Achour Mostéfaoui

Michel Raynal

Time-Efficient Read/Write Register in Crash-prone Asynchronous Message-Passing Systems

Keywords: Asynchronous message-passing system, Atomic read/write register, Concurrency, Fast operation, Process crash failure, Synchronous behavior, Time-efficient operation

The atomic register is certainly the most basic object of computing science. Its implementation on top of an n-process asynchronous message-passing system has received a lot of attention. It has been shown that t < n/2 (where t is the maximal number of processes that may crash) is a necessary and sufficient requirement to build an atomic register on top of a crash-prone asynchronous messagepassing system. Considering such a context, this paper visits the notion of a fast implementation of an atomic register, and presents a new time-efficient asynchronous algorithm. Its time-efficiency is measured according to two different underlying synchrony assumptions. Whatever this assumption, a write operation always costs a round-trip delay, while a read operation costs always a round-trip delay in favorable circumstances (intuitively, when it is not concurrent with a write). When designing this algorithm, the design spirit was to be as close as possible to the one of the famous ABD algorithm (proposed by Attiya, Bar-Noy, and Dolev).

Introduction

Since Sumer time [START_REF] Kramer | History Begins at Sumer: Thirty-Nine Firsts in Man's Recorded History[END_REF], and -much later-Turing's machine tape [START_REF] Turing | On computable numbers with an application to the Entscheidungsproblem[END_REF], read/write objects are certainly the most basic memory-based communication objects. Such an object, usually called a register, provides its users (processes) with a write operation which defines the new value of the register, and a read operation which returns the value of the register. When considering sequential computing, registers are universal in the sense that they allow to solve any problem that can be solved [START_REF] Turing | On computable numbers with an application to the Entscheidungsproblem[END_REF].

Register in message-passing systems In a message-passing system, the computing entities communicate only by sending and receiving messages transmitted through a communication network. Hence, in such a system, a register is not a communication object given for free, but constitutes a communication abstraction which must be built with the help of the communication network and the local memories of the processes.

Several types of registers can be defined according to which processes are allowed to read or write it, and the quality (semantics) of the value returned by each read operation. We consider here registers which are single-writer multi-reader (SWMR), and atomic. Atomicity means that (a) each read or write operation appears as if it had been executed instantaneously at a single point of the time line, between is start event and its end event, (b) no two operations appear at the same point of the time line, and (c) a read returns the value written by the closest preceding write operation (or the initial value of the register if there is no preceding write) [START_REF] Lamport | On interprocess communication, Part I: basic formalism[END_REF]. Algorithms building multi-writer multi-reader (MWMR) atomic registers from single-writer single-reader (SWSR) registers with a weaker semantics (safe or regular registers) are described in several textbooks (e.g., [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF]).

Many distributed algorithms have been proposed, which build a register on top of a message-passing system, be it failure-free or failure-prone. In the failure-prone case, the addressed failure models are the process crash failure model, or the Byzantine process failure model (see, the textbooks [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Communication and agreement abstractions for fault-tolerant asynchronous distributed systems[END_REF][START_REF] Raynal | Distributed algorithms for message-passing systems[END_REF]). The most famous of these algorithms was proposed by H. Attiya, A. Bar-Noy, and D. Dolev in [START_REF] Attiya | Sharing memory robustly in message passing systems[END_REF]. This algorithm, which is usually called ABD according to the names its authors, considers an n-process asynchronous system in which up to t < n/2 processes may crash (it is also shown in [START_REF] Attiya | Sharing memory robustly in message passing systems[END_REF] that t < n/2 is an upper bound of the number of process crashes which can be tolerated). This simple and elegant algorithm, relies on (a) quorums [START_REF] Vukolic | Quorum systems, with applications to storage and consensus[END_REF], and (b) a simple broadcast/reply communication pattern. ABD uses this pattern once in a write operation, and twice in a read operation implementing an SWMR register.

Fast operation To our knowledge, the notion of a fast implementation of an atomic register operation, in failure-prone asynchronous message-passing systems, was introduced in [START_REF] Dutta | How fast can a distributed atomic read be?[END_REF] for process crash failures, and in [START_REF] Dutta | Fast access to distributed atomic memory[END_REF] for Byzantine process failures. These papers consider a three-component model, namely there are three different types of processes: a set of writers W , a set of readers R, and a set of servers S which implements the register. Moreover, a client (a writer or a reader) can communicate only with the servers, and the servers do not communicate among themselves.

