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Abstract
We study the boundedness problem for unions of conjunctive regular path queries with in-

verses (UC2RPQs). This is the problem of, given a UC2RPQ, checking whether it is equivalent
to a union of conjunctive queries (UCQ). We show the problem to be ExpSpace-complete, thus
coinciding with the complexity of containment for UC2RPQs. As a corollary, when a UC2RPQ
is bounded, it is equivalent to a UCQ of at most triple-exponential size, and in fact we show
that this bound is optimal. We also study better behaved classes of UC2RPQs, namely acyclic
UC2RPQs of bounded thickness, and strongly connected UCRPQs, whose boundedness prob-
lem are, respectively, PSpace-complete and ΠP

2 -complete. Most upper bounds exploit results
on limitedness for distance automata, in particular extending the model with alternation and
two-wayness, which may be of independent interest.
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1 Introduction

Boundedness is an important property of formulas in logics with fixed-point features. At
the intuitive level, a formula ϕ in any such logic is bounded if its fixed-point depth, i.e., the
number of iterations that are needed to evaluate ϕ on a structure A, is fixed (and thus it
is independent of A). In databases and knowledge representation, boundedness is regarded
as an interesting theoretical phenomenon with relevant practical implications [24, 8]. In
fact, while several applications in these areas require the use of recursive features, actual
real-world systems are either not designed or not optimized to cope with the computational
demands that such features impose. Bounded formulas, in turn, can be reformulated in
non-recursive logics, such as FO, or even as a union of conjunctive queries (UCQ) when ϕ
itself is positive. UCQs form the core of most systems for data management and ontological
query answering, and, in addition, are the focus of advanced optimization techniques. It
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has also been experimentally verified in some contexts that recursive features encountered
in practice are often used in a somewhat ‘harmless’ way, and that many of such queries are
in fact bounded [22]. Thus, checking if a recursive formula ϕ is bounded, and building an
equivalent non-recursive formula ϕ′ when the latter holds, are important optimization tasks.

The study of boundedness for Datalog programs, i.e., the least fixed-point extension
of the class of UCQs, received a lot of attention during the late 80s and early 90s. Two
seminal results established that checking boundedness is undecidable in general for Data-
log [21], but becomes decidable for monadic Datalog, i.e., those programs in which each
intensional predicate is monadic [18]. The past few years have seen a resurgence of interest
in boundedness problems. This is due, in part, to the development of the theory of cost
automata over trees (both finite and infinite) in a series of landmark results, in particular
relating to its limitedness problem. In a few words, cost automata are generalizations of
finite automata associating a cost from N ∪ {∞} to every input tree (instead of simply ac-
cepting or rejecting). The limitedness problem asks, given a cost automata, whether there
is a uniform bound on the cost over all (accepting) input trees. Some deep results establish
that checking limitedness is decidable for well-behaved classes of cost automata over trees
[17, 34, 35, 7]. Remarkably, for several logics of interest the boundedness problem can be
reduced to the limitedness for cost automata in such well-behaved classes. Those reductions
have enabled powerful decidability results for the boundedness problem. As an example,
it has been shown in this way that boundedness is decidable for monadic second-order lo-
gic (MSO) over structures of bounded treewidth [11], which corresponds to an extension of
Courcelle’s Theorem, and also for the guarded negation fragment of least fixed-point logic
(LFP), even in the presence of ungarded parameters [6]. Cost automata have also been used
to study the complexity of boundedness for guarded Datalog programs [7, 3].

Graph databases is a prominent area of study within database theory, in which the use of
recursive queries is crucial [2, 1]. A graph database is a finite edge-labeled directed graph.
The most basic querying mechanism for graph databases corresponds to the class of regular
path queries (RPQs), which check whether two nodes of the graph are connected by a path
whose label belongs to a given regular language. RPQs are often extended with the ability
to traverse edges in both directions, giving rise to the class of two-way RPQs, or 2RPQs
[14]. The core of the most popular recursive query languages for graph databases is defined
by conjunctive 2RPQs, or C2RPQs, which are the closure of 2RPQs under conjunction and
existential quantifications [13]. We also consider unions of C2RPQs, or UC2RPQs. It can be
shown that a UC2RPQ is bounded iff it is equivalent to some UCQ. In spite of the inherent
recursive nature of UC2RPQs, their boundedness problem has not been studied in depth.
Here we develop such a study by showing the following:

The boundedness problem for UC2RPQs is ExpSpace-complete. The lower bound holds
even for CRPQs. This implies that boundedness is not more difficult than containment
for UC2RPQs, which was shown to be ExpSpace-complete in [13].
From our upper bound construction it follows that if a UC2RPQ is bounded, then it is
equivalent to a UCQ of triple-exponential size. We show that this bound is optimal.
Finally, we obtain better complexity bounds for some subclasses of UC2RPQs; namely,
for acyclic UC2RPQs of bounded thickness, in which case boundedness becomes PSpace-
complete, and for strongly connected UCRPQs, for which it is ΠP

2 -complete.

It is important to stress that UC2RPQs can be easily translated into guarded LFP
with ungarded parameters, for which boundedness was shown to be decidable by applying
sophisticated cost automata techniques as mentioned above. However, the complexity of
the boundedness problem for such a logic is currently not well-understood – and it is at
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least 2Exptime-hard [7] – and hence this translation does not yield, in principle, optimal
complexity bounds for our problem. To study the boundedness for UC2RPQs, we develop
instead techniques especially tailored to UC2RPQs. In fact, since the recursive structure of
UC2RPQs is quite tame, their boundedness problem can be translated into the limitedness
problem for a much simpler automata model than cost automata on trees; namely, distance
automata on finite words. Distance automata are nothing more than usual NFAs with two
sorts of transitions: costly and non-costly. Such an automaton is limited if there is an
integer k ≥ 1 such that every word accepted by the NFA has an accepting run with at
most k costly transitions. A beautiful result in automata theory established the decidability
of the limitedness problem for distance automata [23], actually in PSpace [29]. While
this continues being a difficult result, by now we have quite transparent proofs of this fact
(see, e.g., [25]). We exploit our translation to obtain tight complexity upper bounds for
boundedness of UC2RPQs. Some of the proofs in the paper require extending the study
of limitedness to alternating and two-way distance automata, while preserving the PSpace
bound for the limitedness problem. We believe these results to be of independent interest.

2 Preliminaries

We assume familiarity with non-deterministic finite automata (NFA), two-way NFA (2NFA),
and alternating finite automata (AFA) over finite words. We often blur the distinction
between an NFA A and the language L(A) it defines; similarly for regular expressions.
Graph databases and conjunctive regular path queries. A graph database over a
finite alphabet A is a finite edge-labelled graph G = (V,E) over A, where V is a finite set
of vertices and E ⊆ V × A × V is the set of labelled edges. We write u a−→ v to denote
an edge (u, a, v) ∈ E. We define the alphabet A± := A ∪̇A−1 that extends A with the
set A−1 := {a−1 | a ∈ A} of “inverses” of symbols in A. An oriented path from u to v
in a graph database G = (V,E) over alphabet A is a pair π = (σ, `) where σ and ` are
(possibly empty) sequences σ = (v0, a1, v1), (v1, a2, v2), . . . , (vk−1, ak, vk) ∈ V × A× V , and
` = `1, . . . , `k ∈ {−1, 1}, for k ≥ 0, such that u = v0, v = vk, and for each 1 ≤ i ≤ k, we
have that `i = 1 implies (vi−1, ai, vi) ∈ E; and `i = −1 implies (vi, ai, vi−1) ∈ E. The label
of π is the word b1 . . . bk ∈ (A±)∗, where bi = ai if `i = 1; otherwise bi = a−1

i . When k = 0
the label of π is the empty word ε. If `i = 1 for every 1 ≤ i ≤ k, we say that π is a directed
path. Note that in this case, the label of π belongs to A∗.

A regular path query (RPQ) over A is a regular language L ⊆ A∗, which we assume given
as an NFA. The evaluation of L on a graph database G = (V,E) over A, written L(G), is
the set of pairs (u, v) ∈ V ×V such that there is a directed path from u to v in G whose label
belongs to L. 2RPQs extend RPQs with the ability to traverse edges in both directions.
Formally, a 2RPQ L over A is simply an RPQ over A±. The evaluation L(G) of L over a
graph database G = (V,E) over A is the set of pairs (u, v) ∈ V × V such that there is an
oriented path from u to v in G whose label belongs to L.

Conjunctive 2RPQs (C2RPQs) are obtained by taking the closure of 2RPQs under
conjunction and existential quantification, i.e., a C2RPQ over A is an expression γ :=
∃z̄
(
(x1

L1−−→ y1) ∧ · · · ∧ (xm
Lm−−→ ym)

)
, where each Li is a 2RPQ over A and z̄ is a tuple

of variables among those in {x1, y1, . . . , xm, ym}. We say that γ is a CRPQ if each Li is
an RPQ. If x̄ = (x1, . . . , xn) is the tuple of free variables of γ, i.e., those that are not
existentially quantified in z̄, then the evaluation γ(G) of the C2RPQ γ over a graph data-
base G is the set of all tuples h(x̄) = (h(x1) . . . , h(xn)), where h ranges over all mappings
h : {x1, y1, . . . , xm, ym} → V such that (h(xi), h(yi)) ∈ Li(G) for each 1 ≤ i ≤ m.
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A union of C2RPQs (UC2RPQ) is an expression of the form Γ :=
∨

1≤i≤n γi, where the
γi’s are C2RPQ, all of which have exactly the same free variables. The evaluation Γ(G) of
Γ over a graph database G is

⋃
1≤i≤n γi(G). We often write Γ(x̄) to denote that x̄ is the

tuple of free variables of Γ. A UC2RPQ Γ is Boolean if it contains no free variables.
Given UC2RPQs Γ and Γ′, we write Γ ⊆ Γ′ if Γ(G) ⊆ Γ′(G) for each graph database G.

Hence, Γ and Γ′ are equivalent if Γ ⊆ Γ′ and Γ′ ⊆ Γ, i.e., Γ(G) = Γ′(G) for every G.
Boundedness of UC2RPQs. CRPQs, and even UC2RPQs, can easily be expressed in
Datalog, the least fixed-point extension of the class of union of conjunctive queries (UCQs).
Hence, we can directly define the boundedness of a UC2RPQ in terms of the boundedness of
its equivalent Datalog program, which is a well-studied problem [24]. The latter, however,
coincides with being equivalent to some UCQ [30]. In the setting of graph databases, a
conjunctive query (CQ) over A is simply a CRPQ over A of the form ∃z̄

∧
1≤i≤m(xi

ai−→ yi)
where the ais range over A ∪ {ε}. Notice that atoms of the form x

ε−→ y correspond to
equality atoms x = y. Analogously, one can define unions of CQs (UCQs). Note that,
modulo equality atoms, a CQ over A can be seen as a graph database over A. Hence,
we shall slightly abuse notation and use in the setting of CQs, notions defined for graph
databases (such as oriented paths).

A UC2RPQ Γ is bounded if it is equivalent to some UCQ Φ. In this article we study
the complexity of the problem Boundedness, which takes as input a UC2RPQ Γ and asks
whether Γ is bounded.

I Example 1. Consider the Boolean UCRPQ Γ = γ1 ∨ γ2 over the alphabet A = {a, b, c, d}
such that γ1 = ∃x, y (x Lb−→ y ∧ x Lb,d−−−→ y) and γ2 = ∃x, y (x Ld−−→ y ∧ x Lb,d−−−→ y), where
Lb := a+b+c, Ld := ad+c+, and Lb,d := a+(b+ d)c+. For e ∈ A, recall that e+ denotes the
language e(e∗). As we shall explain in Example 4, we have that γ1 and γ2 are unbounded.
However, Γ is bounded, and in particular, it is equivalent to the UCQ Φ = ϕ1 ∨ ϕ2, where
ϕ1 and ϕ2 correspond to ∃x, y (x abc−−→ y) and ∃x, y (x adc−−→ y), respectively. J

Organization of the paper. We present characterizations of boundedness for UC2RPQs
in Section 3 and an application of those to pinpoint the complexity of Boundedness for
RPQs in Section 4. Distance automata and results about them are given in Section 5. We
analyze the complexity of Boundedness for general UC2RPQs in Section 6 and present
some classes of UC2RPQs with better complexity of Boundedness in Section 7. We finish
with a discussion in Section 8. Due to space constraints many proofs are in the appendix.

3 Characterizations of Boundedness for UC2RPQs

In this section we provide two simple characterizations of when a UC2RPQ is bounded that
will be useful to analyze the complexity of Boundedness. Let ϕ(x̄) and ϕ′(x̄) be CQs
over A with variable sets V and V ′, respectively. Let =ϕ and =ϕ′ be the binary relations
induced on V and V ′ by the equality atoms of ϕ and ϕ′, respectively, and =∗ϕ and =∗ϕ′ be
their reflexive-transitive closure. A homomorphism from ϕ to ϕ′ is a mapping h : V → V ′
such that: (i) x =∗ϕ y implies h(x) =∗ϕ′ h(y); (ii) h(x̄) = x̄; and (iii) for each atom x

a−→ y in
ϕ with a ∈ A, there is an atom x′

a−→ y′ in ϕ′ such that h(x) =∗ϕ′ x′ and h(y) =∗ϕ′ y′. We
write ϕ→ ϕ′ if such a homomorphism exists. It is known that ϕ→ ϕ′ iff ϕ′ ⊆ ϕ [15].

An expansion of a C2RPQ γ(x̄) over A is a CQ λ(x̄) over A with minimal number of
variables and atoms such that (i) λ contains each variable of γ, (ii) for each atom A = x

L−→ y,
there is an oriented path πA in λ from x to y with label wA ∈ L whose intermediate variables
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(i.e., those not in {x, y}) are distinct from one another, and (iii) intermediate variables of
different oriented paths πA and πA′ are disjoint. Note that the free variables of λ and
γ coincide. Intuitively, the expansion λ is obtained from γ by choosing for each atom
A = x

L−→ y a word wA ∈ L, and “expanding” x L−→ y into the “fresh oriented path” πA from
x to y with label wA. When wA = ε then λ contains the equality atom x = y. An expansion
of a UC2RPQ Γ is an expansion of some C2RPQ in Γ. Observe that a (U)C2RPQ is always
equivalent to the (potentially infinite) UCQ given by its set of expansions. Even more, it is
equivalent to the UCQ defined by its minimal expansions, as introduced below.

