
HAL Id: hal-02056378
https://hal.science/hal-02056378v1

Submitted on 5 Mar 2019 (v1), last revised 11 Sep 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modular randomized byzantine k-set agreement in
asynchronous message-passing systems

Achour Mostefaoui, Hamouma Moumen, Michel Raynal

To cite this version:
Achour Mostefaoui, Hamouma Moumen, Michel Raynal. Modular randomized byzantine k-set
agreement in asynchronous message-passing systems. The 17th International Conference on Dis-
tributed Computing and Networking (ICDCN’16), Jan 2016, Singapore, Singapore. pp.1-10,
�10.1145/2833312.2833313�. �hal-02056378v1�

https://hal.science/hal-02056378v1
https://hal.archives-ouvertes.fr

Modular Randomized Byzantinek-Set Agreement
in Asynchronous Message-passing Systems

Achour Most́efaoui† Hamouma Moumen‡ Michel Raynal⋆,◦

† LINA, Université de Nantes, 44322 Nantes Cedex, France
‡ University of Bejaia, Algeria

⋆ Institut Universitaire de France
◦ IRISA, Universit́e de Rennes 35042 Rennes Cedex, France

Achour.Mostefaoui@univ-nantes.fr hamouma.moumen@gmail.com raynal@irisa.fr

June 29, 2015

Abstract

k-Set agreement is a central problem of fault-tolerant distibuted computing. Considering a set of
n processes, where up tot may commit failures, let us assume that each process proposes a value.
The problem consists in defining an algorithm such that each non-faulty process decides a value, at
mostk dfferent values are decided, and the decided values satisfysome context-depending validity
condition. Synchronous message-passing algorithms solving k-set agreement have been proposed
for different failure models (mainly process crashes, and process Byzantine failures). Differently,
k-set agreement cannot be solved in failure-prone asynchronous message-passing systems when
t ≥ k. To circumvent this impossibility an asynchronous system must be enriched with additional
computational power.

Assumingt ≥ k, this paper presents a distributed algorithm that solvesk-set agreement in an
asynchronous message-passing system wher up tot processes may commit Byzantine failures. To
that end, each process is enriched with randomization power. While randomizedk-set agreement al-
gorithms exist for the asynchronous process crash failure model wheret ≥ k, to our knowledge the
proposed algorithm is the first that solvesk-set agreement in the presence of up tot ≥ k Byzantine
processes. Interestingly, this algorithm is signature-free, and ensures that no value proposed only
by Byzantine processes can be decided by a non-faulty process. Its design is based on a modular
construction which rests on a “no-duplicity” one-to-all broadcast abstraction, and two all-to-all com-
munication abstractions.

Keywords: Asynchronous message-passing system, Broadcast abstraction, Byzantine process, Coin,
Distributed algorithm,k-Set agreement, Randomized algorithm, Signature-free algorithm.

1 Introduction

Distributed agreement in the presence of process failuresThe world is distributed and more and
more applications are now distributed. Moreover, when considering the core of non-trivial distributed
applications, it appears that the computing entities (processes) have to agree in one way or another,
for example to take a common decision, execute specific actions, or validate some commitment. Said
another way, agreement problems lie at the core of distributed computing.

The most famous distributed agreement problem is theconsensusproblem. Let us consider a set
of processes, where some of them may commit failures. Assuming each process proposes a value, the
consensus problem is defined by the following properties: each non-faulty process must decide a value

1

(termination), such that the same value is decided by the non-faulty processes (agreement), and this
value satisfies some validity condition, which depends on the proposed values and the considered failure
model [7, 17].

The k-set agreement problem is a natural weakening of consensus [6]. Itallows the non-faulty
processes to decide different values, as long as no more thank values are decided. Hence, consensus is
1-set agreement. Let us notice thatk-set agreement can be easily solved in crash-prone systems wherek
(the maximal number of different values that can be decided) is greater than t (the maximal number of
processes that may be faulty). Thek-set agreement problem has applications, e.g., to compute a common
subset of wavelengths (each process proposes a wavelength and atmostk of them are selected), or to
duplicatek state machines where at most one is required to progress forever [9, 22].