In these papers, fast means that a read or write operation must entail exactly one communication round-trip delay between a client (the writer or a reader) and the servers. When considering the process crash failure model (the one we are interested in in this paper), it is shown in [START_REF] Dutta | How fast can a distributed atomic read be?[END_REF] that, when

(|W | = 1) ∧ (t ≥ 1) ∧ (|R| ≥ 2), the condition (|R| < |S| t -2
) is necessary and sufficient to have fast read and write operations (as defined above), which implement an atomic register. It is also shown in [START_REF] Dutta | How fast can a distributed atomic read be?[END_REF] that there is no fast implementation of an MWMR atomic register if

(|W | ≥ 2) ∧ (|R| ≥ 2) ∧ (t ≥ 1) .

Content of the paper

The work described in [START_REF] Dutta | How fast can a distributed atomic read be?[END_REF][START_REF] Dutta | Fast access to distributed atomic memory[END_REF] is mainly on the limits of the three-component model (writers, readers, and servers constitute three independent sets of processes) in the presence of process crash failures, or Byzantine process failures. These limits are captured by predicates involving the set of writers (W), the set of readers (R), the set of servers (S), and the maximal number of servers that can be faulty (t). Both the underlying model used in this paper and its aim are different from this previous work.

While keeping the spirit (basic principles and simplicity) of ABD, our aim is to design a time-efficient implementation of an atomic register in the classical model used in many articles and textbooks (see, e.g., [START_REF] Attiya | Sharing memory robustly in message passing systems[END_REF][START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF]). This model, where any process can communicate with any process, can be seen as a peer-to-peer model in which each process is both a client (it can invoke operations) and a server (it manages a local copy of the register that is built). 1Adopting the usual distributed computing assumption that (a) local processing times are negligible and assumed consequently to have zero duration, and (b) only communication takes time, this paper focuses on the communication time needed to complete a read or write operation. For this reason the term time-efficiency is defined here in terms on message transfer delays, namely, the cost of a read or write operation is measured by the number of "consecutive" message transfer delays they require to terminate. Let us notice that this includes transfer delays due to causally related messages (for example round trip delays generated by request/acknowledgment messages), but also (as we will see in the proposed algorithm) message transfer delays which occur sequentially without being necessarily causally related. Let us notice that this notion of a time-efficient operation does not involve the model parameter t.

In order to give a precise meaning to the notion of a "time-efficient implementation" of a register operation, this paper considers two distinct ways to measure the duration of read and write operations, each based on a specific additional synchrony assumption. One is the "bounded delay" assumption, the other one the "round-based synchrony" assumption. More precisely, these assumptions and the associated time-efficiency of the proposed algorithm are the following.

• Bounded delay assumption.

Let us assume that every message takes at most ∆ time units to be transmitted from its sender to any of its receivers. In such a context, the algorithm presented in the paper has the following time-efficiency properties.

-A write operation takes at most 2∆ time units.

-A read operation which is write-latency-free takes at most 2∆ time units. (The notion of write-latency-freedom is defined in Section 3. Intuitively, it captures the fact that the behavior of the read does not depend on a concurrent or faulty write operation, which is the usual case in read-dominated applications.) Otherwise, it takes at most 3∆ time units, except in the case where the read operation is concurrent with a write operation and the writer crashes during this write, where it can take up to 4∆ time units. (Let us remark that a process can experience at most once the 4∆ read operation scenario.) • Round-based synchrony assumption.

Here, the underlying communication system is assumed to be round-based synchronous [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lamport | On interprocess communication, Part I: basic formalism[END_REF][START_REF] Raynal | Distributed algorithms for message-passing systems[END_REF]. In such a system, the processes progress by executing consecutive synchronous rounds. In every round, according to its code, a process possibly sends a message to a subset of processes, then receives all the messages sent to it during the current round, and finally executes local computation. At the end of a round, all processes are directed to simultaneously progress to the next round.

In such a synchronous system, everything appears as if all messages take the very same time to go from their sender to theirs receivers, namely the duration δ associated with a round. When executed in such a context, the proposed algorithm has the following time-efficiency properties.

-The duration of a write operation is 2δ time units.

-The duration of a read operation is 2δ time units, except possibly in the specific scenario where the writer crashes while executing the write operation concurrently with the read, in which case the duration of the read can be 3δ time units (as previously, let us remark that a process can experience at most once the 3δ read operation scenario.)

