
)

;
(3) return()
end operation.

operation read() is % the writer may directly returnregi %
(4) rsni ← rsni + 1; broadcast READ(rsni);
(5) wait

(

(messagesSTATE(rsn,−) received from(n− t) different processes)∧ (swsni ≥ maxwsn)
wheremaxwsn is the greatest sequence number in the previousSTATE(rsn,−) messages

)

;
(6) return(resi)
end operation.
%———————————————————————————————————————–

when WRITE(wsn, v) is received do
(7) if (wsn > wsni) then regi ← v; wsni ← wsn end if;
(8) if (not yet done)then broadcast WRITE(wsn, v) end if;
(9) if

(

WRITE(wsn,−) received from(n− t) different processes
)

(10) then if (wsn > swsni) ∧ (not already done)then swsni ← wsn; resi ← v end if
(11) end if.

when READ(rsn) is received frompj do
(12) send STATE(rsn,wsni) to pj .

Figure 1: Time-efficient SWMR atomic register inAMPn,t[t < n/2]

Client side: operationwrite() invoked by the writer When the writerpi invokesREG .write(v), it
increaseswsni, updatesregi, and broadcasts the messageWRITE(wsni, v) (line 1). Then, it waits until
it has received an acknowledgment message from(n − t) processes (line 2). When this occurs, the
operation terminates (line 3). Let us notice that the acknowledgment messageis a copy of the very same
message as the one it broadcast.

Server side: reception of a messagewrite(wsn, v) when a processpi receives such a message, and
this message carries a more recent value than the one currently stored inregi, pi updates accordingly
wsni andregi (line 7). Moreover, if this message is the first message carrying the sequence numberwsn,
pi forwards to all the processes the messageWRITE(wsn, v) it has received (line 8). This broadcast has
two aims: to be an acknowledgment for the writer, and to inform the other processes thatpi “knows”
this value.3

Moreover, whenpi has received the messageWRITE(wsn, v) from (n − t) different processes, and
swsni is smaller thanwsn, it updates its local synchronization variableswsni and accordingly assigns
v to resi (lines 9-11).

Server side: reception of a messageREAD(rsn) When a processpi receives such a message from a
processpj , it sends by return topj the messageSTATE(rsn,wsni), thereby informing it on the freshness
of the last value ofREG it knows (line 12). The parameterrsn allows the senderpj to associate the
messagesSTATE(rsn,−) it will receive with the corresponding request identified byrsn.

Client side: operation read() invoked by a processpi When a process invokesREG .read(), it first
broadcasts the messageREAD(rsni) with a new sequence number. Then, it waits until “some” predicate

3Let us observe that, due to asynchrony, it is possible thatwsni > wsn whenpi receives a messageWRITE(wsn, v) for
the first time.

7

is satisfied (line 5), and finally returns the current value ofresi. Let us notice that the valueresi that is
returned is the one whose sequence number isswsni.

The waiting predicate is the heart of the algorithm. Its first part states thatpi must have received a
messageSTATE(rsn,−) from (n−t) processes. Its second part, namely(swsni ≥ maxwsn), states that
the value inpi’s local variableresi is as recent or more recent than the value associated with the greatest
write sequence numberwsn received bypi in a messageSTATE(rsn,−). Combined with the broadcast
of messagesWRITE(wsn,−) issued by each process at line 8, this waiting predicate ensures both the
correctness of the returned value (atomicity), and the fact that the read implementation is time-efficient.

5 Proof of the Algorithm

5.1 Termination and atomicity

The properties proved in this section are independent of the message transfer delays (provided they are
finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is correct, all its read
invocations terminate.

Proof Let us first consider the writer process. As by assumption it is correct, itbroadcasts the message
WRITE(sn,−) (line 1). Each correct process broadcastsWRITE(sn,−) when it receives it for the first
time (line 8). As there are at least(n− t) correct processes, the writer eventually receivesWRITE(sn,−)
from these processes, and stops waiting at line 2.

Let us now consider a correct reader processpi. It follows from the same reasoning as before that
the reader receives the messageSTATE(rsn,−) from at least(n− t) processes (lines 5 and 12). Hence,
it remains to prove that the second part of the waiting predicate, namelyswsni ≥ maxwsn (line 5)
becomes eventually true, wheremaxwsn is the greatest write sequence number received bypi in a
messageSTATE(rsn,−). Let pj be the sender of this message. The following list of items is such that
itemx =⇒ item (x+ 1), from which follows thatswsni ≥ maxwsn (line 5) is eventually satisfied.