Byzantine failures This failure type has first been introduced in the context of synchronous distributed
systems [12, 17, 20], and then investigated in the context of asynchronous distributed systems [1, 13, 21].
A process has aByzantinebehavior when it arbitrarily deviates from its intended behavior. We then say
that it “commits a Byzantine failure” (otherwise we say the process isnon-faultyor correct). This bad
behavior can be intentional (malicious) or simply the result of a transient fault that altered the local state
of a process, thereby modifying its behavior in an unpredictable way. Letus notice that process crashes
(unexpected halting) define a strict subset of Byzantine failures.

Let us remind that (as already said) the world is distributed, asynchronous message-passing sys-
tems are more and more pervasive, processes have to agree in one way or another, and the assumption
“no process has a bad behavior” is no longer sensible. Hence, agreement in asynchronous Byzantine
message-passing systems is becoming a more and more important issue of fault-tolerance.

An impossibility result and how to cope with it Let consider a system made up ofn processes,
where up tot may be faulty. Whatever the value ofk (i.e., even ifk ≤ t), k-set agreement can always
be solved if the system is synchronous [20]. The situation is different in asynchronous systems where
k-set agreement is impossible to solve in the process crash failure model when k ≤ t [2, 11, 23].
As Byzantine failures are more severe than process crash failures, thisimpossibility remains true in
asynchronous Byzantine systems.

It follows from this impossibility that, whenk ≤ t, the underlying asynchronous distributed system
has to be enriched with additional computational power fork-set agreement to be solved. Such an
additional computational power can be provided with minimal synchrony assumptions (e.g., [3] which
considersk = 1 and Byzantine failures), appropriate failure detectors (e.g., [8] which considersk = 1
and Byzantine failures), or randomization (e.g., [19] which considersk = 1 and Byzantine failures,
and [5, 15] which considerk ≤ t and crash failures, in read/write shared memory systems and message-
passing systems, respectively).

Intrusion-tolerant agreement with respect to Byzantine processes The validity property associated
with a distributed agreement problem relates its outputs to its inputs. In a system where processes may
commit Byzantine failures, there is no way to direct a Byzantine process to decide some specific value,
and consequently thek-set agreement validity property can only be on the values decided by the correct
processes.

A classical validity property for Byzantine agreement states that, when the non-faulty processes pro-
pose the same value, they must decide it. Hence, as soon as two non-faulty processes propose different
values, any value can be decided by the correct processes, even a value “proposed” by a Byzantine
process. (Let us observe that a Byzantine process can appear as proposing different values to different
correct processes.) It follows that, as noticed and deeply investigated in[18], the solvability of Byzantine
k-set agreement is sensitive to the particular validity property that is considered.

2

In this paper we consider the following validity property (introduced in [16]where it is called
intrusion-tolerance): no value proposed only by Byzantine processes can be decided by anon-faulty
process. One way to be able to design ak-set algorithm providing this property, consists in allow-
ing a non-faulty process to decide a default value⊥, except (to prevent triviality) when the non-faulty
processes propose the same value. (The⊥ decision at some non-faulty processes can occur for ex-
ample in the very adversary scenario where the non-faulty processes propose different values, while
the Byzantine processes propose the same value). Another way to designa k-set algorithm providing
intrusion-tolerance consists in adding a constraint on the total number of different values that can be
proposed by the non-faulty processes. Letm be this number. It is shown in [10] that, in a system ofn
processes where up tot processes may commit Byzantine failures, such a constraint isn− t > mt (i.e.,
there is a value proposed by at least(t+ 1) non-faulty processes).

Content of the paper This paper is on Byzantinek-set agreement. It has two main contributions.