Hence, while it remains correct in the presence of any asynchronous message pattern (e.g., when each message takes one more time unit than any previous message), the proposed algorithm is particularly time-efficient when "good" scenarios occur. Those are the ones defined by the previous synchrony patterns where the duration of a read or a write operation corresponds to a single round-trip delay. Moreover, in the other synchronous scenarios, where a read operation is concurrent with a write, the maximal duration of the read operation is precisely quantified. A concurrent write adds uncertainty whose resolution by a read operation requires one more message transfer delay (two in the case of the ∆ synchrony assumption, if the concurrent write crashes).

Roadmap

The paper consists of 6 sections. Section 2 presents the system model. Section 3 defines the atomic register abstraction, and the notion of a time-efficient implementation. Then, Section 4 presents an asynchronous algorithm providing an implementation of an atomic register with time-efficient operations, as previously defined. Section 5 proves its properties. Finally, Section 6 concludes the paper.

System Model

Processes The computing model is composed of a set of n sequential processes denoted p 1 , ..., p n . Each process is asynchronous which means that it proceeds at its own speed, which can be arbitrary and remains always unknown to the other processes.

A process may halt prematurely (crash failure), but executes correctly its local algorithm until it possibly crashes. The model parameter t denotes the maximal number of processes that may crash in a run. A process that crashes in a run is said to be faulty. Otherwise, it is correct or non-faulty.

Communication

The processes cooperate by sending and receiving messages through bi-directional channels. The communication network is a complete network, which means that any process p i can directly send a message to any process p j (including itself). Each channel is reliable (no loss, corruption, nor creation of messages), not necessarily first-in/first-out, and asynchronous (while the transit time of each message is finite, there is no upper bound on message transit times).

A process p i invokes the operation "send TAG(m) to p j " to send p j the message tagged TAG and carrying the value m. It receives a message tagged TAG by invoking the operation "receive TAG()". The macro-operation "broadcast TAG(m)" is a shortcut for "for each j ∈ {1, . . . , n} send TAG(m) to p j end for". (The sending order is arbitrary, which means that, if the sender crashes while executing this statement, an arbitrary -possibly empty-subset of processes will receive the message.)

Let us notice that, due to process and message asynchrony, no process can know if an other process crashed or is only very slow. Notation In the following, the previous computation model, restricted to the case where t < n/2, is denoted CAMP n,t [t < n/2] (Crash Asynchronous Message-Passing).

It is important to notice that, in this model, all processes are a priori "equal". As we will see, this allows each process to be at the same time a "client" and a "server". In this sense, and as noticed in the Introduction, this model is the "fully connected peer-to-peer" model (whose structure is different from other computing models such as the client/server model, where processes are partitioned into clients and servers, playing different roles).

Atomic Register and Time-efficient Implementation

Atomic register

A concurrent object is an object that can be accessed by several processes (possibly simultaneously). An SWMR atomic register (say REG) is a concurrent object which provides exactly one process (called the writer) with an operation denoted REG.write(), and all processes with an operation denoted REG.read(). When the writer invokes REG.write(v) it defines v as being the new value of REG. An SWMR atomic register (we also say the register is linearizable [START_REF] Herlihy | Linearizability: a correctness condition for concurrent objects[END_REF]) is defined by the following set of properties [START_REF] Lamport | On interprocess communication, Part I: basic formalism[END_REF].

• Liveness. An invocation of an operation by a correct process terminates.

• Consistency (safety). All the operations invoked by the processes, except possibly -for each faulty process-the last operation it invoked, appear as if they have been executed sequentially and this sequence of operations is such that:

-each read returns the value written by the closest write that precedes it (or the initial value of REG if there is no preceding write), -if an operation op1 terminated before an operation op2 started, then op1 appears before op2 in the sequence.

This set of properties states that, from an external observer point of view, the object appears as if it was accessed sequentially by the processes, this sequence (a) respecting the real time access order, and (ii) belonging to the sequential specification of a read/write register.

Notion of a time-efficient operation

The notion of a time-efficient operation is not related to its correctness, but is a property of its implementation. It is sometimes called non-functional property. In the present case, it captures the time efficiency of operations. 2As indicated in the introduction, we consider here two synchrony assumptions to define what we mean by time-efficient operation implementation. As we have seen, both are based on the duration of read and write operations, in terms of message transfer delays. Let us remember that, in both cases, it is assumed that the local processing times needed to implement these high level read and write operations are negligible.

Bounded delay-based definition of a time-efficient implementation

Let us assume an underlying communication system where message transfer delays are upper bounded by ∆.