1. pj updatedwsnj tomaxwsn (line 7) before sendingSTATE(rsn,maxwsn) (line 12).

2. Hence,pj received previously the messageWRITE(maxwsn,−), and broadcast it the first time it
received it (line 8).

3. It follows that any correct process receives the messageWRITE(maxwsn,−) (at least frompj),
and broadcasts it the first time it receives it (line 8).

4. Consequently,pi eventually receives the messageWRITE(maxwsn,−) from (n − t) processes.
When this occurs, it updatesswsni (line 10), which is then≥ maxwsn, which concludes the
proof of the termination of a read operation.

✷Lemma 1

Lemma 2 The registerREG is atomic.

Proof Let read[i, x] be a read operation issued by a processpi which returns the value with sequence
numberx, andwrite[y] be the write operation which writes the value with sequence numbery. The
proof of the lemma is the consequence of the three following claims.

• Claim 1. If read[i, x] terminates beforewrite[y] starts, thenx < y.

• Claim 2. Ifwrite[x] terminates beforeread[i, y] starts, thenx ≤ y.

• Claim 3. If read[i, x] terminates beforeread[j, y] starts, thenx ≤ y.

8

Claim 1 states that no process can read from the future. Claim 2 states that no process can read over-
written values. Claim 3 states that there is no new/old read inversions [3, 11].

Proof of Claim 1.
This claim follows from the following simple observation. When the writer executeswrite[y], it first
increases its local variablewsn which becomes greater than any sequence number associated with its
previous write operations (line 1). Hence ifread[i, x] terminates beforewrite[y] starts, we necessarily
havex < y.

Proof of Claim 2.
It follows from line 2 and lines 7-8 that, whenwrite[x] terminates, there is a setQw of at least(n − t)
processespk such thatwsnk ≥ x. On another side, due to lines 4-5 and line 12,read[i, y] obtains a
messageSTATE() from a setQr of at least(n− t) processes.

As |Qw| ≥ n − t, |Qr| ≥ n − t, andn > 2t, it follows thatQw ∩ Qr is not empty. There is
consequently a processpk ∈ Qw ∩ Qr, such that thatwsnk ≥ x. Hence,pk sent topi the message
STATE(−, z), wherez ≥ x.

Due to (a) the definition ofmaxwsn ≥ z, (b) the predicateswsni ≥ maxwsn ≥ z (line 5), and
(c) the value ofswsni = y, it follows thaty = swsni ≥ z whenread[i, y] stops waiting at line 5. As,
z ≥ x, it follows y ≥ x, which proves the claim.

Proof of Claim 3.
Whenread[i, x] stops waiting at line 5, it returns the valueresi associated with the sequence number
swsni = x. Processpi previously received the messageWRITE(x,−) from a setQr1 of at least(n− t)
processes. The same occurs forpj , which, before returning, received the messageWRITE(y,−) from a
setQr2 of at least(n− t) processes.

As |Qr1| ≥ n− t, |Qr2| ≥ n− t, andn > 2t, it follows thatQr1 ∩Qr2 is not empty. Hence, there is
a processpk which sentSTATE(, x) to pi, and later sentSTATE(−, y) to pj . As swsnk never decreases,
it follows thatx ≤ y, which completes the proof of the lemma. ✷Lemma 2

Theorem 1 Algorithm1 implements anSWMR atomic register inCAMPn,t[t < n/2].

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity). ✷Theorem 1

5.2 Time-efficiency: thebounded delayassumption

As already indicated, this underlying synchrony assumption considers that every message takes at most
∆ time units. Moreover, let us remind that a read (which started at timeτr) is write-latency-free if it is
not concurrent with a write, and the last preceding write did not crash and started at timeτw < τr −∆.

Lemma 3 A write operation takes at most2∆ time units.

Proof The case of the writer is trivial. The messageWRITE() broadcast by the writer takes at most∆
time units, as do the acknowledgment messagesWRITE() sent by each process to the writer. In this case
2∆ correspond to a causality-related maximal round-trip delay (the reception of a message triggers the
sending of an associated acknowledgment). ✷Lemma 3

9

When the writer does not crash while executing a write operation The cases where the writer does
not crash while executing a write operation are captured by the next two lemmas.

Lemma 4 A write-latency-free read operation takes at most2∆ time units.