If λ is an expansion of a UC2RPQ Γ, we define the size of λ, denoted by ‖λ‖, to be the
number of (non-equality) atoms in λ. We say that λ is minimal, if there is no expansion λ′
such that λ′ → λ and ‖λ′‖ < ‖λ‖. Intuitively, an expansion is minimal if its answers cannot
be covered by a smaller expansion. We can then establish the following.

I Lemma 2. Every UC2RPQ Γ is equivalent to the (potentially infinite) UCQ given by its
set of minimal expansions.

We can now provide our basic characterizations of boundedness.

I Proposition 3. The following conditions are equivalent for each UC2RPQ Γ.
1. Γ is bounded.
2. There is k ≥ 1 such that for every expansion λ of Γ there exists an expansion λ′ of Γ

with ‖λ′‖ ≤ k such that λ ⊆ λ′ (i.e., such that λ′ → λ).
3. Γ has finitely many minimal expansions.

I Example 4. Consider the Boolean UCRPQ Γ = γ1 ∨ γ2 over A = {a, b, c, d} from Ex-
ample 1. To see that γ1 is unbounded (the case of γ2 is similar) we can apply Proposition
3. Indeed, the expansions of γ1 corresponding to {∃x, y (x abnc−−−→ y ∧ x adc−−→ y) : n ≥ 1}
are all minimal. On the other hand, Γ is bounded as its minimal expansions correspond to
∃x, y (x abc−−→ y ∧ x abc−−→ y) and ∃x, y (x adc−−→ y ∧ x adc−−→ y). J

4 Boundedness for Existentially Quantified RPQs

As a first application of Proposition 3, we study Boundedness for CRPQs consisting of
a single RPQ; that is, RPQs or existentially quantified RPQs. Let v, w be words over A.
Recall that a word v is a prefix [resp. suffix and factor] of w if w ∈ v · A∗ [resp. w ∈ A∗ · v
and w ∈ A∗ · v · A∗]. If in addition we have v 6= w, then we say that v is a proper prefix
[resp. suffix and factor] of w. For a language L ⊆ A∗, we define its prefix-free sub-language
Lpf to be the set of words w ∈ L such that w has no proper prefix in L. Similarly, we define
Lsf and Lff with respect to the suffix and factor relation. We have the following:

I Proposition 5. The following statements hold.
1. An RPQ L is bounded iff L is finite.
2. A CRPQ ∃y(x L−→ y) [resp. ∃x(x L−→ y)] with x 6= y is bounded iff Lpf [resp. Lsf] is finite.
3. A Boolean CRPQ ∃x, y(x L−→ y) with x 6= y is bounded iff Lff is finite.

I Theorem 6. The problem of, given an NFA accepting the language L, checking whether
Lpf is finite is PSpace-complete. The same holds if we replace Lpf by Lsf or Lff.

Proof. We focus on upper bounds, the lower bounds are in the appendix. Given an NFA A
accepting the language L, we can construct an NFA B of polynomial size in A that accepts
precisely those words that have a proper prefix in L. By complementing and intersecting
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with A, we obtain an NFA B′ of exponential size in A that accepts the language Lpf. Hence,
we only need to check whether the language accepted by B′ is finite, which can be done
on-the-fly in NL w.r.t. B′, and hence in PSpace. The other two cases are analogous. J

By applying Theorem 6 and Proposition 5, we can now pinpoint the complexity of
Boundedness for CRPQs with a single RPQ.

I Corollary 7. The following statements hold.
1. Boundedness for RPQs is NL-complete.
2. Boundedness for CRPQs of the form ∃y(x L−→ y), with x 6= y, is PSpace-complete.

The same holds for CRPQs ∃x(x L−→ y) and Boolean CRPQs ∃x, y(x L−→ y), where x 6= y.

It is not clear, though, how usual automata techniques, as the ones applied in the proof
of Theorem 6, can be used to solve Boundedness for more complex CRPQs. To solve
this problem we develop an approach based on distance automata, as introduced next. Our
approach also handles inverses and unions, thus dealing with arbitrary UC2RPQs.

5 Distance Automata

Distance automata [23] (equivalent to weighted automata over the (min,+)-semiring [20],
min-automata [12], or {ε, ic}-B-automata [16]) are an extension of finite automata which
associate to each word in the language a natural number or ‘cost’. They can be represented
as non-deterministic finite automata with two sorts of transitions: costly and non-costly. For
a given distance automaton, the cost of a run on a word is the number of costly transitions,
and the cost of a word w ∈ A∗ is the minimum cost of an accepting run on w. We will use
this automaton model to encode boundedness as the problem of whether there is a uniform
bound on the cost of words, known as the limitedness problem.

Formally, a distance automaton (henceforth DA) is a tuple A = (A, Q, q0, F, δ), where A
is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q is the set
of finals states and δ ⊆ Q × A × {0, 1} × Q is the transition relation. A word w ∈ A∗ is
accepted by A if there is an accepting run of A on w, i.e., a (possibly empty) sequence of
transitions ρ = (p1, a1, c1, r1) · · · (pn, an, cn, rn) ∈ δ∗ with the usual properties: (1) if ρ = ε

then q0 ∈ F and w = ε, (2) p1 = q0 and rn ∈ F , (3) for every 1 ≤ i < n we have ri = pi+1,
and (4) w = a1 · · · an. The cost of the run ρ is cost(ρ) = c1 + · · · + cn (or 0 if ρ = ε); and
the cost costA(w) of a word w accepted by A is the minimum cost of an accepting run of A
on w. For convenience, we assume the cost of words not accepted by A to be 0.

The limitedness problem for DA is defined as follows: given a DA A, determine whether
supw∈A∗ costA(w) <∞. This problem is known to be PSpace-complete.

I Theorem 8. [28, 29] The following statements hold:
1. The limitedness problem for DA is PSpace-complete.
2. If a DA with n states is limited, then supw∈A∗ costA(w) ≤ 2O(n3).

We use two extensions of DA: alternating and two-way. Two-way DA is defined as for
NFA, extending the cost function accordingly. The cost of a word is still the minimum over
the cost of all (potentially infinitely many) runs. Alternating DA is defined as usual by having
two sorts of states: universal and existential. Existential states can be seen as computing
the minimum among the cost of all possible continuations of the run, and universal states
as computing the maximum (or supremum if the automaton is also two-way). As we will
see, these extensions preserve the above PSpace upper bound for the limitedness problem.
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Formally, an alternating two-way DA with epsilon transitions (A2DAε) over A is a tuple
A = (A, Q∃, Q∀, q0, F, δ) is a A2DAε if q0 ∈ Q∃, F ⊆ Q∃ and

δ ⊆ (Q∃ ∪Q∀)× (A± ∪ {ε})× {end, end} × {0, 1} × (Q∃ ∪Q∀);

where end indicates that after reading the letter we arrive at the end of the word (i.e., either
the leftmost or the rightmost end) and end indicates that we do not. When the automaton
A is two-way, it is convenient to think of its head as being between the letter positions of
the word, so an end-flagged transition can be applied only if it moves the head to be right
before the first letter of the word, or right after the last one.

For any given word w ∈ A∗, consider the edge-labelled graph GA,w = (V,E) over δ,
where V = Q × {0, . . . , |w|}, with Q = Q∃ ∪ Q∀, and E ⊆ V × δ × V consists of all edges
(q, i) (q,a,e,c,p)−−−−−−→ (p, j) such that e = end iff j = 0 or j = |w| and either (a) i < |w|, a = w[i+1],
and j = i+ 1; (b) i > 0, a = (w[i])−1, and j = i− 1; or (c) a = ε and j = i.

An accepting run of A on w from (q, i) ∈ Q × {0, . . . , |w|} is a finite (possibly empty)
edge-labelled directed rooted tree1 t over δ and a labelling h from the nodes of t to the nodes
of GA,w, such that if t is empty then q ∈ F , and otherwise h maps the root of t to (q, i),
every leaf of t to F × {0, . . . , |w|}, and for every node x of t:

if (x, α, y) is an (labeled) edge in t for some y, then (h(x), α, h(y)) is an edge in GA,w;
if h(x) ∈ Q∀ × {0, . . . , |w|}, then for every edge (h(x), α, c) in GA,w, there is an edge
(x, α, y) in t so that h(y) = c;
if h(x) ∈ Q∃ × {0, . . . , |w|}, then x has at most one child.

Each branch of t with label (q1, a1, e1, c1, p1), . . . , (qn, an, en, cn, pn) has an associated
cost of c1 + · · ·+ cn; and the cost associated with t is the maximum among the costs of its
branches, or 0 if t is empty.2 The cost costA(w, q, i) is the minimum cost of an accepting
run on w from (q, i), or 0 if none exists; costA(w) is defined as costA(w, q0, 0).

An A2DAε with δ ⊆ Q× (A∪{ε})×{end, end}× {0, 1}×Q is an alternating DA with ε
transitions (ADAε). An A2DAε with Q∀ = ∅ is a two-way DA with ε transitions (2DAε). An
A2DA with both the aforementioned conditions is (equivalent to) a DA with ε transitions
(DAε). Notice that in the last two cases, accepting runs can be represented as words from
δ∗ rather than trees. By A2DA (resp., ADA, 2DA, DA) we denote a A2DAε (resp., ADAε,
2DAε, DAε) with no ε-transitions. Note that DA as just defined is in every sense equivalent
to the distance automata model we have defined at the beginning of this section —this is
why we overload the same ‘DA’ name.

We first observe that 2DA can be transformed into DA while preserving both the language
and limitedness problems by adapting the standard “crossing sequence” construction for
translating 2NFA into NFA [33]. This fact will be useful for proving the ExpSpace upper
bound for Boundedness of general UC2RPQs in Section 6.

I Proposition 9. There is an exponential time procedure which for every 2DA A over A
produces a DA B over A such that the languages accepted by A and B are the same, and
costB(w) ≤ costA(w) ≤ f(costB(w)) for every w ∈ A∗, where f is a polynomial function that
depends on the statespace of A.

1 That is, a tree-shaped finite edge-labelled graph over δ with edges directed in the root-to-leaf sense.
2 In this definition, whenever there are two transitions (q, a, c, e, p), (q, a, c′, e, p) with q ∈ Q∀, the auto-
maton behaves as if being non-deterministic among these: accepting runs contain only one of these
transitions. But of course this is not a problem as one can assume, wlog., that there are no pairs of
transitions of this kind.
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The universality problem for NFAs is known to be PSpace-complete [26]. The upper
bound actually extends to 2NFA and even AFA. We show that, likewise, the limitedness
problem remains in PSpace for A2DAε. This result will be useful to show in Section 7 that
Boundedness for the class of acyclic UC2RPQs of bounded thickness is in PSpace.

I Theorem 10. The limitedness problem for A2DAε is PSpace-complete.

The novelty of this result is the PSpace upper bound. In fact, decidability follows from
known results, and in particular [7, Theorem 14] claims ExpTime-membership in the more
challenging setup of infinite trees. However, this is obtained via an involved construction
spanning through several papers. The proof of Theorem 10, instead, is obtained by the
composition of the following reductions:

lim. A2DAε (1)−−→ lim. A2DA (2)−−→ lim. 2DA (3)−−→ lim. ADAε (4)−−→ lim. ADA (5)−−→ lim. DA.

Reductions (1), (3) and (4) are in polynomial time, while reductions (2) and (5), which are
basically the same, are in exponential time. Specifically, reductions (2) and (5) preserve
the statespace but the size of the alphabet grows exponentially in the number of states and
linearly in the size of the source alphabet. However, the alphabet and transition set resulting
from these reductions can be succinctly described: letters are encoded in polynomial space,
and checking for membership in the transition set is polynomial time computable.

In summary, the composition (1)+(2)+(3)+(4)+(5) yields a DA with the following char-
acteristics: (i) it has a polynomial number of states Q; (ii) it runs on an exponential alphabet
A —and every letter is encoded in polynomial space—; and (iii) one can check in polynomial
time whether a tuple t ∈ Q×A× {end, end} × {0, 1} ×Q is in its transition relation. This,
coupled with Theorem 8, item (2) (which offers a bound depending only on the number of
states), provides a polynomial space algorithm for the limitedness of A2DAε: We can non-
deterministically check the existence of a word with cost greater than the singly-exponential
bound N using only polynomial space, by guessing one letter at a time and keeping the set
of reachable states together with the associated costs, where each cost is encoded in binary
using polynomial space if it is smaller than N , or with a ‘∞’ flag otherwise. The algorithm
accepts if at least one final state is reached and the costs of all reachable final states are
marked ∞. Since NPSpace =PSpace (Savitch’s Theorem), Theorem 10 follows.

We now provide a brief description of the reductions used in the proof of Theorem 10.
(1) From A2DAε to A2DA This is a trivial reduction obtained by simulating ε-transitions

by reading a · a−1 for some a ∈ A.
(2) From A2DA to 2DA Given a A2DA A = (A, Q∀, Q∃, q0, F, δ), we build a 2DA B over

a larger alphabet B, where we trade alternation for extra alphabet letters. The alphabet
B consists of triples (f→, a, f←), where a ∈ A and f→, f← : Q∀ → δ. The idea is that
f→, f← are “choice functions” for the alternation: whenever we are to the left (resp.,
right) of a position of the word labelled (f→, a, f←) in state q ∈ Q∀, instead of exploring
all transitions departing from q and taking the maximum cost over all such runs (this is
what alternation does in A), B chooses to just take the transition f→(q) (resp., f←(q)).
Note that B is exponential in the number of states but not in the size of A. In this way,
we build a 2DA B having the same set of states as A but with a transition function which
is essentially deterministic on the states of Q∀. In the end we obtain that

for every w ∈ B∗, costB(w) ≤ costA(wA); and
for every w ∈ A∗ there is w̃ ∈ B∗ so that w̃A = w and costA(w) = costB(w̃),

where wA and w̃A denote the projections onto the alphabet A. This implies that the
limitedness problem is preserved.
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(3)+(4) From 2DA to ADA We show a polynomial-time translation from 2DA to ADA
which preserves limitedness. In the case of finite automata, there are language-preserving
reductions from 2NFA to AFA with a quadratic blowup in the statespace [9, 31]. However,
these translations, when applied blindly to reduce from 2DA to ADA, preserve neither
the cost semantics nor the limitedness of languages. On the other hand, [10] shows an
involved construction that results in a reduction from 2DA to ADA on infinite trees,
which preserves limitedness but it is not polynomial in the number of states. We show
a translation from 2DA to ADA which serves our purpose: it preserves limitedness and
it is polynomial time computable. The translation is close to the language-preserving
reduction from 2NFA to AFA of [31], upgraded to take into account the cost of different
alternation branches, somewhat in the same spirit as the history summaries from [10].