Write-latency-free read operation and interfering write Intuitively, a read operation is write-latencyfree if its execution does "not interleave" with the execution of a write operation. More precisely, let τ r be the starting time of a read operation. This read operation is write-latency-free if (a) it is not concurrent with a write operation, and (b) the closest preceding write did not crash and started at a time τ w < τ r -∆.

Let opr be a read operation, which started at time τ r . Let opw be the closest write preceding opr. If opw started at time τ w ≥ τ r -∆, it is said to be interfering with opr.

Bounded delay-based definition An implementation of a read/write register is time-efficient (from a bounded delay point of view) if it satisfies the following properties.

• A write operation takes at most 2∆ time units.

• A read operation which is write-latency-free takes at most 2∆ time units.

• A read operation which is not write-latency-free takes at most -3∆ time units if the writer does not crash while executing the interfering write, -4∆ time units if the writer crashes while executing the interfering write (this scenario can appear at most once for each process).

Round synchrony-based definition of a time-efficient implementation

Let us assume that the underlying communication system is round-based synchronous, where each message transfer delay is equal to δ. When considering this underlying synchrony assumption, it is assumed that a process sends or broadcasts at most one message per round, and this is done at the beginning of a round.

An implementation of a read/write register is time-efficient (from the round-based synchrony point of view) if it satisfies the following properties.

• The duration of a write operation is 2δ time units.

• The duration of a read operation is 2δ time units, except possibly in the "at most once" scenario where the writer crashes while executing the write operation concurrently with the read, in which case the duration of the read can be 3δ time units.

What does the proposed algorithm As we will see, the proposed algorithm, designed for the asynchronous system model CAMP n,t [t < n/2], provides an SWMR atomic register implementation which is time-efficient for both its "bounded delay"-based definition, and its "round synchrony"-based definition.

An Algorithm with Time-efficient Operations

The design of the algorithm, described in Figure 1, is voluntarily formulated to be as close as possible to ABD. For the reader aware of ABD, this will help its understanding.

Local variables

Each process p i manages the following local variables.

• reg i contains the value of the constructed register REG, as currently known by p i . It is initialized to the initial value of REG (e.g., the default value ⊥). • wsn i is the sequence number associated with the value in reg i .

• rsn i is the sequence number of the last read operation invoked by p i .

• swsn i is a synchronization local variable. It contains the sequence number of the most recent value of REG that, to p i 's knowledge, is known by at least (n -t) processes. This variable (which is new with respect to other algorithms) is at the heart of the time-efficient implementation of the read operation. • res i is the value of REG whose sequence number is swsn i .

local variables initialization: regi ← ⊥; wsni ← 0; swsni ← 0; rsni ← 0. operation write(v) is (1) wsni ← wsni + 1; regi ← v; broadcast WRITE(wsni, v);

(2) wait WRITE(wsni, -) received from (nt) different processes ;

(3) return() end operation. operation read() is % the writer may directly return regi % (4) rsni ← rsni + 1; broadcast READ(rsni); (5) wait (messages STATE(rsn, -) received from (nt) different processes) ∧ (swsni ≥ maxwsn)

where maxwsn is the greatest sequence number in the previous STATE(rsn, -) messages ; (6) return(resi) end operation. %- ---------------------------------------when WRITE(wsn, v) is received do [START_REF] Kramer | History Begins at Sumer: Thirty-Nine Firsts in Man's Recorded History[END_REF] Client side: operation write() invoked by the writer When the writer p i invokes REG.write(v), it increases wsn i , updates reg i , and broadcasts the message WRITE(wsn i , v) (line 1). Then, it waits until it has received an acknowledgment message from (n -t) processes (line 2). When this occurs, the operation terminates (line 3). Let us notice that the acknowledgment message is a copy of the very same message as the one it broadcast.

Server side: reception of a message write(wsn, v) when a process p i receives such a message, and this message carries a more recent value than the one currently stored in reg i , p i updates accordingly wsn i and reg i (line 7). Moreover, if this message is the first message carrying the sequence number wsn, p i forwards to all the processes the message WRITE(wsn, v) it has received (line 8). This broadcast has two aims: to be an acknowledgment for the writer, and to inform the other processes that p i "knows" this value. 3Moreover, when p i has received the message WRITE(wsn, v) from (n -t) different processes, and swsn i is smaller than wsn, it updates its local synchronization variable swsn i and accordingly assigns v to res i (lines 9-11).