• The first is a pair of all-to-all communication abstractions. The first one, called MV-broadcast
(where MV stands for “Multivalued Validated”), allows the non-faulty processes to exchange
values in such a way that all the non-faulty processes eventually obtain thesame set of values, and
none of these values is from Byzantine processes only. The second one, called SMV-broadcast
(where S stands for “Synchronized”) is built on top the first one, and issuch that, if a non-faulty
process obtains a set with a single value, the set obtained by any other non-faulty process contains
this value. The important point is that these communication abstractions allow the processes to
exchange values while eliminating the values sent only by Byzantine processes. They generalize
to the “multivalue” case the communication abstractions introduced in [14], where the set of values
that the processes exchange is limited to two values.

• The second contribution is a modulark-set agreement algorithm for asynchronous message-
passing systems where processes may commit Byzantine failures. This algorithm, which round-
based, relies on the previous SMV-broadcast abstraction, and (as already announced) on the ad-
ditional computational power supplied by local random coins (with severalsides). As far as we
know, this is the first randomizedk-set agreement algorithm for asynchronous Byzantine message-
passing systems.

The previous Byzantine-tolerant algorithms have two noteworthy features. The first is that they all
are signature-free. This means that the “adversary” is not required tobe computationally bounded. The
second is their conceptual simplicity, which is a first-class property.

Roadmap The paper is composed of 5 sections. Section 2 presents the computation model and a basic
broadcast abstraction (called ND-broadcast, where ND stand for “NoDuplicity”) introduced in [25].
As indicated by its name, this broadcast operation, which requirest < n/3, allow to hide a duplicity
behavior which can be produced by Byzantine processes. Then Section 3 presents the MV-broadcast
and SMV-broadcast abstractions. SMV-broadcast is based on both MV-broadcast and ND-broadcast.
Section 4 presents the modular randomizedk-set agreement algorithm, whose construction relies on
two instances of SMV-broadcast per round. Finally, Section 5 concludes the paper.

2 Computation Model and ND-broadcast

2.1 Computation model

Asynchronous processes The system is made up of a finite setΠ of n > 1 asynchronous sequential
processes, namelyΠ = {p1, . . . , pn}. “Asynchronous” means that each process proceeds at its own
pace, which may vary arbitrarily with time, and remains always unknown to the other processes.

3

Communication network The processes communicate by exchanging messages through an asyn-
chronous reliable point-to-point network. “Asynchronous” means thata message is eventually received
by its destination process, i.e., there is no bound on message transfer delays. “Reliable” means that the
network does not loss, duplicate, modify, or create messages. “Point-to-point” means that there is a
bi-directional communication channel between each pair of processes. Hence, when a process receives
a message, it can identify its sender.

A processpi sends a message to a processpj by invoking the primitive “send TAG(m) to pj”,
whereTAG is the type of the message andm its content. To simplify the presentation, it is assumed
that a process can send messages to itself. A process receives a message by executing the primitive
“ receive()”.

The operationbroadcast TAG(m) is a macro-operation which stands for “for each j ∈ {1, . . . , n}
send TAG(m) to pj end for”.This operation is usually calledunreliablebroadcast (if the sender crashes
in the middle of thefor loop, it is possible that only an arbitrary subset correct processes receives a
message).

Failure model Up tot processes may exhibit aByzantinebehavior. A process that exhibits a Byzantine
behavior is calledfaulty. Otherwise, it iscorrect or non-faulty. A Byzantine process is a process that
behaves arbitrarily: it may crash, fail to send or receive messages, send arbitrary messages, start in
an arbitrary state, perform arbitrary state transitions, etc. As a simple example, a Byzantine process,
which is assumed to send a messagem to all the processes, can send a messagem1 to some processes,
a different messagem2 to another subset of processes, and no message at all to the other processes.
More generally, a Byzantine process has an unlimited computational power,and Byzantine processes
can collude to “pollute” the computation. Let us notice that, as each pair of processes is connected
by a channel, no Byzantine process can impersonate another process,but Byzantine processes are not
prevented from influencing the delivery order of messages sent to correct processes.