(5) From ADA to DA This is exactly the same reduction as (1), noticing that the alphabet
will still be single-exponential in the original A2DAε.

6 Complexity of Boundedness for UC2RPQs

Here we show that Boundedness for UC2RPQs is ExpSpace-complete. We do so by
applying distance automata results presented in the previous section on top of the semantic
characterizations presented in Section 3. The lower bound applies even for CRPQs. We
further show that there is a triply exponential tight bound for the size of the equivalent
UCQ of a UC2RPQ (and even CRPQ), whenever this exists. This is summarized in the
following theorem. If Γ is a UC2RPQ, we write ‖Γ‖ for the length of an arbitrary reasonable
encoding of Γ —in particular, encodings in which regular languages are described through
NFA or regular expressions.

I Theorem 11. The following statements hold.
1. Boundedness for UC2RPQs is ExpSpace-complete. The problem remains ExpSpace-

hard even for Boolean CRPQs.
2. If a UC2RPQ Γ is bounded, there is a UCQ Φ that is equivalent to Γ and such that

Φ has at most triple-exponentially many CQs, each one of which is at most of double-
exponential size with respect to ‖Γ‖.

3. There is a family {Γn}n≥1 of Boolean CRPQs such that for each n ≥ 1 it is the case
that: (1) ‖Γn‖ = O(n), (2) Γn is bounded, and (3) every UCQ that is equivalent to Γn
has at least triple-exponentially many CQs with respect to n.

6.1 Upper bounds
Our upper bound proof builds on top of techniques developed by Calvanese et al. [13] for
studying the containment problem for UC2RPQs: Given UC2RPQs Γ,Γ′, is it the case that
Γ ⊆ Γ′? It is shown in [13] that from Γ,Γ′ it is possible to construct exponentially sized
NFAs AΓ,Γ′ and A′Γ,Γ′ , such that Γ ⊆ Γ′ iff there is a word in AΓ,Γ′ ∩ A′Γ,Γ′ . It is a well-
known result that the latter is solvable in NL on the combined size of (AΓ,Γ′ ,A′Γ,Γ′), i.e., in
ExpSpace. We modify this construction to study the boundedness of a given UC2RPQ Γ.
In particular, we construct from Γ in exponential time a DA DΓ such that Γ is bounded iff
DΓ is limited. The result then follows from Theorem 8, which establishes that limitedness
for DΓ can be solved in polynomial space on the number of its states, and thus in ExpSpace.

I Proposition 12. There is a single-exponential time procedure that takes as input a UC2RPQ
Γ and constructs a DA DΓ such that Γ is bounded iff DΓ is limited.
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Proof. Similarly as done in [13], the DA DΓ will run over encodings of expansions of the
UC2RPQ Γ, i.e., words over the alphabet A1 := A± ∪ V ∪ {$}, where A is the alphabet of
Γ, V is the set of variables of Γ, and $ is a fresh symbol. If γ = ∃z̄

∧
1≤i≤m(xi

Li−→ yi) is a
C2RPQ in Γ and λ is the expansion of γ obtained by expanding xi

Li−→ yi into an oriented
path πi from xi to yi with label wi ∈ Li, then we encode λ as the word

wλ = $x1w1y1$x2w2y2$ · · · $xmwmym$ ∈ A∗1

Note how the subword xiwiyi encodes the oriented path πi. Every position j ∈ {1, . . . , |wλ|}
with wλ[j] 6= $ represents a variable in λ: either xi or yi if wλ[j] = xi or wλ[j] = yi,
respectively; or the (`+ 1)-th variable in the oriented path πi if wλ[j] is the `-th symbol in
the subword wi. Hence different positions in wλ could represent the same variable in λ, e.g.,
in the encoding $xabcy$, the 5th position containing a ‘c’ and the 6th position containing a
‘y’, represent the same variable, namely, the last vertex y of the oriented path. It is then
easy to build, in polynomial time, an NFA A1 over A1 recognizing the language of all such
encodings of expansions of Γ. Our automaton DΓ is the product of A1 and the DA CΓ
defined below. In particular, DΓ is limited iff CΓ is limited over words of the form wλ, for λ
an expansion of Γ.

Fix a disjunct γ of Γ. As in [13], we consider words over the alphabet A2 := A1 × (2V ∪
{#}) of the form (`1, α1) · · · (`n, αn), such that wλ = `1 · · · `n, for some expansion λ of Γ,
and the αi’s are valid γ-annotations, i.e., (1) αi = # if `i = $, (2) α1, . . . , αn ∈ 2V induce
a partition of the variable set Vγ of γ, and (3) for each free variable x ∈ Vγ there is some
(`i, αi) such that `i = x and x ∈ αi. It is easy to construct an NFA Bγ1 of exponential
size that given w = (`1, α1) · · · (`n, αn) with wλ = `1 · · · `n, checks if the αi’s are valid γ-
annotations. Note that if the latter holds, then the annotations encode a mapping hw from
Vγ to the variables of λ such that hw(x̄) = x̄, where x̄ are the free variables of γ.

Now, given w = (`1, α1)(`2, α2) · · · (`n, αn) with wλ = `1 · · · `n and the αi’s being valid
γ-annotations, it is shown in [13] that one can construct in polynomial time a 2NFA Bγ2 that
checks the existence of an expansion λ′ of γ and a homomorphism h from λ′ to λ consistent
with hw. For each atom x

L−→ y of γ, the automaton Bγ2 guesses an oriented path π in λ

from hw(x) to hw(y) with label w′ ∈ L, directly over the encoding wλ starting at a position
jx and ending at a position jy in {0, . . . , n} (recall that the head moves in {0, . . . , n}) with
jx, jy > 0, w[jx] = (`, α), w[jy] = (`′, α′), x ∈ α and y ∈ α′. Note that we have two types of
transitions: (1) transitions that consume a ∈ A± and actually guess an atom of π, and (2)
transitions to “jump” from position j to j′ in {0, . . . , n} representing equivalent variables of
λ. The latter means that j, j′ > 0 and either wλ[j] and wλ[j′] represents exactly the same
variable of λ, or wλ[j] and wλ[j′] represent variables z, z′ of λ such that z =∗λ z′, where =∗λ
is the reflexive-transitive closure of the relation induced by the equality atoms in λ.

Let Dγ2 be the 2DA obtained from the 2NFA Bγ2 by setting to 0 and 1 the cost of
transitions of type (2) and (1), respectively. Hence, for a word w such that the projection of
w to A1 is wλ, and the one to (2V ∪ {#}) is a valid γ-annotation, we have that costDγ2 (w) is
precisely the minimum size of an expansion λ′ that can be mapped to λ via a homomorphism
compatible with hw. By Proposition 9, we can construct in exponential time on Dγ2 a DA
Cγ2 accepting the same language as Dγ2 and having an exponential number of states, so that
for every word w′, we have costCγ2 (w′) ≤ costDγ2 (w′) ≤ f(costCγ2 (w′)) for some polynomial
function f . Let ∃Cγ be the result of taking the product of Bγ1 and Cγ2 and then projecting over
the alphabet A1. For every expansion λ of Γ, if λ′ is a minimal size expansion of γ such that
λ′ → λ, then we obtain that cost∃Cγ (wλ) ≤ ‖λ′‖ ≤ f(cost∃Cγ (wλ)). We define our desired CΓ
to be the union of ∃Cγ over all γ in Γ. We have that for every expansion λ, if λmin is a minimal
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size expansion of Γ such that λmin → λ, then costCΓ(wλ) ≤ ‖λmin‖ ≤ f(costCΓ(wλ)). By
Proposition 3, item (2), Γ is bounded iff ‖λmin‖ is bounded over all λ. The latter condition
holds iff CΓ is limited over words wλ, for all expansion λ. By definition, the latter is equivalent
to DΓ being limited. Summing up, we obtain that Γ is bounded iff DΓ is limited, as required.
Note that the whole construction can be done in exponential time. J

As a corollary to Proposition 12 and Theorem 8 we obtain the desired upper bound for
part (1) of Theorem 11.

I Corollary 13. Boundedness for UC2RPQs is in ExpSpace.

Size of equivalent UCQs. Here we prove part (2) of Theorem 11. Since Γ is bounded
we have from Proposition 12 that DΓ is limited. Then, from Theorem 8 we obtain that
the maximum cost that it takes DΓ over a word is N , where N is exponential on the
number of states of DΓ, and thus double-exponential on ‖Γ‖ by construction. Therefore,
for every expansion λ of Γ, if λmin is a minimal size expansion Γ such that λmin → λ,
then ‖λmin‖ ≤ f(N), where f is the polynomial function of the proof of Proposition 12.
In particular, all minimal expansions of Γ are of size ≤ f(N). By Lemma 2, the UC2RPQ
Γ is equivalent to the union of all its minimal expansions. The number of such minimal
expansions is thus at most exponential on f(N), and hence triple-exponential on ‖Γ‖.

6.2 Lower bounds
We reduce from the 2n-tiling problem, that is, a tiling problem restricted to 2n many
columns, which is ExpSpace-complete (see, e.g., [13]). We show that for every 2n-tiling
problem T there is a CRPQ γ, computable in polynomial time from T , whose number of
minimal expansions is essentially the number of solutions to T in the following sense.

I Lemma 14. For every 2n-tiling problem T with m solutions there is a Boolean CRPQ γ,
computable in polynomial time from T , such that the number of minimal expansions of γ is
O((g(|T |) +m)n+1) and Ω(m), for some doubly exponential function g. Further, γ consists
of a Boolean CRPQ of the form ∃x, y

∧
0≤i≤n(x Li−→ y), where each Li is given as a regular

expression.

As a corollary, this yields an ExpSpace lower bound for the boundedness problem (part
(1) of Theorem 11), as well as a triple-exponential lower bound for the size of the UCQ
equivalent to any bounded CRPQ (part (3) of Theorem 11), since one can produce 2n-tiling
problems having triply-exponentially many solutions.

7 Better-behaved Classes of UC2RPQs

Here we present two restrictions of UC2RPQs that exhibit a better behavior in terms of the
complexity of Boundedness than the general case, namely, acyclic UC2RPQs of bounded
thickness and strongly connected UCRPQs. The improved bounds are PSpace and ΠP

2 ,
respectively, which turn out to be optimal.
Acyclic UC2RPQs of Bounded Thickness. For any two distinct variables x, y of a
C2RPQ γ, we denote by Atomsγ(x, y) the set of atoms in γ of the form x

L−→ y or y L−→ x.
The thickness of a C2RPQ γ is the maximum cardinality of a set of the form Atomsγ(x, y),
for x, y variables of γ with x 6= y. The thickness of a UC2RPQ Γ is the maximum thickness
over all the C2RPQs in Γ. The underlying undirected graph of γ has as vertex set the set of
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variables of γ and contains an edge {x, y} iff x 6= y and Atomsγ(x, y) 6= ∅. A C2RPQ γ is
acyclic if its underlying undirected graph is an acyclic graph (i.e., a forest). A UC2RPQ Γ
is acyclic if each C2RPQ in Γ is.

We show next that Boundedness for acyclic UC2RPQs of bounded thickness is PSpace-
complete. These classes of UC2RPQs have been previously studied in the literature [4, 5].
In particular, it follows from [5, Theorem 4.2] that the containment problem for the acyclic
UC2RPQs of bounded thickness is PSpace-complete, and hence Theorem 15 below shows
that Boundedness is not more costly than containment for these classes.

I Theorem 15. Fix k ≥ 1. The problem Boundedness is PSpace-complete for acyclic
UC2RPQs of thickness at most k.

Proof (sketch). The lower bound follows directly from PSpace-hardness of Boundedness
for RPQs (see Corollary 7). For the PSpace upper bound, we follow a similar strategy as
in the case of arbitrary UC2RPQs (Section 6.1), i.e., we reduce boundedness of Γ to DA
limitedness. The main difference is that, since Γ is acyclic, we can exploit the power of
alternation and construct an A2DAε B (instead of a 2DA, as in the proof of Proposition
12), such that Γ is bounded iff B is limited. The constant upper bound on the thickness of
Γ implies that B is actually of polynomial size. The result follows then as limitedness of an
A2DAε can be decided in PSpace in virtue of Theorem 10. J

Both conditions in Theorem 15, i.e., acyclicity and bounded thickness, are necessary.
Indeed, it follows from Lemma 14 that Boundedness is ExpSpace-hard even for:

Boolean acyclic CRPQs.
Boolean CRPQs of thickness one, whose underlying undirected graph is of treewidth two.
Recall that the treewidth is a measure of how much a graph resembles a tree (cf., [19])
—acyclic graphs are precisely the graphs of treewidth one.

Indeed, the CRPQs of the form ∃x, y
∧
i(x

Li−→ y) used in Lemma 14 are Boolean and acyclic
(but have unbounded thickness). Replacing each (x Li−→ y) with (x ε−→ zi)∧ (zi

Li−→ y), yields
an equivalent CRPQ of thickness one whose underlying undirected graph has treewidth two.
Strongly Connected UCRPQs. We conclude this section with an even better behaved
class of CRPQs in terms of Boundedness. Unlike the previous case, the definition of this
class depends on the underlying directed graph of a CRPQ γ. This contains a directed edge
from variable x to y iff there is an atom in γ of the form x

L−→ y. A CRPQ γ is strongly
connected if its underlying directed graph is strongly connected, i.e., every pair of variables
is connected by some directed path. A UCRPQ Γ is strongly connected if every CRPQ in
Γ is. We can then establish the following.

I Theorem 16. Boundedness is ΠP
2 -complete for strongly connected UCRPQs.

8 Discussion and Future Work

The main conclusion of our work is that techniques previously used in the study of contain-
ment of UC2RPQs can be naturally leveraged to pinpoint the complexity of Boundedness
by using DA instead of NFA. This, however, requires extending results on limitedness to al-
ternating and two-way DA. For all the classes of UC2RPQs studied in the paper we show in
fact that the complexity of Boundedness coincides with that of the containment problem.
We leave open what is the exact size of UCQ rewritings for the classes of acyclic UC2RPQs
of bounded thickness and the strongly connected UCRPQs that are bounded.
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The most natural next step is to study Boundedness for the class of regular queries
(RQs), which are the closure of UC2RPQs under binary transitive closure. RQs are one of the
most powerful recursive languages for which containment is decidable in elementary time.
In fact, containment of RQs has been proved to be 2EXPSPACE-complete by applying
sophisticated techniques based on NFA [32]. We will study if it is possible to settle the
complexity of Boundedness for RQs with the help of DA techniques.