Server side: reception of a message READ(rsn) When a process p i receives such a message from a process p j , it sends by return to p j the message STATE(rsn, wsn i), thereby informing it on the freshness of the last value of REG it knows (line 12). The parameter rsn allows the sender p j to associate the messages STATE(rsn, -) it will receive with the corresponding request identified by rsn.

Client side: operation read() invoked by a process p i When a process invokes REG.read(), it first broadcasts the message READ(rsn i) with a new sequence number. Then, it waits until "some" predicate is satisfied (line 5), and finally returns the current value of res i . Let us notice that the value res i that is returned is the one whose sequence number is swsn i .

The waiting predicate is the heart of the algorithm. Its first part states that p i must have received a message STATE(rsn, -) from (n-t) processes. Its second part, namely (swsn i ≥ maxwsn), states that the value in p i 's local variable res i is as recent or more recent than the value associated with the greatest write sequence number wsn received by p i in a message STATE(rsn, -). Combined with the broadcast of messages WRITE(wsn, -) issued by each process at line 8, this waiting predicate ensures both the correctness of the returned value (atomicity), and the fact that the read implementation is time-efficient.

Proof of the Algorithm

Termination and atomicity

The properties proved in this section are independent of the message transfer delays (provided they are finite).

Lemma 1 If the writer is correct, all its write invocations terminate. If a reader is correct, all its read invocations terminate.

Proof Let us first consider the writer process. As by assumption it is correct, it broadcasts the message WRITE(sn, -) (line 1). Each correct process broadcasts WRITE(sn, -) when it receives it for the first time (line 8). As there are at least (n -t) correct processes, the writer eventually receives WRITE(sn, -) from these processes, and stops waiting at line 2.

Let us now consider a correct reader process p i . It follows from the same reasoning as before that the reader receives the message STATE(rsn, -) from at least (n -t) processes (lines 5 and 12). Hence, it remains to prove that the second part of the waiting predicate, namely swsn i ≥ maxwsn (line 5) becomes eventually true, where maxwsn is the greatest write sequence number received by p i in a message STATE(rsn, -). Let p j be the sender of this message. The following list of items is such that item x =⇒ item (x + 1), from which follows that swsn i ≥ maxwsn (line 5) is eventually satisfied.

1. p j updated wsn j to maxwsn (line 7) before sending STATE(rsn, maxwsn) (line 12).

2. Hence, p j received previously the message WRITE(maxwsn, -), and broadcast it the first time it received it (line 8).

3. It follows that any correct process receives the message WRITE(maxwsn, -) (at least from p j), and broadcasts it the first time it receives it (line 8).

4. Consequently, p i eventually receives the message WRITE(maxwsn, -) from (n -t) processes.

When this occurs, it updates swsn i (line 10), which is then ≥ maxwsn, which concludes the proof of the termination of a read operation.

✷ Lemma 1

Lemma 2

The register REG is atomic.

Proof Let read[i, x] be a read operation issued by a process p i which returns the value with sequence number x, and write[y] be the write operation which writes the value with sequence number y. The proof of the lemma is the consequence of the three following claims.

• Claim 1. If read[i, x] terminates before write[y] starts, then x < y.

• Claim 2. If write[x] terminates before read[i, y] starts, then x ≤ y.

• Claim 3. If read[i, x] terminates before read[j, y] starts, then x ≤ y.

Claim 1 states that no process can read from the future. Claim 2 states that no process can read overwritten values. Claim 3 states that there is no new/old read inversions [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Raynal | Distributed algorithms for message-passing systems[END_REF].

Proof Due to (a) the definition of maxwsn ≥ z, (b) the predicate swsn i ≥ maxwsn ≥ z (line 5), and (c) the value of swsn i = y, it follows that y = swsn i ≥ z when read[i, y] stops waiting at line 5. As, z ≥ x, it follows y ≥ x, which proves the claim.

Proof of Claim 3. When read[i, x] stops waiting at line 5, it returns the value res i associated with the sequence number swsn i = x. Process p i previously received the message WRITE(x, -) from a set Q r1 of at least (n -t) processes. The same occurs for p j , which, before returning, received the message WRITE(y, -) from a set Q r2 of at least (n -t) processes.

As |Q r1 | ≥ n -t, |Q r2 | ≥ n -t, and n > 2t, it follows that Q r1 ∩ Q r2 is not empty. Hence, there is a process p k which sent STATE(, x) to p i , and later sent STATE(-, y) to p j . As swsn k never decreases, it follows that x ≤ y, which completes the proof of the lemma.