Discarding messages from Byzantine processesIf, according to its algorithm, a processpj is as-
sumed to send a single messageTAG() to a processpi, thenpi processes only the first messageTAG(v)
it receives frompj . This means that, ifpj is Byzantine and sends several messagesTAG(v), TAG(v′)
wherev′ 6= v, etc., all of them except the first one are discarded by their receivers. (Let us observe that
this does not prevent multiple copies of the first messageTAG() to be received and processed by their
receiver.)

Notation This computation model is denotedBAMPn,t[∅] (BAMP stands for “Byzantine Asyn-
chronous Message Passing”). In the following, this model is both restricted with a constraint ont
and enriched with an object providing processes with additional computational power. More precisely,
BAMPn,t[t < n/α] (whereα is a positive integer) denotes the modelBAMPn,t[∅] where the maxi-
mal number of faulty processes is smaller thann/α, andBAMPn,t[t < n/α, LRC] denotes the model
BAMPn,t[t < n/α] where each process is enriched with a local random coin (LRC). Let usnotice that,
as LRC belongs to the model, it is given for free inBAMPn,t[t < n/α, LRC].

Time complexity When computing the time complexity we ignore local computation time, and con-
sider the longest sequence of causally relate messagesm1, m2, . . ., mz (i.e., for anyx ∈ [2..z], the
reception ofmx−1 is a requirement for the sending ofmx). The size of such a longest sequence defines
the time complexity.

4

2.2 No-duplicity broadcast

Definition of ND-broadcast The ND-broadcast communication abstraction was introduced by S.
Toueg in [25]. It is defined by two operations denotedND broadcast() andND deliver(), which allow
the processes to eliminate bad behaviors of Byzantine processes. More precisely, a Byzantine process
is prevented from sending different messages to different correct processes, while it is assumed to send
the very same message to all of them.

When a process invokesND broadcast() we say that it ”ND-broadcasts” a message, and when it in-
vokesND deliver() we say that it ”ND-delivers” a message1. Considering an instance of ND-broadcast
where the operationND broadcast() is invoked by a processpi, this communication abstraction is de-
fined by the following properties.

• ND-Validity. If a non-faulty process ND-delivers a message frompi, then, if it is non-faulty,pi
ND-broadcast this message.

• ND-No-duplicity. No two non-faulty processes ND-deliver distinct messages frompi.

• ND-Termination. If the senderpi is non-faulty, all the non-faulty processes eventually ND-deliver
its message.

Let us observe that, if the senderpi is faulty, it is possible that some non-faulty processes ND-
deliver a message frompi while others do not ND-deliver a message frompi. As already indicated,
the no-duplicity property prevents non-faulty processes from ND-delivering different messages from a
faulty sender.

An algorithm implementing ND-broadcast It is shown in [25] thatt < n/3 is a necessary require-
ment to implement ND-broadcast in a Byzantine asynchronous message-passing system. Algorithm 1
(from [25]) implements ND-broadcast inBAMPn,tn,t

[t < n/3] as follows.

operationND broadcast MSG(vi) is
(1) broadcast ND INIT(i, vi).

when ND INIT(j, v) is delivered do
(2) if

(

first reception ofND INIT(j,−)
)

thenUB broadcast ND ECHO(j, v) end if.

when ND ECHO(j, v) is delivered do
(3) if

(

ND ECHO(j, v) received from(n− t) different processes andMSG(j, v) not yet NDdelivered
)

(4) thenND deliver MSG(j, v)
(5) end if.

Algorithm 1: Implementing ND-broadcast inBAMPn,t[t < n/3]

When a processpi wants to ND-broadcast a message whose content isvi, it broadcasts the message
ND INIT(i, vi) (line 1). When a process receives a messageND INIT(j,−) for the first time, it broad-
casts a messageND ECHO(j, v) wherev is the data content of theND INIT() message (line 2). If the
messageND INIT(j, v) received is not the first messageND INIT(j,−), pj is Byzantine and the message
is discarded. Finally, whenpi has received the same messageND ECHO(j, v) from (n − t) different
processes, it locally ND-deliversMSG(j, v) (lines 3-4).