References
1 Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and

Domagoj Vrgoč. Foundations of modern query languages for graph databases. ACM Com-
put. Surv., 50(5):68:1–68:40, 2017.

2 Pablo Barceló. Querying graph databases. In ACM Symposium on Principles of Database
Systems (PODS), pages 175–188, 2013.

3 Pablo Barceló, Gerald Berger, Carsten Lutz, and Andreas Pieris. First-order rewritability of
frontier-guarded ontology-mediated queries. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 1707–1713, 2018.

4 Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Does query evaluation tractability
help query containment? In ACM Symposium on Principles of Database Systems (PODS),
pages 188–199, 2014.

5 Pablo Barceló, Miguel Romero, and Moshe Y. Vardi. Semantic acyclicity on graph data-
bases. SIAM J. Comput., 45(4):1339–1376, 2016.

6 Michael Benedikt, Pierre Bourhis, and Michael Vanden Boom. A step up in expressiveness
of decidable fixpoint logics. In Annual IEEE Symposium on Logic in Computer Science
(LICS), pages 817–826, 2016.

7 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 293–304. IEEE Computer Society Press, 2015. doi:
10.1109/LICS.2015.36.

8 Meghyn Bienvenu, Peter Hansen, Carsten Lutz, and Frank Wolter. First order-rewritability
and containment of conjunctive queries in horn description logics. In International Joint
Conference on Artificial Intelligence (IJCAI), pages 965–971, 2016.

9 Jean-Camille Birget. State-complexity of finite-state devices, state compressibility and
incompressibility. Mathematical systems theory, 26(3):237–269, 1993.

10 Achim Blumensath, Thomas Colcombet, Denis Kuperberg, Pawel Parys, and Michael
Vanden Boom. Two-way cost automata and cost logics over infinite trees. In Joint Meeting
of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
CSL-LICS ’14, pages 16:1–16:9. ACM Press, 2014. doi:10.1145/2603088.2603104.

11 Achim Blumensath, Martin Otto, and MarkWeyer. Decidability results for the boundedness
problem. Logical Methods in Computer Science (LMCS), 10(3), 2014.

12 Mikołaj Bojańczyk and Szymon Toruńczyk. Deterministic automata and extensions of
weak MSO. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS), volume 4 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 73–84. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2009. doi:10.4230/LIPIcs.FSTTCS.2009.2308.

13 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Con-
tainment of conjunctive regular path queries with inverse. In Principles of Knowledge
Representation and Reasoning (KR), pages 176–185, 2000.

http://dx.doi.org/10.1109/LICS.2015.36
http://dx.doi.org/10.1109/LICS.2015.36
http://dx.doi.org/10.1145/2603088.2603104
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2009.2308


XX:14 Boundedness of Conjunctive Regular Path Queries

14 Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. Re-
writing of regular expressions and regular path queries. Journal of Computer and System
Sciences (JCSS), 64(3):443–465, 2002.

15 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Symposium on Theory of Computing (STOC), pages 77–90,
1977.

16 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In
International Colloquium on Automata, Languages and Programming (ICALP), volume
5556 of Lecture Notes in Computer Science, pages 139–150. Springer, 2009. doi:10.1007/
978-3-642-02930-1\_12.

17 Thomas Colcombet and Christof Löding. The nesting-depth of disjunctive µ-calculus for
tree languages and the limitedness problem. In EACSL Annual Conference on Computer
Science Logic (CSL), pages 416–430, 2008.

18 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
optimization problems for database logic programs (preliminary report). In Symposium on
Theory of Computing (STOC), pages 477–490, 1988.

19 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

20 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer
Science & Business Media, 2009.

21 Haim Gaifman, Harry G. Mairson, Yehoshua Sagiv, and Moshe Y. Vardi. Undecidable
optimization problems for database logic programs. J. ACM, 40(3):683–713, 1993.

22 Peter Hansen, Carsten Lutz, Inanç Seylan, and Frank Wolter. Efficient query rewriting in
the description logic EL and beyond. In IJCAI, pages 3034–3040, 2015.

23 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions.
Journal of Computer and System Sciences (JCSS), 24(2):233–244, 1982.

24 Gerd G. Hillebrand, Paris C. Kanellakis, Harry G. Mairson, and Moshe Y. Vardi. Tools
for datalog boundedness. In ACM Symposium on Principles of Database Systems (PODS),
pages 1–12, 1991.

25 Daniel Kirsten. Distance desert automata and the star height problem. ITA, 39(3):455–509,
2005.

26 Dexter Kozen. Lower bounds for natural proof systems. In Annual Symposium on Found-
ations of Computer Science (FOCS), pages 254–266, 1977.

27 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant
of weakness. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FST&TCS), volume 13 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 66–77. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2011. doi:10.4230/LIPIcs.FSTTCS.2011.66.

28 Hing Leung. Limitedness theorem on finite automata with distance functions: An algebraic
proof. Theoretical Computer Science, 81(1):137–145, 1991. doi:10.1016/0304-3975(91)
90321-R.

29 Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata:
Hashiguchi’s method revisited. Theoretical Computer Science, 310(1-3):147–158, 2004.
doi:10.1016/S0304-3975(03)00377-3.

30 Jeffrey F. Naughton. Data independent recursion in deductive databases. J. Comput. Syst.
Sci., 38(2):259–289, 1989.

31 Nir Piterman and Moshe Y. Vardi. From bidirectionality to alternation. Theoretical Com-
puter Science, 295:295–321, 2003. doi:10.1016/S0304-3975(02)00410-3.

32 Juan L. Reutter, Miguel Romero, and Moshe Y. Vardi. Regular queries on graph databases.
Theoretical Computer Science, 61(1):31–83, 2017.

http://dx.doi.org/10.1007/978-3-642-02930-1_12
http://dx.doi.org/10.1007/978-3-642-02930-1_12
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2011.66
http://dx.doi.org/10.1016/0304-3975(91)90321-R
http://dx.doi.org/10.1016/0304-3975(91)90321-R
http://dx.doi.org/10.1016/S0304-3975(03)00377-3
http://dx.doi.org/10.1016/S0304-3975(02)00410-3


P. Barceló, D. Figueira, and M. Romero XX:15

33 John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development, 3(2):198–200, 1959.

34 Michael Vanden Boom. Weak cost monadic logic over infinite trees. In International
Symposium on Mathematical Foundations of Computer Science (MFCS), pages 580–591,
2011.

35 Michael Vanden Boom. Weak cost automata over infinite trees. PhD thesis, University of
Oxford, UK, 2012.



XX:16 Boundedness of Conjunctive Regular Path Queries

A Appendix to Section 3

Proof of Lemma 2. The result is a straightforward consequence of the following known
result.

I Lemma 17. [13] Let Γ,Γ′ be UC2RPQs. It is the case that Γ ⊆ Γ′ iff for each expansion
λ of Γ there exists an expansion λ′ of Γ′ such that λ ⊆ λ′, or, equivalently, λ′ → λ.

J

Proof of Lemma 3. For (1)⇒(2), suppose that Γ is equivalent to a UCQ Φ =
∨

1≤i≤n ϕi.
By Lemma 17, for every 1 ≤ i ≤ n, there is an expansion λi of Γ with λi → ϕi. We claim
that (2) holds for k = max{‖λi‖ : 1 ≤ i ≤ n}. Let λ be an expansion of Γ. By Lemma 17,
we have ϕi → λ, for some 1 ≤ i ≤ n, and then λi → λ. Since ‖λi‖ ≤ k, we are done. For
the implication (2)⇒(3), note that if (2) holds for some k ≥ 1, then the size of any minimal
expansion of Γ is at most k. Finally, (3)⇒(1) follows directly from Lemma 2. J

B Appendix to Section 4

Proof of Proposition 5 . Note that for an RPQ or an existentially quantified RPQ γ whose
input regular language is L, there is a bijection from L to the expansions of γ. For an
RPQ L every expansion is minimal. In the case of a CRPQ γ(x) = ∃y(x L−→ y) [resp.
γ(y) = ∃x(x L−→ y)], where x 6= y, there is a bijection from Lpf [resp. Lsf] to the minimal
expansions of γ. Finally, for a Boolean CRPQ γ = ∃x, y(x L−→ y), with x 6= y, we have a
bijection from Lff to the minimal expansions. Then, the proposition follows directly from
Proposition 3, item (3). J

Proof of Theorem 6. We focus on the lower bounds. We reduce from the following well-
known PSpace-complete problem: given a non-deterministic Turing machine M and a
natural number n (given in unary) check whether M accepts the empty tape using n space.
As usual, we encode configurations of M as words of length n over the alphabet P :=
Σ∪ (Σ×S), where Σ and S are the tape alphabet and state set of M respectively. A run of
M is then encoded by a word of the form #c1¢c2¢ · · · ¢c`#, where each ci is an encoding of a
configuration, ¢ is used as a separator of configurations, and # to delimit the beginning and
end of the run. We can assume without loss of generality that either M accepts the empty
tape using n space and all non-deterministic branches in the computation ofM accept before
|P|n steps; or any non-deterministic branch of M does not halt at all.

Given M and n as above, we can define an NFA of polynomial size that accepts the
language R := cinit · (¢ · C)∗ over P, where cinit encodes the (unique) initial configuration
of M on the empty tape and C accepts all the words of length n over P that encode a
configuration of M . We let T be the finite language that contains all the words of the form
c¢c′, where c and c′ encode configurations of M and c′ cannot be reached from c in one
step. Note that T can be accepted by a polynomial-sized NFA. We claim that M accepts
the empty tape iff Lpf is finite for L := #R# ∪#(R¢ + ε)T .

Assume first that M accepts the empty tape. Then every w ∈ Lpf satisfies |w| ≤
2 + (n + 1)(|P|n + 1). Indeed, by contradiction, suppose that this is not the case for some
w ∈ Lpf. If w ∈ #R#, then w cannot encode a run of M starting from the empty tape
(as every such a run takes less than |P|n steps). Then there exists v ∈ #(R¢ + ε)T with
|v| ≤ 1 + (n + 1)(|P|n + 1) that is a prefix of w. In particular, |v| < |w| and then w 6∈ Lpf;
a contradiction. Similarly, if w ∈ #(R¢ + ε)T , then w# cannot encode a run of M starting



P. Barceló, D. Figueira, and M. Romero XX:17

from the empty tape, and hence w 6∈ Lpf. Now suppose that M does not accept the empty
tape. Then there are infinitely many words w ∈ #R# encoding a run of M starting from
the empty tape, which in particular belong to Lpf. Hence, Lpf is infinite.

Note that the same construction applies for the factor case, i.e., M accepts the empty
tape iff Lff is finite for L = #R# ∪ #(R¢ + ε)T (a simpler construction that still applies
is L = #R# ∪ T ). Finally, we can reduce the prefix to the suffix case. Given an NFA
accepting L, we construct an NFA accepting LR = {wR : w ∈ L}, where wR is the reverse
of w. Hence, Lpf is finite iff LRsf is finite. J

C Appendix to Section 5

Proof of Proposition 9. We adapt the standard “crossing sequence” construction for trans-
lating two-way NFA to one-way NFA [33]. For simplicity, and without any loss of generality,
we assume that the input 2DA A is so that all accepting runs end with the head at the
leftmost position, and that there is only one final state.

Given a 2DA A = (A, Q, ∅, q0, {qf}, δ) consider the DA B = (A, Q′, ∅, (q0, qf ), F ′, δ′)
where Q′ is the set of subsets of Q × Q, and F ′ is the set of subsets of {(q, q) : q ∈ Q}.
The idea is that whenever a state contains a pair (q, p), it verifies that there is a loop at the
current position in the run, starting in q and ending in p and visiting only positions which
are to the right. Formally, there is a transition (S, a, c, S′) ∈ δ′ if for every pair (q, p) ∈ S
with q 6= p there are (r1, r

′
1), . . . , (rn, r′n) ∈ S′ so that

there is a transition (q, a, c′, r1) ∈ δ and (r′n, a−1, c′, p) ∈ δ;
for every r′i with i < n there are transitions (r′i, a−1, ci, si), (si, a, ci+1, ri+1) ∈ δ for some
si ∈ Q and ci, ci+1 ∈ {0, 1};

and the maximum of the costs of the considered transitions is c. The following figure
exemplifies the relation between (p, q) and the (ri, r′i)’s as seen in a run.

q

p

r1

r01

r2

r02

r3 = r03

s1

s2

a

a

a

a�1

a�1

a�1

In this example, the loop (q, p) is witnessed, at the next position after reading an a, as the
existence of two loops (r1, r

′
1) and (r2, r

′
2) (and the trivial loop (r3, r

′
3)).

From this construction it follows that B accepts the same language as A, and that
costB(w) ≤ costA(w) for every w ∈ A∗. Further, note that without any loss of generality
we can consider only states having no to distinct pairs with the same state, and thus states
with at most |Q| pairs. From this, it follows that costA(w) ≤ costB(w) · 2 · |Q|2. In the
picture above, we are simulating 2 costly transitions (depicted with thick strokes) with only
one costly transitions for the pair (q, p), and in general we could see 2|Q| transitions for each
pair (q, p) in the state, hence 2|Q| · |Q| costly transitions could be simulated at once. In fact,
a finer analysis can show that costA(w) ≤ costB(w) · 2 · |Q|. J
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Proof of Theorem 10

Here we give the detailed proof of Theorem 10, namely, that the limitedness problem for
A2DA is in PSpace.