Proof Let pi be a process that issues a write-latency-free read operation, andτr be its starting time.
Moreover, Letτw the starting time of the last preceding write. As the read is write latency-free, we
haveτw + ∆ < τr. Moreover, as messages take at most∆ time units, and the writer did not crash
when executing the write, each non-crashed processpk received the messageWRITE(x,−) (sent by the
preceding write at timeτw + ∆ < τr), broadcast it (line 8), and updated its local variables such that
we havewsnk = x (lines 7-11) at imeτw +∆ < τr. Hence, all the messagesSTATE() received by the
readerpi carry the write sequence numberx. Moreover, due to the broadcast of line 8 executed by each
correct process, we haveswsni = x at some timeτw + 2∆ < τr + ∆. It follows that the predicate of
line 5 is satisfied atpi within 2∆ time units after it invoked the read operation. ✷Lemma 4

Lemma 5 A read operation which is not write-latency-free, and during which the writer does not crash
during the interfering write operation, takes at most3∆.

Proof Let us consider a read operation that starts at timeτr, concurrent with a write operation that starts
at timeτw and during which the writer does not crash. From the read operation point of view, the worst
case occurs when the read operation is invoked just after timeτw−∆, let us say at timeτr = τw−∆+ǫ.
As a messageSTATE(rsn,−) is sent by return when a messageREAD(rsn) is received, the messages
STATE(rsn,−) received bypi by time τr + 2∆ can be such that some carry the sequence numberx
(due to last previous write) while others carry the sequence numberx+1 (due to the concurrent write)4.
Hence,maxwsn = x or maxwsn = x + 1 (predicate of line 5). Ifmaxwsn = x, we also have
swsni = x andpi terminates its read. Ifmaxwsn = x + 1, pi must wait untilswsni = x + 1, which
occurs at the latest atτw +2∆ (whenpi receives the last message of the(n− t) messagesWRITE(y,−)
which makes true the predicates of lines 9-10, thereby allowing the predicateof line 5 to be satisfied).
When this occurs,pi terminates its read operation. Asτw = τr+∆−ǫ, pi returns at the latestτr+3∆−ǫ
time units after it invoked the read operation. ✷Lemma 4

When the writer crashes while executing a write operation The problem raised by the crash of the
writer while executing the write operation is when it crashes while broadcasting the messageWRITE(x,−)
(line 1): some processes receive this message by∆ time units, while other processes do not. This issue
is solved by the propagation of the messageWRITE(x,−) by the non-crashed processes that receive it
(line 8). This means that, in the worst case (as in synchronous systems), the messageWRITE(x,−) must
be forwarded by(t + 1) processes before being received by all correct processes. Thisworst scenario
may entail a cost of(t+ 1)∆ time units.

Figure 2 presents a simple modification of Algorithm 1, which allows a fast implementation of read
operations whose executions are concurrent with a write operation during which the writer crashes. The
modifications are underlined.

When a processpi receives a messageREAD(), it now returns a messageSTATE() containing an
additional field, namely the current value ofregi, its local copy ofREG (line 12).

When a processpi receives from a processpj a messageSTATE(−, wsn, v), it uses it in the waiting
predicate of line 5, but executes before the lines 7-11, as if this message wasWRITE(wsn, v). According
to the values of the predicates of lines 7, 9, and 10, this allowspi to expedite the update of its local
variableswsni, regi, swsni, andresi, thereby favoring fast termination.

4MessagesSTATE(rsn, x) are sent by the processes that receivedREAD(rsn) before τw, while the messages
STATE(rsn, x+ 1) are sent by the processes that receivedREAD(rsn) betweenτw andτr +∆ = τw + ǫ.

10

when WRITE(wsn, v) or STATE(rsn,wsn, v) is received do
(7) if (wsn > wsni) then regi ← v; wsni ← wsn; broadcast WRITE(wsn, v) end if;
(8) if (not yet done)then broadcast WRITE(wsn, v) end if;
(9) if

(

WRITE(wsn,−) received from(n− t) different processes
)

(10) then if (wsn > swsni) ∧ (not already done)then swsni ← wsn; resi ← v end if
(11) end if.

when READ(rsn) is received frompj do
(12) send STATE(rsn,wsni, regi) to pj .

Figure 2: Modified algorithm for time-efficient read in case of concurrent writer crash

The reader can check that these modifications do not alter the proofs of Lemma 1 (termination) and
Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the writer crashes during
the interfering write operation, takes at most4∆ time units.