The algorithm considers an instance of ND-broadcast, i.e., a correct process invokes at most once
ND-broadcast. Adding a sequence number to each message allows each process to ND-broadcast a
sequence of messages.

Theorem 1. Algorithm1 implementsND-broadcastin the system modelBAMPn,t[t < n/3].

1A similar vocabulary will be used for the abstractions MV-broadcast andSMV-broadcast introduced in Section 3.

5

Proof To prove the ND-termination property, let us consider a non-faulty processpi that ND-broadcasts
the messageMSG(vi). As pi is non-faulty, the messageND INIT(i, vi) is received by all the non-faulty
processes, which are at least(n − t), and every non-faulty process broadcastsND ECHO(i, vi) (line 2).
Hence, each non-faulty process receives the messageND ECHO(i, vi). from (n− t) different processes.
It follows that every non-faulty process eventually ND-delivers the messageMSG(i, vi) (lines 3-4).

To prove the ND-no-duplicity property, let us assume by contradiction thattwo non-faulty processes
pi andpj ND-deliver different messagesm1 andm2 from some processpk (i.e.,m1 = MSG(k, v) and
m2 = MSG(k, w), with v 6= w). It follows from the predicate of line 3, thatpi receivedECHO(k, v) from
a set of(n− t) distinct processes, andpj receivedECHO(k, w) from a set of(n− t) distinct processes.
As n > 3t, it follows that the intersection of these two sets contains a non-faulty process. But, as it
is non-faulty, this sent the same messageND ECHO() to pi andpj (line 2). Hence,m1 = m2, which
contradicts the initial assumption.

To prove the ND-validity property, we show that, if Byzantine processes forge and broadcast a
messageND ECHO(i, w) such thatpi is correct and has never invokedND broadcast MSG(w), then no
correct process can ND-deliverMSG(i, w). Let us observe that at mostt processes can broadcast the
messageND ECHO(i, w). As t < n − t, it follows that the predicate of line 3 can never be satisfied at
a correct process. Hence, ifpi is correct, no correct process can ND-deliver frompi a message that was
not been ND-broadcast bypi. ✷Theorem 1

It is easy to see that this implementation uses two consecutive communication stepsandO(n2)
underlying messages (n−1 in the first communication step, andn(n−1) in the second one). Moreover,
there are two types of protocol messages, and the size of the control information added to a message is
log2 n (sender identity).

3 Multivalued Validated Broadcast: MV-broadcast and SMV-broadcast

This section presents the all-to-all MV-broadcast and SMV-broadcastcommunication abstractions. “All-
to-all” mean that it is assumed that all the non-faulty processes invoke the corresponding broadcast
operation. As indicated in the introduction, these abstractions extend to the “multivalue” case the BV-
broadcast and SBV-broadcast communication abstractions introduced in[14], which consider binary
values only.

3.1 Multivalued validated all-to-all broadcast

Definition of MV-broadcast This communication abstraction provides the processes with a single
operation denotedMV broadcast(). When a process invokesMV broadcast TAG(m), we say that it
“MV-broadcasts the message typedTAG and carrying the valuem”. The invocation ofMV broadcast

TAG(m) does not block the invoking process. The aim of MV-broadcast is to eliminate the values (if
any) that have been broadcast only by Byzantine processes.

In an MV-broadcast instance, each correct processpi MV-broadcasts a value and eventually obtains
a set of values. To store these values, MV-broadcast provides eachprocesspi with a read-only local
variable denotedmv valuesi. This set variable, initialized to∅, increases asynchronously when new
values are received.

Definition Each instance of MV-broadcast is defined by the four following properties.

• MV-Termination. The invocation ofMV broadcast() by a correct process terminates.

• MV-Justification. Ifpi is a correct process andv ∈ mv validi, v has been MV-broadcast by a
correct process.