(1) From A2DAε to A2DA

We show a language-preserving polynomial reduction from A2DAε to A2DA, obtained by
replacing ε-transitions with a sequence of two transitions reading a and a−1 for some
a ∈ A. Formally, given a A2DAε A = (A, Q∀, Q∃, q0, F, δ), we produce a A2DA B =
(A, Q′∀, Q′∃, q0, F

′, δ′) where Q′∀ contains Q∀ [resp. Q′∃ contains Q∃], plus fresh states rq,p
and r′q,p for each q ∈ Q∀ [resp. q ∈ Q∃] and p ∈ Q∀ ∪ Q∃. The transition relation δ′ is
obtained from δ by replacing each transition (q, ε, e, c, p) with all (polynomially many) trans-
itions (q, a, e′, c, rq,p), (q, a−1, e, 0, rq,p), (q, a−1, e′, c, r′q,p), (r′q,p, a, e, 0, p) for every a ∈ A and
e′ ∈ {0, 1}, where rq,p and r′q,p are fresh states of the same type as q (i.e., rq,p ∈ Q′∀ iff q ∈ Q∀
and likewise for r′q,p). In other words, either we simulate the ε-transition by reading a · a−1

for some a ∈ A through rq,p, or we simulate it by reading a−1 · a through r′q,p. Note that if
we would now define F ′ = F we may not accept the empty word because we need words of
length at least 1 to simulate ε-transitions. In order to fix this, we define F ′ = F ∪ {q0} if
some state of F can be reached from q0 through a sequence of ε-transitions with end flag,
or we define F ′ = F otherwise.

The above reduction, although it does preserve the language, it does not preserve the
cost of words: while the cost of the empty word can only be 0 for any A2DA, for an A2DAε
automaton it can be any arbitrary n ∈ N. However, since it is a faithful simulation on
non-empty words, for all w ∈ A+ we have costA(w) = costB(w), and thus the reduction
preserves the limitedness property.

(2) From A2DA to 2DA

Given a A2DA A = (A, Q∀, Q∃, q0, F, δ), we build a 2DA B over a larger alphabet B, where
we trade alternation for extra alphabet letters. The alphabet B consists of triples (f→, a, f←)
where a ∈ A and f→, f← : Q∀ → δ. The idea is that f→, f← are “choice functions” for
the alternation: whenever we are to the left [resp. right] of a position of the word labelled
(f→, a, f←) and we are in state q ∈ Q∀, instead of exploring all transitions departing from
q and taking the maximum cost over all such runs (this is what alternation does), we chose
to just take transition f→(q) [resp. f←(q)]. Note that B is exponential in the number of
states but not in the size of A.

One can then build a 2DA B having the same set of states as A but with a transition
function which is essentially deterministic on the states ofQ∀, as it follows the choice function
given by the alphabet letters. In the end we obtain that

for every w ∈ B∗, costB(w) ≤ costA(wA); and
for every w ∈ A∗ there is w̃ ∈ B∗ so that w̃A = w and costA(w) = costB(w̃),3

where wA is the projection of w onto A. This shows that the limitedness problem is preserved.
For simplicity we assume that any state of Q∀ determines whether the head of the

automaton moves rightwards or leftwards —it is easy to see that this is without loss of
generality. Formally, we have that Q∀ is partitioned into two sets Q∀ = Q→∀ ∪̇Q←∀ so that

3 This can be alternatively seen as the existence of a positional strategy for the universal player for
obtaining the cost costA(w) when the automata is seen as a two-player game.
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there is no transition (r, a, c, p) ∈ δ→ with r ∈ Q←∀ , and no transition (r, a, c, p) ∈ δ← with
r ∈ Q→∀ , where δ→ [resp. δ←] is the set of all transitions from δ reading a letter from A
[resp. from A−1].

More concretely, consider the alphabet B = {f→ : Q→∀ → δ}×A×{f← : Q←∀ → δ}, and
notice that

|B| ≤ |A| · |δ|2·|Q∀|. (?)

We now define a 2DA B so that A (over A) is limited if, and only if, B (over B) is limited.
B has the same set of states as A but its transition function is essentially deterministic on
the states of Q∀.

Concretely, let B be the 2DA defined as (B, ∅, Q∀ ∪Q∃, q0, F, δ
′), where δ′ is the union of

{(r, (f→, a, f←), e, c, p) : r ∈ Q∃ ∧ (r, a, e, c, p) ∈ δ ∧ (f→, a, f←) ∈ B}, that is, all
transitions from δ starting from an existential state moving rightwards;
{(r, (f→, a, f←), e, c, p) : r ∈ Q→∀ ∧ f→(r) = (r, a, e, c, p) ∧ (f→, a, f←) ∈ B}, that is, for
any universal state, the transition defined by f→ moving rightwards if it can be applied;
{(r, (f→, a, f←), e, c, p) : r ∈ Q→∀ ∧ f→(r) = (r′, a′, e′, c′, p′) ∧ (r, a, e) 6= (r′, a′, e′) ∧
(r, a, e, c, p) ∈ δ ∧ (f→, a, f←) ∈ B}, that is, if for a universal state r, f→(r) gives an
inconsistent transition, disregard f→ and take any (consistent) transition from δ;

and similar sets for the case of the transitions moving leftwards:
{(r, (f→, a, f←)−1, e, c, p) : r ∈ Q∃ ∧ (r, a−1, e, c, p) ∈ δ ∧ (a, f→, f←)−1 ∈ B−1};
{(r, (f→, a, f←)−1, e, c, p) : r ∈ Q←∀ ∧ f←(r) = (r, a−1, e, c, p) ∧ (f→, a, f←)−1 ∈ B−1};
{(r, (f→, a, f←)−1, e, c, p) : r ∈ Q←∀ ∧ f←(r) = (r′, a′, e′, c′, p′) ∧ (r, a−1, e) 6= (r′, a′, e′) ∧
(r, a−1, e, c, p) ∈ δ ∧ (f→, a, f←)−1 ∈ B−1}.

For any word w ∈ B∗ we denote by wA ∈ A∗ its projection onto A.

I Lemma 18. For every w ∈ B∗, costB(w) ≤ costA(wA).

Proof. Let w be an arbitrary word over B, w = (f→1 , a1, f
←
1 ) · · · (f→n , an, f

←
n ) ∈ B∗. If there

is no accepting run of A on wA, then there is no accepting run of B on w. Otherwise,
suppose there is an accepting run t of A on wA = a1 · · · an of cost N . We show that the
functions f→i ’s and f←i ’s allow us to select a branch of t whose labelling c1 · · · cm ∈ δ∗ can
be extended to an accepting run c′1 · · · c′m ∈ δ′∗ of B on w of cost ≤ N . In this way, it follows
that costB(w) ≤ N ≤ costA(wA).

Let us see how to obtain such a branch. Let us fix any homomorphism h : t → GA,wA ,
given by the fact that t is an accepting run. Consider the following traversal of t, starting
at the root. Whenever we are at a node x with h(x) ∈ Q∃ × {0, . . . , |w|}, we go to the
only child (unless it is the leaf, in which case the traversal ends); and whenever we are at
a node x with h(x) = (r, i) ∈ Q→∀ × {0, . . . , |w|} [resp. (r, i) ∈ Q←∀ × {0, . . . , |w|}], we go to
the child obtained when taking the edge labelled f→i (r) [resp. f←i (r)] if there is one, or to
any child otherwise. Consider now the labeling c1 · · · cm ∈ δ∗ corresponding to the branch
of t just described, and let b1 · · · bm ∈ (A ∪ A−1)∗ be the letters read by the transitions.
For each i ∈ {1, . . . ,m} with bi ∈ A [resp. bi = a−1 with a ∈ A], we define c′i ∈ δ′ as the
result of replacing bi with (f→` , bi, f

←
` ) [resp. replacing a−1 with (f→` , a, f←` )−1] in ci, for

` = |b1 · · · bi| . It follows that c′1 · · · c′m is an accepting run of B on w with cost the same cost
as c1 · · · cm, which must be at most N . J

I Lemma 19. For every w ∈ A∗ there is w̃ ∈ B∗ so that w̃A = w and costA(w) = costB(w̃).

Proof. Given a word w ∈ A∗, we define a function fA,w : {0, . . . , |w|} → Q∀ → δ that
maximizes the cost for w. That is, fA,w(i)(q) is the transition that should be followed
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whenever we are in state q at position i in order to obtain costA(w, q, i) —i.e., to maximize
the cost. (This function can be regarded as a positional strategy for the universal player
obtaining the maximum cost in the two-player game associated with the A2DA automaton.)
Formally, for any q ∈ Q∀, we define fA,w(i)(q) as any transition t ∈ δ so that t ∈ arg max gi,q
for gi,q : δ → N ∪ {∞,−1} defined as

gi,q(r, a, c, p) =


c+ costA(w, p, i+ 1) if i < |w|, a = w[i+ 1] ∈ A, r = q;
c+ costA(w, p, i− 1) if i > 0, a = w[i]−1 ∈ A−1, r = q;
−1 otherwise.

For any word u ∈ A∗, let ũ ∈ B∗ be so that |ũ| = |u| and for each 1 ≤ i ≤ |u|
we define ũ[i] = (f→, u[i], f←), where f→ [resp. f←] is the restriction of fA,u(i − 1) on
the subdomain Q→∀ [resp. of fA,u(i) on Q←∀ ]. By definition of fA,u and B, it follows that
costA(w) = costB(w̃). J

I Lemma 20. A is limited if, and only if, B is limited.

Proof. If B is limited, there is some N ∈ N so that costB(w) ≤ N for every w ∈ B∗. By
Lemma 19, for every w ∈ A∗ there is some w̃ ∈ B∗ so that costA(w) = costB(w̃) ≤ N and
thus A is limited by N .

If A is limited, then there is some N ∈ N so that costA(w) ≤ N for every w ∈ A∗. Then,
for every word u ∈ B∗ we have costB(u) ≤ costA(uA) ≤ N by Lemma 18. J

(3) From 2DA to ADAε

We show a polynomial-time translation from 2DA to ADA extended with ε-transitions,
which preserves limitedness. In the case of finite automata, there exist language-preserving
reductions from 2-way NFA to alternating 1-way NFA with a quadratic blowup [9, 31].
However, these translations, when applied blindly to reduce from 2DA to ADA, do not
preserve the cost semantics nor limitedness of languages. On the other hand, [10] shows an
involved construction that results in a reduction from 2DA to ADA on infinite trees (a more
general and challenging setup), which preserves limitedness but it is not polynomial in the
number of states. Here we give a self-contained translation from 2DA to ADA which serves
our purpose: it preserves limitedness and it is polynomial time computable.

The translation is close to the language-preserving reduction from 2NFA to alternating
1NFA of [31], upgraded to take into account the cost of different alternation branches,
somewhat in the same spirit as the history summaries from [10]. The reduction exploits the
structure of the runs of 2-way finite automata, which can be described as “a tree of zig-zags”,
borrowing the wording of [31]. That is, every run of a two-way finite automaton on w can
be seen as a tree of height at most |w| whose nodes are labelled by Q ∪ Q2, in such a way
that for each letter a ∈ A, each pair of consecutive transitions reading a, a−1 induce a leaf
and each pair of consecutive transitions reading a−1, a induce a branching (cf. Figure 1).
The idea is then to explore the tree top-down by spawning new threads at every branching
and using only a statespace of Q ∪Q2. Let us call a zig-zag tree to any such tree resulting
from an accepting run of a 2DA.

Concretely, given a 2DA A = (A, Q, ∅, q0, F, δ) we construct a ADAε

B = (A, Q∃ ∪ {(q0, end)}, Q∀, (q0, end), F ′, δ′)

where Q∃ = (Q ∪Q2) × {0, 1} × {end, end} and Q∀, F ′ and δ′ are of polynomial size. The
idea is that during the run, a state (q, p, c, e) ∈ Q × Q × {0, 1} × {end, end} —which we
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a11
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a12
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a13
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a14
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

a15
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

w =

?

Figure 1 A run of 2DA seen as a tree of zig-zags. Tree nodes are depicted as circles, and there is
an (implicit) edge from any circle to its right neighbor(s). Thick strokes represent costly transitions.

henceforth note as [q, p]ec— at position i verifies the presence of a ‘right loop’, that is, a
partial run of A that starts in state q at i and ends in state p at i, visiting only positions
j ≥ i to the right of i. The subscript c states whether the looping run contains at least one
costly transition (c = 1) or no costly transitions (c = 0). The superscript e is simply a flag
with the information of whether the current position is and end position or else, which we
need for technical reasons. A state α∧ β is understood as the alternation of states α and β.
We will build a ADA with ε-transitions (i.e., a ADAε), and for this reason we allow to have
transitions (q, a, e, 2, p) as short for (q, a, e, 1, p′), (p′, ε, e, 1, p) for a fresh state p′. Formally,
B is defined as follows:

Q∀ = {α ∧ β : α, β ∈ Q∃};
F ′ = {[q]e0 : q ∈ F, e ∈ {end, end}} ∪ {[q, q]e0 : q ∈ Q, e ∈ {end, end}};
δ′ is defined as the smallest set verifying

((q0, end), ε, end, 0, [q0]endc ) ∈ δ′, for every c ∈ {0, 1};
{([q]e′1 , a, e, 1, [p]ec) : c ∈ {0, 1}, a ∈ A, e, e′ ∈ {end, end}, (q, a, e, 1, p) ∈ δ} ⊆ δ′ —i.e.,
every costly rightward transition of δ is in δ′;
{([q]e′c , a, e, 0, [p]ec) : c ∈ {0, 1}, a ∈ A, e, e′ ∈ {end, end}, (q, a, e, 0, p) ∈ δ} ⊆ δ′ —i.e.,
every non-costly rightward transition of δ is in δ′;
for every q, p ∈ Q, c1, c2 ∈ {0, 1}, and e ∈ {end, end} we have ([q]emax(c1,c2), ε, e, 0, [p]ec1∧
[q, p]ec2) ∈ δ′ —i.e., we can change the state from q to p provided there is a right loop
from q to p;
for every q, p, r ∈ Q, c1, c2 ∈ {0, 1}, and e ∈ {end, end}, we have ([q, r]emax(c1,c2), ε, e, 0, [q, p]ec1∧
[p, r]ec2) ∈ δ′ —i.e., there is a right loop from q to r if there are from q to p and from
p to r;
for every a ∈ A, q, p ∈ Q, c ∈ {0, 1}, e1, e2 ∈ {end, end} and (q, a, e1, c1, q

′), (p′, a−1, e2, c2, p) ∈
δ we have
∗ ([q, p]e2c , a, e1, 0, [q′, p′]e1c ) ∈ δ′ if max(c1, c2) = 0,
∗ ([q, p]e21 , a, e1, c1 + c2, [q′, p′]e1c ) ∈ δ′ if max(c1, c2) = 1;
—i.e., a right loop on a position can be witnessed by a right loop on the next position;
for every [α1]ec1 ∧ [α2]ec2 ∈ Q∀ we have ([α1]ec1 ∧ [α2]ec2 , ε, e, c2, [α1]ec1) ∈ δ′ and ([α1]ec1 ∧
[α2]ec2 , ε, e, c1, [α2]ec2) ∈ δ′ —i.e., α1 ∧ α2 is the alternation of states α1 and α2.