✷ Lemma 2

Theorem 1 Algorithm 1 implements an SWMR atomic register in CAMP n,t [t < n/2].

Proof The proof follows from Lemma 1 (termination) and Lemma 2 (atomicity). ✷ T heorem 1

Time-efficiency: the bounded delay assumption

As already indicated, this underlying synchrony assumption considers that every message takes at most ∆ time units. Moreover, let us remind that a read (which started at time τ r) is write-latency-free if it is not concurrent with a write, and the last preceding write did not crash and started at time τ w < τ r -∆.

Lemma 3 A write operation takes at most 2∆ time units.

Proof The case of the writer is trivial. The message WRITE() broadcast by the writer takes at most ∆ time units, as do the acknowledgment messagesWRITE() sent by each process to the writer. In this case 2∆ correspond to a causality-related maximal round-trip delay (the reception of a message triggers the sending of an associated acknowledgment). ✷ Lemma 3

Proof The proof follows directly from the observation that the write operation terminates after a roundtrip delay, whose duration is 2δ. ✷ Lemma 7

Lemma 8

The duration of a read operation is 2δ time units if the writer does not crash while executing a write operation concurrent with the read. Otherwise, it can be 3δ.

Proof Considering a read operation that starts at time τ r , let us assume that the writer does not crash while concurrently executing a write operation. At time τ r + δ all processes receives the message READ(rsn) sent by the reader (line 4), and answer with a message STATE(rsn, -) (line 12). Due the round-based synchrony assumption, all these messages carry the same sequence number x, which is equal to both their local variable wsn i and swsn i . It follows that at time τ r + 2δ, the predicate of line 5 is satisfied at the reader, which consequently returns from the read operation.

If the writer crashes while concurrently executing a write operation, it is possible that during some time (a round duration), some processes know the sequence number x, while other processes know only x -1. But this synchrony break in the knowledge of the last sequence number is mended during the next round thanks to the message WRITE(x, v) sent by the processes which are aware of x (See Figure 2). After this additional round, the read terminates (as previously) in two rounds. Hence, the read returns at the latest at time τ r + 3δ.

✷ Lemma 8

Theorem 3 Algorithm 1 modified as indicated in Figure 2

Conclusion

This work has presented a new distributed algorithm implementing an atomic read/write register on top of an asynchronous n-process message-passing system in which up to t < n/2 processes may crash. When designing it, the constraints we imposed on this algorithm were (a) from an efficiency point of view: provide time-efficient implementations for read and write operations, (b) and from a design principle point of view: remain "as close as possible" to the flagship ABD algorithm introduced by Attiya, Bar-Noy and Dolev [START_REF] Attiya | Sharing memory robustly in message passing systems[END_REF].

The "time-efficiency" property of the proposed algorithm has been analyzed according to two synchrony assumptions on the underlying system.

• The first assumption considers an upper bound ∆ on message transfer delays. Under such an assumption, any write operation takes then at most 2∆ time units, and a read operation takes at most 2∆ time units when executed in good circumstances (i.e., when there is no write operation concurrent with the read operation). Hence, the inherent cost of an operation is a round-trip delay, always for a write and in favorable circumstances for a read. A read operation concurrent with a write operation during which the writer does not crash, may require an additional cost of ∆, which means that it takes at most 3∆ time units. Finally, if the writer crashes during a write concurrent with a read, the read may take at most 4∆ time units. This shows clearly the incremental cost imposed by the adversaries (concurrency of write operations, and failure of the writer).

• The second assumption investigated for a "time-efficient implementation" is the one provided by a round-based synchronous system, where message transfer delays (denoted δ) are assumed to be the same for all messages. It has been shown that, under this assumption, the duration of a write is 2δ, and the duration of a read is 2δ, or exceptionally 3δ when the writer crashes while concurrently executing a write operation.

It is important to remind that the proposed algorithm remains correct in the presence of any asynchrony pattern. Its time-efficiency features are particularly interesting when the system has long synchrony periods.

Differently from the proposed algorithm, the ABD algorithm does not display different behaviors in different concurrency and failure patterns. In ABD, the duration of all write operations is upper bounded by 2∆ time units (or equal to 2δ), and the duration of all read operations is upper bounded by 4∆ time units (or equal to 4δ). The trade-off between ABD and our algorithm lies the message complexity, which is O(n) in ABD for both read and write operations, while it is O(n 2) for a write operation and O(n) for a read operation in the proposed algorithm. Hence our algorithm is particularly interesting for registers used in read-dominated applications. Moreover, it helps us better understand the impact of the adversary pair "writer concurrency + writer failure" on the efficiency of the read operations.