Proof Let τr be the time at which the read operation starts. As in the proof of Lemma 4, the mes-
sagesSTATE(rsn,−,−) receivedpi by timeτr + 2∆ can be such that some carry the sequence number
wsn = x (due to last previous write) while some others carry the sequence numberwsn = x + 1 (due
to the concurrent write during which the writer crashes). If all these messages carrywsn = x, the
read terminates by timeτr + 2∆. If at least one of these messages isSTATE(rsn, x + 1,−), we have
maxwsn = x+ 1, andpi waits until the predicateswsni ≥ maxwsn (= x+ 1) becomes true (line 5).

When it receivedSTATE(rsn, x+ 1,−), if not yet done,pi broadcast the messageWRITE(rsn, x+
1,−), (line 8 of Figure 2), which is received by the other processes within∆ time units. If not yet done,
this entails the broadcast by each correct process of the same messageWRITE(rsn, x+1,−). Hence, at
most∆ time units later,pi has received the messageWRITE(rsn, x+ 1) from (n− t) processes, which
entails the update ofswsni to (x + 1). Consequently the predicate of line 5 becomes satisfied, andpi
terminates its read operation.

When counting the number of consecutive communication steps, we have: The messageREAD(rsn)
bypi, followed by a messageSTATE(rsn, x+1,−) sent by some process and received bypi, followed by
the messageWRITE(rsn, x+1) broadcast bypi, followed by the messageWRITE(rsn, x+1) broadcast
by each non-crashed process (if not yet done). Hence, when the writer crashes during a concurrent read,
the read returns within at mostτr + 4∆ time units. ✷Lemma 6

Theorem 2 Algorithm 1 modified as indicated in Figure2 implements inCAMPn,t[t < n/2] an
SWMR atomic register with time-efficient operations (where the time-efficiency notion is based on the
bounded delayassumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3, Lemma 4,Lemma 5,
and Lemma 6 (time-efficiency). ✷Theorem 2

5.3 Time-efficient implementation: theround-based synchronyassumption

As already indicated, this notion of a time-efficient implementation assumes an underlying round-based
synchronous communication system, where the duration of a round (duration of all message transfer
delays) isδ.

Lemma 7 The duration of write operation is2δ.

11

Proof The proof follows directly from the observation that the write operation terminates after a round-
trip delay, whose duration is2δ. ✷Lemma 7

Lemma 8 The duration of a read operation is2δ time units if the writer does not crash while executing
a write operation concurrent with the read. Otherwise, it can be3δ.

Proof Considering a read operation that starts at timeτr, let us assume that the writer does not crash
while concurrently executing a write operation. At timeτr + δ all processes receives the message
READ(rsn) sent by the reader (line 4), and answer with a messageSTATE(rsn,−) (line 12). Due the
round-based synchrony assumption, all these messages carry the samesequence numberx, which is
equal to both their local variablewsni andswsni. It follows that at timeτr + 2δ, the predicate of line 5
is satisfied at the reader, which consequently returns from the read operation.

If the writer crashes while concurrently executing a write operation, it is possible that during some
time (a round duration), some processes know the sequence numberx, while other processes know only
x−1. But this synchrony break in the knowledge of the last sequence numberis mended during the next
round thanks to the messageWRITE(x, v) sent by the processes which are aware ofx (See Figure 2).
After this additional round, the read terminates (as previously) in two rounds. Hence, the read returns at
the latest at timeτr + 3δ. ✷Lemma 8

Theorem 3 Algorithm 1 modified as indicated in Figure2 implements inCAMPn,t[t < n/2] an
SWMR atomic register with time-efficient operations (where the time-efficiency notion is based on the
round-based synchronyassumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 7, and Lemma 8 (time-
efficiency). ✷Theorem 3

6 Conclusion

This work has presented a new distributed algorithm implementing an atomic read/write register on top
of an asynchronousn-process message-passing system in which up tot < n/2 processes may crash.
When designing it, the constraints we imposed on this algorithm were (a) from an efficiency point of
view: provide time-efficient implementations for read and write operations, (b) and from a design prin-
ciple point of view: remain “as close as possible” to the flagship ABD algorithmintroduced by Attiya,
Bar-Noy and Dolev [2].

The “time-efficiency” property of the proposed algorithm has been analyzed according to two syn-
chrony assumptions on the underlying system.