I Lemma 21. A is limited if, and only if B is limited.

Proof. First, note that the translation is language-preserving (i.e., the set of words with
accepting runs in A and in B coincide). Further, the accepting runs of B are essentially the
accepting runs of A seen as zig-zag trees.

For any accepting run of A represented as a zig-zag tree, and any given branch thereof
(i.e., a path from the root to a leaf), let us define its cost as the number of costly transitions
it contains. For example, in Figure 1 the branch indicated with ? has cost 2. We also
define the number of heavy branchings of a branch as the number of subtrees attached to the
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branch that have at least one costly transition. In Figure 1 there are 3 subtrees attached
to the ?-branch (which, in this particular case, they all look like words rather than trees),
and all of them have costly transitions; hence the number of heavy branchings is 3. Finally,
for any accepting run ρ of A, let f(ρ) be the maximum, over all its branches, of its cost
plus its number of heavy branchings. Notice that f(ρ) ≤ cost(ρ). Observe also that for a
word w, every accepting run t of B determines a zig-zag tree and then an accepting run
ρt of A. Conversely, for every accepting run ρ of A, there is an accepting run t of B such
that ρt = ρ. Further, the cost computed by B is closely related with f in the sense that
1
kf(ρt) ≤ cost(t) ≤ f(ρt) (†), for every accepting run t of B, where k := |Q|2 + |Q| is the
maximum arity of a zig-zag tree. Then we have the following:

costB(w) ≤ min{f(ρ) : ρ is an accepting run of A on w}
≤ min{cost(ρ) : ρ is an accepting run of A on w} = costA(w),

where min ∅ = 0. Therefore, we have that if A is limited, so is B.

For the other direction, we claim that cost(ρ) ≤ 3kf(ρ), for every accepting run ρ of A. To
see this, consider the heaviest branch B of ρ (i.e., the result of traversing the tree from the
root by always choosing a child whose subtree has maximal number of costly transitions). We
can partition the edges of B into E1 and E2 such that E1 are the edges that do not decrease
the cost of the current subtree and E2 the ones that do. Since the initial cost is n = cost(ρ),
and each edge in E2 decreases the cost of the current subtree from n′ to no less than n′

k − 1,
we have |E2| ≥ max{` ∈ N : n

k`
−
∑`−1
i=0

1
ki ≥ 1} ≥ max{` ∈ N : n

k`
− 2 ≥ 1} ≥ logk n/3. The

claim follows since f(ρ) ≥ |E2| (as each edge in E2 is either costly or has a heavy branching).
From the bound above, we can obtain that costA(w) ≤ 3kk·costB(w), for every word w, and

hence if B is limited, so is A. Indeed, take an accepting run t of B with cost(t) = costB(w),
and consider the associated accepting run ρt of A. By (†), we have f(ρt) ≤ k · cost(t).
Summing up, we obtain costA(w) ≤ cost(ρt) ≤ 3kf(ρt) ≤ 3kk·costB(w), as required. J

(3) From ADAε to ADA

This is a straightforward polynomial time reduction. This reduction —as opposed to re-
duction (1)— does not preserve the language: we need to add an extra letter aε to the
alphabet in order to make the reduction work in polynomial time. In fact, even for al-
ternating finite automata (AFA) there is no known polynomial time language preserving
translation from AFA with epsilon transitions into AFA (to the best of our knowledge).
Given a ADAε A = (A, Q∃, Q∀, q0, F, δ), we can assume, without any loss of generality,
that the state determines whether we are in a leftmost position, a rightmost position, or
an internal position. That is, the statespace is partitioned into Q∃ = Q∃,1 ∪̇Q∃,2 ∪̇Q∃,3
and Q∀ = Q∀,1 ∪̇Q∀,2 ∪̇Q∀,3 so that q0 ∈ Q∃,1 and every transition (q, α, e, c, p) ∈ δ with
α ∈ A∪{ε}, q ∈ Q∃,i∪Q∀,i and p ∈ Q∃,j∪Q∀,j is so that: (i) i ≤ j, (ii) e = end iff j ∈ {1, 3},
(iii) if α = ε then i = j.

We obtain B = (B, Q∃, Q∀, q0, F, δ
′) by extending the alphabet A with a new letter

B = A ∪ {aε}, and obtaining the ε-free transition relation δ′ from δ by
replacing each transition (q, ε, e, c, p) with (q, aε, e, c, p), and
adding self-loops (q, aε, end, 0, q) for each state q ∈

⋃
†∈{∃,∀},i∈{1,3}Q†,i and (q, aε, end, 0, q)

for each state q ∈ Q∃,2 ∪Q∀,2.
It is easy to see that this reduction preserves limitedness.
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(5) From ADA to DA

Finally, the last reduction is exactly the same as the reduction A2DA to 2DA, observing
that when applied to a ADA it yields a DA. It is worth noting that a limitedness preserving
reduction in the context of infinite words has been proposed in [27, Lemma 6], but it produces
an automaton with an exponential set of states.

The resulting composition (1) + (2) + (3) + (4) + (5)

Let Ai = (Ai, Qi,∃, Qi,∀, qi,0, Fi, δi) be a A2DA, for each i ∈ {1, 2, 3, 4} so that, starting with
A1, we get A2,A3,A4 as the result from the reductions A1

(1)+(2)−−−−−→ A2
(3)+(4)−−−−−→ A3

(5)−−→ A4
described before. We obtain the following properties.
A4 has a polynomial number of states. More precisely, |Q4,∀| = |Q2,∀| = 0, and |Q4,∃| =
|Q3,∃ ∪Q3,∀| ≤ poly(|Q2,∃|) = poly(|Q1,∃ ∪Q1,∀|).
A4 is (singly) exponential. Due to (?), |A2| = |A1| · |δ1|2·|Q1,∀|, |A3| = |A2| + 1, and
|A4| = |A3| · |δ3|2·|Q3,∃∪Q3,∀| again due to (?). Since δ3 is singly exponential in A1 (since
it is polynomial in A3 and Q3,∃), and Q3,∃ is polynomial in A1, A is singly exponential
in A1.

As explained before, thanks to the fact that the bound of Theorem 8 depends only on the
number of states and not on the size of the alphabet nor the transition set, this enables
a PSpace procedure for testing for limitedness of A2DA, which concludes the proof of
Theorem 10.

D Appendix to Section 6

We encode an instance of the tiling problem following the ideas used for showing ExpSpace-
hardness for CRPQ-containment [13]. We reduce from the following 2n-tiling problem, which
is ExpSpace-complete. An input instance consists of a number n ∈ N written in unary,
a finite set ∆ of tiles, two relations H,V ⊆ ∆ × ∆ specifying constraints on how tiles
should be placed horizontally and vertically, and the starting and final tiles tS , tF ∈ ∆.
A solution to the input instance is a “consistent” assignment of tiles to a finite rectangle
having 2n columns. Concretely, a solution is a function f : {1, . . . , 2n} × {1, . . . , k} → ∆,
for some k ∈ N, such that f(1, 1) = tS , f(2n, k) = tF , and f((i, j), f(i + 1, j)) ∈ H and
f((i, j), f(i, j + 1)) ∈ V for every i, j in range. We can then obtain the following.

I Lemma (restatement of Lemma 14). For every 2n-tiling problem T with m solutions there
is a Boolean CRPQ γ, computable in polynomial time from T , such that the number of
minimal expansions of γ is O((g(|T |) + m)n+1) and Ω(m), for some doubly exponential
function g. Further, γ consists of a Boolean CRPQ of the form ∃x, y

∧
0≤i≤n(x Li−→ y),

where each Li is given as a regular expression.

Proof. For any tiling instance as above, we show how to define a CRPQ over the alphabet
A := ∆∪{0, 1,#} so that it has at least m and at most (g(|T |)+m)n+1 minimal expansions
for some doubly-exponential function g, where m is the number of solutions of the instance.
We will encode a solution of a tiling as a word of #((0 + 1)n ·∆)∗#, where the rectangle of
tiles is read left-to-right and top-to-bottom, and each block (i.e., each element of (0+1)n ∆)
represents the column number (in binary) and the tile. The symbols # at the beginning
and end of the word are used for technical reasons.

For enforcing this encoding, we define regular languages E, FC , FH and Gi for each
i ≤ n over A.
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The language E gives the general shape of the encoding of solutions:

E = #0n tS ((0 + 1)n∆)∗ 1n tF#,

in particular that it starts and ends with the correct tiles. The language FC detects adjacent
blocks with an error in the column number bit, which can be easily defined with a polynomial
NFA. The language FH checks that there are adjacent blocks in which the tiles do not respect
the horizontal adjacency relation H,

FH =
⋃

(t1,t2)∈∆2\H

t1 0n t2,

where 0n = (0 + 1)n \ {0n}. Finally, G0, . . . , Gn are used to check that there are two blocks
at distance 2n which do not respect the vertical adjacency relation V ; in other words, there
is a factor of the word whose first and last blocks have the same column number, it contains
not more than one block with column number 1n (otherwise we would be skipping a row),
and its first and last tiles are not V -related. First, G0 checks that the first and last blocks
of the factor we are interested in do not conform to V , and furthermore that there is exactly
one column number 1n in between

G0 =
⋃

(t1,t2)∈∆2\V

(0 + 1)nt1(1n ∆)∗1n(∆ · 1n)∗t2,

where 1n = (0 + 1)n \ {1n}. For each b ∈ {0, 1} and i ∈ {1, . . . , n} we define Gbi to check
that the i-th bit of the address of both the first and last tile is set to b,

Gbi = (0 + 1)i−1 · b · (0 + 1)n−i ·∆ · ((0 + 1)n ·∆)∗ · (0 + 1)i−1b(0 + 1)n−i∆,

and we define Gi as G0
i + G1

i . For each one of these languages one can produce a regular
expression recognizing the language in polynomial time. Finally, the Boolean CRPQ is

γ = ∃x, y
∧

0≤i≤n
x

E∪Gi∪FC∪FH−−−−−−−−−−→ y.

Let us analyse the bounds on the number of minimal expansions of γ with respect to the
number m of solutions of the tiling problem. First, note that for any expansion of γ con-
taining a word w ∈ E which does not encode a solution to the tiling problem either: (i) it
has a problem with the column encodings, in which case it contains a (polynomial) word
from FC as a factor; (ii) the encoding is correct, but the horizontal relation is not respec-
ted, in which case it contains a (polynomial) word from FH as a factor; (iii) it violates the
vertical relation, and thus there are words wi ∈ Gi for each i so that |wi| ∈ O(n2n) and
the expansion corresponding to w0, . . . , wn maps to the expansion. Therefore, every path of
a minimal expansion of γ which is in E and is not a solution cannot have size bigger than
O(n2n), which means that the number of minimal expansions is at most (|A|O(n2n) +m)n+1.
On the other hand, it follows by construction that every word encoding a solution is in E,
that the expansion consisting of only solutions is minimal, and hence that there are at least
m minimal expansions of γ. J

Without loss of generality we can assume that the tiling instance satisfies that if there is a
tiling solution, there are infinitely many. This fact, coupled with Lemma 14 and ExpSpace-
completeness of the 2n-tiling problem, yields the lower bound in part (1) of Theorem 11.
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I Proposition 22. Boundedness for CRPQs is ExpSpace-hard. This holds even for
Boolean CRPQs of the form ∃x, y

∧
i(x

Li−→ y), whose languages Li are given as regular
expressions.

Lower bound on size of equivalent UCQ. It is not hard to produce 2n-tiling instances
Tn having triple-exponentially many solutions. Indeed, it suffices to (1) enforce that each
solution has exactly 22n rows (and hence there are only finitely many solutions), which can
be done by encoding the binary representation of i at each row i, and (2) encode at each row
an arbitrary symbol from the alphabet {a, b}. In this way, each solution encodes a function
f : R → {a, b}, where R = {0, . . . , 22n − 1}, and conversely, for each such a function there
is a distinct solution. It then follows that Tn has 222n solutions. In particular, the Boolean
CRPQ γn from Lemma 14 is bounded and has at least 222n minimal expansions. Recall that
these minimal expansions are produced by expanding each atom of γn into a word w ∈ E
corresponding to a solution of Tn. Hence, if λ and λ′ are two of these minimal expansions,
we have that λ 6→ λ′, i.e., γn has at least 222n homomorphically incomparable minimal
expansions. By Lemma 17, it follows that every UCQ equivalent to γn must have at least
222n disjuncts. This yields part (3) of Theorem 11.

E Appendix to Section 7

Proof of Theorem 15

The PSpace lower bound follows from Corollary 7, so we focus on the upper bound. Given
an acyclic UC2RPQ Γ of thickness ≤ k, we shall construct in polynomial time an A2DAε
A of polynomial size in ‖Γ‖ such that Γ is bounded iff A is limited. The result will follow
from Theorem 10.

As in the proof of the ExpSpace upper bound in Theorem 11, the A2DAε A will run
over encodings of expansions of Γ. So if A is the alphabet of Γ, then the alphabet of A is
A1 := A± ∪ V ∪ {$}, where V is the set of variables of Γ and $ is a fresh symbol. Again,
if λ is the expansion of a disjunct γ = ∃z̄

∧
1≤i≤m(xi

Li−→ yi) of Γ obtained by expanding
xi

Li−→ yi into an oriented path πi from xi to yi with label wi ∈ Li, then we encode λ as the
word over A1

wλ = $x1w1y1$x2w2y2$ · · · $xmwmym$

Note how the subword xiwiyi represents the oriented path πi. Every position j ∈
{1, . . . , |wλ|} with wλ[j] 6= $ represents a variable in λ: either xi or yi if wλ[j] = xi or
wλ[j] = yi, respectively; or the (`+ 1)-th variable in the oriented path πi if wλ[j] is the `-th
symbol in the subword wi. Hence different positions could represent the same variable in λ:
e.g., in the encoding $xabcy$, the 5th position containing a ‘c’ and 6th position containing
a ‘y’, represent the same variable, namely, the last vertex y of the oriented path.