Figure 1 :

 1 Figure 1: Time-efficient SWMR atomic register in AMP n,t [t < n/2]

 if (wsn > wsni) then regi ← v; wsni ← wsn end if; (8) if (not yet done) then broadcast WRITE(wsn, v) end if; (9) if WRITE(wsn, -) received from (nt) different processes[START_REF] Raynal | Communication and agreement abstractions for fault-tolerant asynchronous distributed systems[END_REF]

then if (wsn > swsni) ∧ (not already done) then swsni ← wsn; resi ← v end if

[START_REF] Raynal | Distributed algorithms for message-passing systems[END_REF]

end if. when READ(rsn) is received from pj do

[START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF]

send STATE(rsn, wsni) to pj.

 of Claim 1. This claim follows from the following simple observation. When the writer executes write[y], it first increases its local variable wsn which becomes greater than any sequence number associated with its previous write operations (line 1). Hence if read[i, x] terminates before write[y] starts, we necessarily have x < y.Proof of Claim 2. It follows from line 2 and lines 7-8 that, when write[x] terminates, there is a set Q w of at least (n -t) processes p k such that wsn k ≥ x. On another side, due to lines 4-5 and line 12, read[i, y] obtains a message STATE() from a set Q r of at least (n -t) processes.As |Q w | ≥ n -t, |Q r | ≥ n -t, and n > 2t, it follows that Q w ∩ Q r is not empty. There is consequently a process p k ∈ Q w ∩ Q r , such that that wsn k ≥ x. Hence, p k sent to p i the message STATE(-, z), where z ≥ x.

Considering the three-component model where each reader is also a server (i.e., R = S), we obtain a two-component model with one writer and reader-server processes. In this model, the necessary and sufficient condition (|R| < |S| t -2) can never be satisfied, which means that, it is impossible to design a fast implementation of a SWMR atomic register in such a two-component model.

Another example of a non-functional property is quiescence. This property is on algorithms implementing reliable communication on top of unreliable networks[START_REF] Aguilera | On quiescent reliable communication[END_REF]. It states that the number of underlying implementation messages generated by an application message must be finite. Hence, if there is a time after which no application process sends messages, there is a time after which the system is quiescent.

Let us observe that, due to asynchrony, it is possible that wsni > wsn when pi receives a message WRITE(wsn, v) for the first time.

Messages STATE(rsn, x) are sent by the processes that received READ(rsn) before τw, while the messages STATE(rsn, x + 1) are sent by the processes that received READ(rsn) between τw and τr + ∆ = τw + ǫ.

Acknowledgments

This work has been partially supported by the Franco-German DFG-ANR Project 40300781 DISCMAT devoted to connections between mathematics and distributed computing, and the French ANR project DISPLEXITY devoted to the study of computability and complexity in distributed computing.

When the writer does not crash while executing a write operation The cases where the writer does not crash while executing a write operation are captured by the next two lemmas.

Lemma 4 A write-latency-free read operation takes at most 2∆ time units.

Proof Let p i be a process that issues a write-latency-free read operation, and τ r be its starting time. Moreover, Let τ w the starting time of the last preceding write. As the read is write latency-free, we have τ w + ∆ < τ r . Moreover, as messages take at most ∆ time units, and the writer did not crash when executing the write, each non-crashed process p k received the message WRITE(x, -) (sent by the preceding write at time τ w + ∆ < τ r), broadcast it (line 8), and updated its local variables such that we have wsn k = x (lines 7-11) at ime τ w + ∆ < τ r . Hence, all the messages STATE() received by the reader p i carry the write sequence number x. Moreover, due to the broadcast of line 8 executed by each correct process, we have swsn i = x at some time τ w + 2∆ < τ r + ∆. It follows that the predicate of line 5 is satisfied at p i within 2∆ time units after it invoked the read operation.

✷ Lemma 4

Lemma 5 A read operation which is not write-latency-free, and during which the writer does not crash during the interfering write operation, takes at most 3∆.

Proof Let us consider a read operation that starts at time τ r , concurrent with a write operation that starts at time τ w and during which the writer does not crash. From the read operation point of view, the worst case occurs when the read operation is invoked just after time τ w -∆, let us say at time τ r = τ w -∆ + ǫ.