• The first assumption considers an upper bound∆ on message transfer delays. Under such an
assumption, any write operation takes then at most2∆ time units, and a read operation takes at
most2∆ time units when executed in good circumstances (i.e., when there is no write operation
concurrent with the read operation). Hence, the inherent cost of an operation is a round-trip delay,
always for a write and in favorable circumstances for a read. A read operation concurrent with a
write operation during which the writer does not crash, may require an additional cost of∆, which
means that it takes at most3∆ time units. Finally, if the writer crashes during a write concurrent
with a read, the read may take at most4∆ time units. This shows clearly the incremental cost
imposed by the adversaries (concurrency of write operations, and failure of the writer).

12

• The second assumption investigated for a “time-efficient implementation” is the one provided by
a round-based synchronous system, where message transfer delays(denotedδ) are assumed to be
the same for all messages. It has been shown that, under this assumption, the duration of a write is
2δ, and the duration of a read is2δ, or exceptionally3δ when the writer crashes while concurrently
executing a write operation.

It is important to remind that the proposed algorithm remains correct in the presence of any asyn-
chrony pattern. Its time-efficiency features are particularly interesting when the system has long syn-
chrony periods.

Differently from the proposed algorithm, the ABD algorithm does not displaydifferent behaviors in
different concurrency and failure patterns. In ABD, the duration of all write operations is upper bounded
by 2∆ time units (or equal to2δ), and the duration of all read operations is upper bounded by4∆ time
units (or equal to4δ). The trade-off between ABD and our algorithm lies the message complexity,which
isO(n) in ABD for both read and write operations, while it isO(n2) for a write operation andO(n) for
a read operation in the proposed algorithm. Hence our algorithm is particularly interesting for registers
used in read-dominated applications. Moreover, it helps us better understand the impact of the adversary
pair “writer concurrency + writer failure” on the efficiency of the read operations.

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANR Project 40300781 DISCMAT
devoted to connections between mathematics and distributed computing, and the French ANR project
DISPLEXITY devoted to the study of computability and complexity in distributed computing.

References
[1] Aguilera M.K., Chen W. and Toueg S., On quiescent reliable communication.SIAM Journal of Computing,

29(6):2040-2073, 2000.

[2] Attiya H., Bar-Noy A. and Dolev D., Sharing memory robustly in message passing systems.Journal of the
ACM, 42(1):121-132, 1995.

[3] Attiya H. and Welch J.,Distributed computing: fundamentals, simulations and advanced topics, (2d Edi-
tion), Wiley-Interscience, 414 pages, 2004.

[4] Herlihy M.P. and Wing J.M, Linearizability: a correctness condition for concurrent objects.ACM Transac-
tions on Programming Languages and Systems, 12(3):463-492, 1990.

[5] Dutta P., Guerraoui R., Levy R., and Chakraborty A., How fast can a distributed atomic read be?Proc. 23rd
ACM Symposium on Principles of distributed computing (PODC’04), ACM Press, pp. 236-245, 2004.

[6] Dutta P., Guerraoui R., Levy R., and Vukolic M., Fast access to distributed atomic memory.SIAM Journal
of Computing, 39(8):3752-3783, 2010.

[7] Kramer S.N.,History Begins at Sumer: Thirty-Nine Firsts in Man’s Recorded History. University of Penn-
sylvania Press, 416 pages, 1956 (ISBN 978-0-8122-1276-1).

[8] Lamport L., On interprocess communication, Part I: basic formalism.Distributed Computing, 1(2):77-85,
1986.

[9] Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN
1-55860-384-4).

[10] Raynal M.,Communication and agreement abstractions for fault-tolerant asynchronous distributed systems.
Morgan & Claypool Publishers, 251 pages, 2010 (ISBN 978-1-60845-293-4).

13

[11] Raynal M.,Distributed algorithms for message-passing systems. Springer, 510 pages, 2013 (ISBN: 978-3-
642-38122-5).

[12] Raynal M.,Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, 2013
(ISBN 978-3-642-32026-2).

[13] Turing A.M., On computable numbers with an applicationto the Entscheidungsproblem.Proc. of the London
Mathematical Society, 42:230-265, 1936.

[14] Vukolic M., Quorum systems, with applications to storage and consensus. Morgan & Claypool Publishers,
132 pages, 2012 (ISBN 978-1-60845-683-3).

14