It follows from the definition of Bγ2 and Dγ2 in Section 6.1 that for every regular language
L appearing in Γ, there is a 2DA AL over A1, computable in polynomial time, such that
for every expansion λ of Γ, and head positions i, j ∈ {1, . . . , |wλ|}, where xi and xj are the
variables in λ represented by i and j, respectively, we have:

Every accepting run ρ of AL over wλ from position i to position j, determines an oriented
path πρ in λ from xi to xj whose label is in L. Moreover, cost(ρ) is precisely the number
of atoms of πρ.
For every oriented path π in λ from xi to xj with label in L, there is an accepting run ρ
of AL over wλ from position i to position j, such that πρ = π.
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Recall also from Section 6.1 that there is an NFA A1 that accepts precisely those words
over A1 that encode some expansion of Γ. The size of A1 is polynomial in ‖Γ‖. From A1
we can obtain a 2NFA C1 that, over a word w, starts by executing A1 until we reach the
position |w| and if we reach a final state of A1 then we move to the position 0 and accept,
i.e., we enter the final state of C1. Let D1 be the DA obtained from C1 by setting the cost
of all transitions to be 0. Our A2DAε A is the concatenation of D1 and B (defined below),
i.e., we add non-costly ε-transitions from the unique final state of D1 to the initial state of
B. Note that a word that is not of the form wλ for some expansion λ of Γ has no accepting
run of A. Hence A is limited iff it is limited over the words wλ’s. Moreover, we have
costA(wλ) = costB(wλ). Thus, A is limited iff B is limited over all words of the form wλ.
We shall construct B so the latter condition is equivalent to Γ being bounded. In particular,
for an expansion λ of Γ, let λmin be a minimal size expansion of Γ such that λmin → λ. We
will show that

costB(wλ) ≤ ‖λmin‖ ≤ g(costB(wλ)), for every expansion λ, (1)

where g is some non-decreasing function. Hence, B is limited over all words of the form
wλ iff ‖λmin‖ is bounded over all expansions λ of Γ. The latter condition is equivalent to
boundedness of Γ by our characterization of Proposition 3, item (2).

Before defining B we need to introduce some notation. Let γ be a disjunct of Γ. A
connected component of γ is a maximal subquery whose underlying graph is connected.
Since γ is acyclic, we can assume that (the underlying graph of) every connected component
of γ is a rooted tree, and we use the usual terminology of trees (parent, children, leaves,
. . . ) over the variables of γ. For variables x, y in γ, we define Atomsγ(x, y) to be the set
of atoms of γ of the form x

L−→ y or y L−→ x. Suppose x is the parent of y in γ. Without
loss of generality, we shall assume that each atom in Atomsγ(x, y) is of the form x

L−→ y

(otherwise, we simply “reverse” L). We also assume a fixed enumeration L1, . . . , L`, where
` = |Atomsγ(x, y)|, of the regular languages labelling the atoms of Atomsγ(x, y). We define
Cutsγ(x, y) to be the set of cuts from x to y, that is, the set of tuples (q1, . . . , q`), where
each qi is a state of ALi . We say that (q1, . . . , q`) is an initial cut if each qi is the initial
state of ALi . Similarly, we say that (q1, . . . , q`) is a final cut if each qi is a final state of
ALi . We also define Cutsγ =

⋃
{Cutsγ(x, y) : x parent of y in γ} and Triplesγ = {(L, q, q′) :

L appears in γ and q, q′ states in AL}.
The main idea of the A2DAε B is similar to the idea behind Section 6.1: for an encoding

wλ of an expansion λ of Γ, the automaton B tries to map some expansion λ′ of Γ into (the
encoding of) λ. In particular, every accepting run ρ of B over wλ determines an expansion
λρ such that λρ → λ. On the other hand, for every expansion λ′ such that λ′ → λ there is
an accepting run ρ of B over wλ with λρ = λ′. We will prove that

cost(ρ) ≤ ‖λρ‖ ≤ g(cost(ρ)), for every accepting run ρ of B over wλ, (2)

where g is some non-decreasing function. Note then that (2) implies (1).
The main difference from the construction of Section 6.1 is that we do not need to

annotate first the encoding wλ and then project the annotations. Instead, we can exploit
the acyclicity of Γ to try to map directly an expansion of Γ to the input expansion λ. To do
this, B starts by choosing a disjunct γ of Γ. Then B applies universal transitions to map all
the connected components of γ. Each component is mapped in a top-down fashion starting
from the root to the leaves. Once some variable x is already mapped to some variable h(x)
of λ, or more precisely, to some head position jx ∈ {0, . . . , |wλ|} such that jx > 0 and wλ[jx]
represents the variable h(x), then B applies universal transitions to what we call the axes
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of x. An axis of x is either an atom x
L−→ x ∈ Atomsγ(x, x) or a child of x in γ. We need to

extend our mapping to every axis of x.
By definition of the 2DA AL, the mappings of an axis x L−→ x ∈ Atomsγ(x, x) correspond

to the accepting runs of AL over wλ starting and ending at position jx. In order to find these
looping accepting runs of AL, we use a similar idea as in the reduction (3) in Theorem 10
from 2DA to ADAε. We have that every accepting run of AL over wλ starting and ending at
position jx, can be divided into a set of rightward looping partial runs and a set of leftward
looping partial runs. Following the terminology of reduction (3), we can represent rightward
and leftward looping partial runs by rightward and leftward zig-zag trees, respectively, which
are rooted trees of height at most |wλ| where each edge has a cost in {0, 1, 2} and each
node is labeled with (L, q, q′) for a pair of states q, q′ in AL. In a rightward [resp. leftward]
zig-zag tree, each level ` from the root to the leaves corresponds to the position jx + ` in
{0, . . . , |wλ|} [resp. jx − `]; cf., Figure 1. If u has only one child v in a rightward zig-zag
tree (the leftward case is analogous) and their labels are (L, q, p) and (L, q′, p′), respectively,
then there must be transitions of the form (q, a, c1, q′) and (p′, a−1, c2, p) in AL such that
a = wλ[jx+`v], where `v is the level of v (i.e., its distance to the root). The cost of the edge
{u, v} is then c1 + c2. If u has children v1, . . . , vr, with r ≥ 2, and the label of u is (L, q, p)
then the labels of v1, . . . , vr must be (L, q0, q1), (L, q1, q2), . . . , (L, qr−1, qr), respectively, and
there must be transitions (q, a, c1, q0) and (qr, a−1, c2, p) of AL such that a = wλ[jx + `],
where ` is the level of the vi’s. The cost of {u, vi} is c1 for i = 1, c2 for i = r, and 0 for
1 < i < r. Finally, every leaf in a rightward or leftward zig-zag tree has a label of the form
(L, q, q), for some state q in AL.

In order to map x L−→ x, the automaton B chooses a final state q′ of AL and enters a state
(L, q, q′)ε, where q is the initial state of AL. From there, B can spawn threads starting from
states (L, q, p, s) and (L, p, q′)ε, where s ∈ {right, left} and the state (L, q, p, s) indicates
that we are looking for a s-ward partial run ρ from q to p starting and ending at jx. As
in the reduction (3), this is done by exploiting alternation to guess the zig-zag tree of ρ
in a top-down manner. In order to compute the cost of an accepting run correctly, as in
reduction (3), the states of B of the form (L, q, p, s) are enhanced with a number c ∈ {0, 1}
(and denoted by [(L, q, p, s)]c), which indicates whether there is a costly transition in the
looping partial run from q to p (or equivalently, in the zig-zag subtree rooted at (L, q, p)).

For an axis corresponding to a child y of x, we need to map simultaneously all the
atoms x L1−−→ y, . . . , x L`−→ y ∈ Atomsγ(x, y). The idea is first to choose whether y is
mapped to the right or to the left of jx, and then moving in the chosen direction guessing
a sequence of cuts D0, . . . , Dn ∈ Cutsγ(x, y), where D0 is an initial cut and Dn is final.
These are represented by B via states (Di, s), where s ∈ {right, left}. A transition from
Di to Di+1 can either consume a symbol from wλ or be an ε-transition that modifies only
one coordinate of Di, say j, and produces Di+1. When the latter happen, B spawn threads
starting in states (Di+1, s) and (Lj , q, q′, s′), where q and q′ are the j-th coordinates of Di

and Di+1, respectively, and s′ ∈ {right, left} is some direction. The intuition is that we
choose to do an asynchronous mapping only for ALj in the form of a s′-ward looping partial
run from q to q′. This is needed as the mappings of the atoms x Lj−−→ y into wλ can be very
different from each other.

Observe that we can represent mappings of {x L1−−→ y, . . . , x L`−→ y} = Atomsγ(x, y)
into wλ, where x and y are mapped to jx and jy (we assume jy ≥ jx; the case jy ≤ jx
is analogous), respectively, as rightward special trees from jx to jy (or leftward in the case
jy ≤ jx), which are rooted trees with costs in the edges obtained from a special rooted path
B with jy − jx + 1 nodes, each of which is labeled with a pair of cuts (D,D′) in Cutsγ(x, y),
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by attaching some zig-zag trees to each node as explained below. If (D,D′) is the label of
the root, i.e., the first node of B, then D is an initial cut, and if (D,D′) is the label of the
last node of B then D′ is a final cut. If {u, v} is the r-th edge of B with r ∈ {1, . . . , jy− jx},
and (D,D′) and (E,E′) are the labels of u and v respectively, then for every coordinate
i ∈ {1, . . . , `}, there is a transition in ALi of the form (q, a, ci, q′), where q and q′ are the
i-th coordinates of D′ and E, respectively, and a = wλ[jx + r]. The cost of the edge {u, v}
is c1 + · · · + c` ∈ {0, . . . , `}. In a rightward special tree we also have that each node u in
the special rooted path B is associated with a set of disjoint rightward or leftward zig-zag
trees whose roots have been identified with u. In particular, if u has label (D,D′) and qi
and q′i are the i-th coordinates of D and D′, respectively, then for every i ∈ {1, . . . , `} there
is a sequence p0

i , p
1
i , . . . , p

ni
i such that p0

i = qi, pnii = q′i and the set of labels of the roots of
the rightward or leftward zig-zag tree associated with u (before being identified with u) is
precisely {(Li, pji , p

j+1
i ) : i ∈ {1, . . . , `}, j ∈ {0, . . . , ni − 1}}. Observe that the working of B

explained in the previous paragraph for mapping x L1−−→ y, . . . , x L`−→ y ∈ Atomsγ(x, y) into
wλ can be seen as using the power of alternation to guess a rightward or leftward special
tree from the current position jx to some position jy. Again, in order to compute the cost
correctly, we need to consider states of the form [(D, s)]c, for c ∈ {0, 1}, instead of (D, s).

Now we are ready to formally define the A2DAε B. We shall use transitions of the
form (q, a, c, q′) where c ∈ {0, . . . , k}. Note that this is not a problem as they can be
simulated using ε-transitions. Moreover, the automaton B will not need to move its head
to the leftmost and rightmost positions (as these never represent a variable of the input
expansion), so almost all of its transitions will be end-flagged. Hence, for a transition, we
will write (q, a, c, q′) instead of (q, a, end, c, q′). We define B = (A1, Q∃, Q∀, q0, F, δ), where

Q∃ = {q0, qf} ∪
⋃
{Qγ∃ : γ disjunct of Γ}. For a disjunct γ of Γ, we define

Qγ∃ = ((Cutsγ ∪ Triplesγ)× {right,left} ∪ Triplesεγ)× {0, 1} ∪Axesγ ∪ Rootsγ ,

where Triplesεγ := {tε : t ∈ Triplesγ},

Axesγ := {xy : x is the parent of y in γ} ∪ {xA : x is in γ, A ∈ Atomsγ(x, x)},

and Rootsγ := {rinit : r is the root of some connected component of γ}. We shall write
[α]c for (α, c) ∈ Qγ∃ \ (Axesγ ∪ Rootsγ).
Q∀ =

⋃
{{qγ0 } ∪ Q

γ
∀ : γ disjunct of Γ} ∪ {qnf}. For a disjunct γ of Γ, we define Qγ∀ = Vγ∪

{[α1]c1 ∧ [α2]c2 : [α1]c1 ∈ Q
γ
∃ \ (Axesγ ∪Rootsγ), [α2]c2 ∈ Triplesγ ×{right, left}×{0, 1}}.

F = {qf}∪
⋃
{[(L, q, q, s)]0, [(L, q, q)ε]0 : γ disjunct of Γ, (L, q, q) ∈ Triplesγ , s ∈ {right, left}}.

δ is the smallest set verifying:
1. (q0, ε, end, 0, qγ0 ) ∈ δ, for every disjunct γ of Γ, so we can choose the disjunct of Γ to

be mapped into the input expansion.
2. (qγ0 , ε, end, 0, rinit) ∈ δ, for every disjunct γ of Γ and every root r of a connected

component of γ. For the disjunct γ to be mapped, we need all of its connected
components to be mapped.

3. For every disjunct γ of Γ, every root r of a connected component of γ, and every
a ∈ A±1 , we have {(rinit, a, 0, rinit), (rinit, ε, 0, r)} ⊆ δ. With these transitions we can
choose the position where the root r should be mapped.

4. (x, ε, 0, xt) ∈ δ, for every disjunct γ of Γ, every x in γ and every xt ∈ Axesγ . Once
we mapped x into the expansion, we need to map all of its subtrees and all atoms in
Atomsγ(x, x).
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5. For every γ in Γ, and every free variable x in γ, we have (x, x−1, 0, qf ) ∈ δ and
(x, b−1, 0, qnf) ∈ δ, for every b ∈ A1 \ {x}. This ensures that x is always mapped to
itself.

6. For every γ in Γ and xt ∈ Axesγ ,
If t = y (and hence x is the parent of y in γ), then (xt, ε, 0, [(D, s)]c) ∈ δ, for every
c ∈ {0, 1}, c and every initial cut D ∈ Cutsγ(x, y).
If t = x

L−→ x, then (xt, ε, 0, [(L, q, q′)ε]c) ∈ δ, where q is the initial state of AL,
every final state q′ of AL, and every c ∈ {0, 1}.

These transitions allow us to start looking for a mapping of each axis of x into the
expansion.