As a message STATE(rsn, -) is sent by return when a message READ(rsn) is received, the messages STATE(rsn, -) received by p i by time τ r + 2∆ can be such that some carry the sequence number x (due to last previous write) while others carry the sequence number x + 1 (due to the concurrent write) 4 . Hence, maxwsn = x or maxwsn = x + 1 (predicate of line 5). If maxwsn = x, we also have swsn i = x and p i terminates its read. If maxwsn = x + 1, p i must wait until swsn i = x + 1, which occurs at the latest at τ w + 2∆ (when p i receives the last message of the (n -t) messages WRITE(y, -) which makes true the predicates of lines 9-10, thereby allowing the predicate of line 5 to be satisfied). When this occurs, p i terminates its read operation. As τ w = τ r +∆-ǫ, p i returns at the latest τ r +3∆-ǫ time units after it invoked the read operation.

When the writer crashes while executing a write operation The problem raised by the crash of the writer while executing the write operation is when it crashes while broadcasting the message WRITE(x, -) (line 1): some processes receive this message by ∆ time units, while other processes do not. This issue is solved by the propagation of the message WRITE(x, -) by the non-crashed processes that receive it (line 8). This means that, in the worst case (as in synchronous systems), the message WRITE(x, -) must be forwarded by (t + 1) processes before being received by all correct processes. This worst scenario may entail a cost of (t + 1)∆ time units. Figure 2 presents a simple modification of Algorithm 1, which allows a fast implementation of read operations whose executions are concurrent with a write operation during which the writer crashes. The modifications are underlined.

When a process p i receives a message READ(), it now returns a message STATE() containing an additional field, namely the current value of reg i , its local copy of REG (line 12).

When a process p i receives from a process p j a message STATE(-, wsn, v), it uses it in the waiting predicate of line 5, but executes before the lines 7-11, as if this message was WRITE(wsn, v). According to the values of the predicates of lines 7, 9, and 10, this allows p i to expedite the update of its local variables wsn i , reg i , swsn i , and res i , thereby favoring fast termination. The reader can check that these modifications do not alter the proofs of Lemma 1 (termination) and Lemma 2 (atomicity). Hence, the proof of Theorem 1 is still correct.

Lemma 6 A read operation which is not write-latency-free, and during which the writer crashes during the interfering write operation, takes at most 4∆ time units.

Proof Let τ r be the time at which the read operation starts. As in the proof of Lemma 4, the messages STATE(rsn, -, -) received p i by time τ r + 2∆ can be such that some carry the sequence number wsn = x (due to last previous write) while some others carry the sequence number wsn = x + 1 (due to the concurrent write during which the writer crashes). If all these messages carry wsn = x, the read terminates by time τ r + 2∆. If at least one of these messages is STATE(rsn, x + 1, -), we have maxwsn = x + 1, and p i waits until the predicate swsn i ≥ maxwsn (= x + 1) becomes true (line 5).

When it received STATE(rsn, x + 1, -), if not yet done, p i broadcast the message WRITE(rsn, x + 1, -), (line 8 of Figure 2), which is received by the other processes within ∆ time units.

If not yet done, this entails the broadcast by each correct process of the same message WRITE(rsn, x + 1, -). Hence, at most ∆ time units later, p i has received the message WRITE(rsn, x + 1) from (n -t) processes, which entails the update of swsn i to (x + 1). Consequently the predicate of line 5 becomes satisfied, and p i terminates its read operation.

When counting the number of consecutive communication steps, we have: The message READ(rsn) by p i , followed by a message STATE(rsn, x+1, -) sent by some process and received by p i , followed by the message WRITE(rsn, x + 1) broadcast by p i , followed by the message WRITE(rsn, x + 1) broadcast by each non-crashed process (if not yet done). Hence, when the writer crashes during a concurrent read, the read returns within at most τ r + 4∆ time units.

✷ Lemma 6

Theorem 2 Algorithm 1 modified as indicated in Figure 2 implements in CAMP n,t [t < n/2] an SWMR atomic register with time-efficient operations (where the time-efficiency notion is based on the bounded delay assumption).

Proof The proof follows from Theorem 1 (termination and atomicity), Lemma 3, Lemma 4, Lemma 5, and Lemma 6 (time-efficiency). ✷ T heorem 2

Time-efficient implementation: the round-based synchrony assumption

As already indicated, this notion of a time-efficient implementation assumes an underlying round-based synchronous communication system, where the duration of a round (duration of all message transfer delays) is δ.

Lemma 7

The duration of write operation is 2δ.