7. For every γ in Γ,
([(D, s)]max(c1,c2), ε, 0, [(D′, s)]c1 ∧ [(L, q, q′, s′)]c2) ∈ δ, for every c1, c2 ∈ {0, 1},
s, s′ ∈ {right, left} and every D,D′ ∈ Cutsγ(x, y), for some x, y, such that D =
(q1, . . . , q`), D′ = (q′1, . . . , q′`), there is j such that qi = q′i, for all i ∈ {1, . . . , `} \
{j}, and (L, q, q′) = (Lj , qj , q′j), where Lj is the j-th language mentioned in
Atomsγ(x, y). With these transitions we guess that a looping s′-ward partial run
of AL from q to q′ should be mapped to the input expansion. In terms of special
trees, these transitions allow us to add new subtrees to a node in the special path
of the s-ward special tree.
([(L, q, q′)ε]max(c1,c2), ε, 0, [(L, p, q′)ε]c1 ∧ [(L, q, p, s)]c2) ∈ δ, for every c1, c2 ∈ {0, 1},
s ∈ {right, left} and q, q′, p states in AL. With these transitions we can guess that
a looping s-ward partial run of AL from q to p should be mapped to the input.
([(L, q, q′, s)]max(c1,c2), ε, 0, [(L, q, p, s)]c1 ∧ [(L, p, q′, s)]c2) ∈ δ, for every c1, c2 ∈
{0, 1}, s ∈ {right, left} and q, q′, p states in AL. We reduce the search for the
looping s-ward partial run of AL from q to q′, to look for loopings s-ward partial
runs from q to p and from p to q′. In terms of zig-zag trees, these transitions allow
us to add a new subtree to the s-ward zig zag tree.

8. For every γ in Γ, we have {([α1]c1 ∧ [α2]c2 , ε, c2, [α1]c1), ([α1]c1 ∧ [α2]c2 , ε, c1, [α2]c2)} ⊆
δ, for every [α1]c1 ∈ Q

γ
∃ \(Axesγ ∪Rootsγ) and [α2]c2 ∈ Triplesγ×{right, left}×{0, 1}.

9. For every γ in Γ, a ∈ A±1 = A1 ∪̇A−1
1 , c ∈ {0, 1} and s ∈ {right, left},

([(L, q, p, s)]max{c,d}, a, d, [(L, q′, p′, s)]c) ∈ δ, if there exist transitions (q, a, c1, q′)
and (p′, a−1, c2, p) in AL such that d = max{c1, c2}; and s = right ⇔ a ∈ A1. We
reduce the search for the looping s-ward partial run of AL from q to p, to look for
a looping s-ward partial run from q′ to p′.
For every D = (q1, . . . , q`) and D′ = (q′1, . . . , q′`) in Cutsγ(x, y), for some vari-
ables x, y, we have ([(D, s)]max{c,d}, a, d, [(D′, s)]c) ∈ δ, if there are transitions
(q1, a, c1, q

′
1), . . . , (q`, a, c`, q′`) in AL1 , . . . ,AL` , respectively, where Li is the i-

th language mentioned in Atomsγ(x, y), such that d = max{c1, . . . , c`}; and s =
right ⇔ a ∈ A1. These transitions correspond to a simultaneous mapping of all
the atoms in Atomsγ(x, y) to the input expansion. In terms of special trees, these
correspond to traverse one edge of the special path.

10. For γ in Γ and every final cut D ∈ Cutsγ(x, y), for some variables x, y in γ, and
s ∈ {right, left}, we have ([(D, s)]0, ε, 0, y) ∈ δ.

11. Finally, (x, ε, 0, qf ) ∈ δ, for every γ in Γ and x an existentially quantified variable that
is a leaf in γ with Atomsγ(x, x) = ∅.

I Lemma 23. Γ is bounded iff B is limited.
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Proof. Note first that every accepting run ρ of B on wλ, for an expansion λ of Γ, determines
a disjunct γρ of Γ, an expansion λρ of γρ and a homomorphism hρ witnessing λρ → λ.
Conversely, for every disjunct γ′ of Γ, every expansion λ′ of γ′ and homomorphism h′

witnessing λ′ → λ, there is an accepting run ρ of B on wλ with γρ = γ′, λρ = λ′ and
hρ = h′. Hence, it suffices to show the above-mentioned condition (2), i.e.,

cost(ρ) ≤ ‖λρ‖ ≤ g(cost(ρ)), for every accepting run ρ of B over wλ, (2)

for some non-decreasing function g. In order to show this, we follow an argument similar to
the one of Lemma 21. Note that every accepting run ρ of B on wλ, determines a collection
Cρ = Zρ ∪ Sρ, such that Zρ =

⋃
{Aρ : A ∈ Atomsγρ(x, x) for some variable x in γρ}, where

Aρ is a collection of rightward and leftward zig-zag trees; and Sρ = {tx,yρ : x is the parent of y in γρ},
where tx,yρ is either a rightward or leftward special tree.

Let t be a (rightward or leftward) zig-zag or special tree. We write cost(t) for the sum
of all the costs, over all edges of t. For a branch B of t, a heavy branching of B is a subtree
attached to B that has at least one edge with cost > 0. We define f(t) to be the maximum
over all branches B of t, of the cost of B (i.e., the sum of the costs of the edges of B) plus
the number of heavy branchings of B. Note that f(t) ≤ cost(t). Now let ρ be an accepting
run of B over wλ. We have that ‖λρ‖ =

∑
t∈Cρ cost(t). By construction of B, we have that

cost(ρ) ≤
∑
t∈Cρ f(t). Then,

cost(ρ) ≤
∑
t∈Cρ

f(t) ≤
∑
t∈Cρ

cost(t) = ‖λρ‖,

which proves one of the directions of condition (2).
For the other direction, for every t ∈ Cρ, we have that f(t) ≤ r · cost(ρ), where r :=

1 +
∑
{|QL|4 : L appearing in Γ}, where QL is the statespace of AL and r is an upper

bound for the maximum arity of any zig-zag or special tree. Also, for every t ∈ Cρ, we have
cost(t) ≤ (2k + 3)rf(t). (Recall that k is the upper bound on the thickness of Γ.) Indeed,
consider the heaviest branch B of t (i.e., the result of traversing t from the root by always
choosing a child whose subtree has maximal total cost). We can partition the edges of B
into E1 and E2 such that E1 are the edges that do not decrease the total cost of the current
subtree and E2 the ones that do. Let n := cost(t) be the initial total cost of t. Note that each
edge in E2 decreases the total cost of the current subtree from n′ to no less than n′

r − (k+1)
(note that k + 1 is an upper bound for the cost of any edge in any zig-zag or special tree).
We have that |E2| ≥ max{` ∈ N : n

r`
− (k + 1)

∑`−1
i=0

1
ri ≥ 1} ≥ max{` ∈ N : n

r`
− 2(k + 1) ≥

1} ≥ logr n
2(k+1)+1 . The claim follows since f(t) ≥ |E2| (as each edge in E2 either has cost

> 0 or has a heavy branching). Summing up, we have that

‖λρ‖ =
∑
t∈Cρ

cost(t) ≤
∑
t∈Cρ

(2k + 3)rf(t) ≤
∑
t∈Cρ

(2k + 3)rr·cost(ρ) ≤ r ·NΓ(2k + 3)rr·cost(ρ),

where NΓ is the number of atoms of Γ (note that r · NΓ is then an upper bound to |Cρ|).
This shows the remaining direction of condition (2), and hence the lemma. J

Finally, note that the number of states of B is polynomial in ‖Γ‖, and hence B can
be constructed in polynomial time. Indeed, the crucial part is to bound |Cutsγ(x, y)| for
any disjunct γ and variables x, y in γ. Since the thickness of Γ is ≤ k, we have that
|Cutsγ(x, y)| ≤ ‖Γ‖k. This finishes the proof of Theorem 15.
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Proof of Theorem 16

We start with the ΠP
2 upper bound. Let Γ be a strongly connected UCRPQ. Let γ(x̄) be a

disjunct of Γ. We define γ<∞(x̄) to be the CRPQ obtained from γ(x̄) by adding an atom
x

ε−→ x, for each free variable x in x̄, and removing all atoms y L−→ z such that L is infinite.
Note that γ<∞(x̄) could be not well-defined. (This happens precisely when γ is Boolean and
all of its RPQs are infinite.) We define Γ<∞ :=

∨
{γ<∞ : γ in Γ, and γ<∞ is well-defined}.

If every γ<∞ is not well-defined, then Γ<∞ is not well-defined neither. We say that a
UCRPQ Γ is ε-trivial if it has at most one free variable, and there is a CRPQ γ in Γ such
that all of its RPQs contain the empty word ε. Note that an ε-trivial UCRPQ is always
bounded. We have the following:

I Lemma 24. A strongly connected UCRPQ Γ is bounded iff Γ is ε-trivial or, Γ<∞ is
well-defined and Γ<∞ ⊆ Γ.

Proof. From right to left, if Γ is ε-trivial then it is bounded. Otherwise, Γ<∞ ⊆ Γ and then
Γ<∞ is equivalent to Γ (as Γ ⊆ Γ<∞ always holds). Since Γ<∞ is bounded, then Γ is also
bounded. From left to right, suppose Γ is bounded and not ε-trivial. By Proposition 3, there
is k ≥ 1 such that for every expansion λ of Γ there is an expansion λ′ of Γ such that ‖λ′‖ ≤ k
and λ′ → λ (†). We show first that Γ<∞ is well-defined. By contradiction suppose this is
not the case. In particular, all the RPQs in Γ are infinite. We pick an arbitrary disjunct γ of
Γ and an expansion λ>k of γ obtained from choosing a word w ∈ L with |w| > k, for every
atom x

L−→ y of γ. By (†), there is an expansion λ′ such that ‖λ′‖ ≤ k and λ′ → λ>k. Since
Γ is not ε-trivial, it follows that there at least one (non-equality) atom x

a−→ y in λ′. Since
γ is strongly connected, λ′ has a (labeled) directed cycle containing x a−→ y (i.e., number of
edges) at most k. Since every directed cycle in λ>k has length greater than k, we have a
contradiction with the fact that λ′ → λ>k.

Now we show Γ<∞ ⊆ Γ using Lemma 17. Let λ be any expansion of γ<∞ in Γ<∞. If
γ = γ<∞, then we are done. Otherwise, consider the expansion λ>k of γ obtained by (1)
choosing the same word as in λ for atoms x L−→ y with L finite, and (1) choosing a word
w ∈ L such that |w| > k for the atoms x L−→ y with L infinite. Note that we can partition
the (non-equality) atoms of λ>k into those generated in case (1), denoted by A<∞ and those
generated in case (2), denoted by A∞. By (†), there is an expansion λ′ of Γ with ‖λ′‖ ≤ k

such that λ′ → λ>k via a homomorphism h. We claim that the image via h of every atom
x

a−→ y in λ′ belongs to A<∞. By contradiction, suppose h(x) a−→ h(y) ∈ A∞. Since γ is
strongly connected, λ′ has a (labeled) directed cycle containing x a−→ y of length ≤ k. This is
a contradiction as λ′ → λ>k and every directed cycle in λ>k has length > k. Hence, λ′ → λ.
By Lemma 17, we obtain that Γ<∞ ⊆ Γ. J

For the lower bound, we reduce from the following well-known ΠP
2 -complete problem:

Given a connected (undirected) graph G = (V,E) and k ≥ 1 (given in unary), check whether
for every function c : V → {0, 1}, there is a clique K in G of size k such that c(u) = c(v)
for all nodes u, v in K. (Recall that a clique is a graph with an edge between each pair of
distinct nodes.)

Given G = (V,E) and k ≥ 1, we define a Boolean strongly connected UCRPQ Γ over
the alphabet A := {a, b, 0, 1} as follows. Let γG be the Boolean CRPQ with variable set
{xu : u ∈ V } where we have atoms xu

a−→ xv, xu
b−→ xv, xv

a−→ xu, xv
b−→ xu, for each edge

{u, v} ∈ E, and an atom xu
0+1−−→ xu, for each node u ∈ V . For ` ∈ {0, 1}, we define the

Boolean CRPQ γ`k to have variable set {z0, . . . , zk−1}, atoms zi
a−→ zj , zj

a−→ zi, for each pair
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i 6= j ∈ {0, . . . , k−1}, and an atom zi
`−→ zi, for each i ∈ {0, . . . , k−1}. We pick an arbitrary

node u0 from G and for every ` ∈ {0, 1}, we define γ`G to be the Boolean CRPQ obtained
from the (disjoint) conjunction of γG and γ`k by adding the atoms xu0

b∗−→ z0, z0
b∗−→ xu0 .

Then we let Γ := γ0
G ∨ γ1

G. Note that Γ is actually strongly connected. Also observe that
Γ<∞ = (γ0

G)<∞ ∨ (γ1
G)<∞, where (γ`G)<∞ is the (disjoint) conjunction of γG and γ`k, for

` ∈ {0, 1}.
We claim that G, k is a positive instance iff Γ is bounded. We show that G, k is a positive

instance iff Γ<∞ ⊆ Γ, a hence the claim follows from Lemma 24. Suppose that G, k is a
positive instance. We prove Γ<∞ ⊆ Γ using Lemma 17. Let λ be an any expansion of Γ<∞.
Then there is ` ∈ {0, 1} and a function c : V → {0, 1} such that λ is the disjoint conjunction
of γcG and γ`k, where γcG is obtained from γG by replacing xu

0+1−−→ xu with xu
c(u)−−→ xu, for

each u ∈ V . By hypothesis, G contains a clique K of size k with c(z) = `′, for each z in K
and some fixed `′ ∈ {0, 1}. Pick an arbitrary node z∗ of K and consider the expansion λ′ of
γ`
′

G given by λcG ∧γ`
′

k ∧xu0
bd−→ z0 ∧z0

bd−→ xu0 , where d ≥ 0 is the distance in G from u0 to
z∗. Then λ′ → λcG → λ via the homomorphism h that is the identity over λcG and maps γ`′k
to {xz : z in K} with h(z0) = xz∗ . Hence, Γ<∞ ⊆ Γ.

Suppose now that Γ<∞ ⊆ Γ and let c be any function c : V → {0, 1}. Consider the
expansion λc of γ0

G given by γcG ∧ γ0
k, where γcG is defined as above. By Lemma 17, there is

an expansion λ` of some γ`G with ` ∈ {0, 1}, such that λ` → λc. Since λ` is connected, and
contains symbols b ∈ A, it is the case that λ` → γcG via h. Hence {h(zi) : i ∈ {0, . . . , k− 1}}
must correspond to a clique K of G with c(z) = `, for all z in K.
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