6

• MV-Uniformity. If pi is a correct process andv ∈ mv validi, eventuallyv ∈ mv validj at every
correct processpj .

• MV-Obligation. Eventually the setmv validi of each correct processpi is not empty.

The following properties are immediate consequences of the previous definition.

• MV-Equality. The setsmv validi of the correct processes are eventually non-empty and equal.

• MV-Integrity. The setmv validi of a correct processpi never contains a value MV-broadcast
only by Byzantine processes.

Feasibility condition in the presence of up tot Byzantine processes Let m be the number of dif-
ferent values MV-broadcast by correct processes. It follows from the previous specification that, even
when the (at most)t Byzantine processes propose the same valuew, which is not proposed by correct
processes,w cannot belong to the setmv validi of a correct processpi. This can be ensured if and
only if there is a value MV-broadcast by at least(t + 1) correct processes. This feasibility condition is
captured by the predicaten− t > mt (a proof of this feasibility condition can be found in [10]). Hence
n > (m+ 1)t is a feasibility condition for MV-broadcast to cope with up tot Byzantine processes. Let
us notice that, asm ≥ 2, n > (m+ 1)t impliesn > 3t.

An MV-broadcast algorithm Algorithm 2 describes a simple implementation of MV-broadcast, suited
to the system modelBAMPn,t[t < n/(m + 1)]. This algorithm is based on a simple “echo” mecha-
nism. Differently from previous echo-based algorithms (e.g., [4, 24]), the echo is used here with respect
to each value that has been received (whatever the number of processes that broadcast it), and not with
respect to each pair composed of a value plus the identity of the process that broadcast this value. Hence,
a value entails at most one echo per process, whatever the number of processes that MV-broadcast this
value.

let witness(v) = number of different processes from whichMV VAL (v) was received.

operationMV broadcast MSG(vi) is
(1) broadcast MV VAL (vi); return().

when MV VAL (v) is received
(2) if (witness(v) ≥ t+ 1) ∧ (MV VAL (v) not yet broadcast)
(3) then broadcast MV VAL (v) % a process echoes a value only once %
(4) end if;
(5) if (witness(v) ≥ n− t) ∧ (v /∈ mv validi)
(6) thenmv validi ← mv validi ∪ {v} % local delivery of a value %
(7) end if.

Algorithm 2: Implementing MV-broadcast inBAMPn,t[t < n/(m+ 1)]

When a processpi invokesMV broadcast MSG(vi), it broadcastsMV VAL (vi) to all the processes
(line 1). Then, when a processpi receives (from any process) a messageMV VAL (v), (if not yet done) it
forwards this message to all the processes (line 3) if it has received the same message from at least(t+1)
different processes (line 2). Moreover, ifpi has receivedv from at least(2t+ 1) different processes, the
valuev is added tomv validi (lines 5-6). Let us notice that, except in the case where|mv validi| = m,
no correct processpi can know if its setmv validi has obtained its final value.

Theorem 2. Algorithm2 implements MV-broadcast in the system modelBAMPn,t[t < n/(m+ 1)].

Proof The proof of the MV-Termination property is trivial. If a correct process invokesMV broadcast(),
it eventually sends a message to each process, and terminates.

7

Proof of the MV-Justification property. To show this property, we provethat a value MV-broadcast
only by faulty processes cannot be added to the setmv validi of a correct processpi. Hence, let us
assume that only faulty processes MV-broadcastv. It follows that a correct process can receive the
messageMV VAL (v) from at mostt different processes. Consequently the predicate of line 2 cannot be
satisfied at a correct process. Moreover, asn− t > t, the predicate of line 5 cannot be satisfied either at
a correct process, and the property follows.

Proof of the MV-Uniformity property. If a valuev is added to the setmv validi of a correct process
pi (local delivery), this process receivedMV VAL (v) from at least(n−t) different processes (line 5), i.e.,
from at least(n − 2t) different correct processes. As each of these correct processes sent this message
to all the processes, it follows that the predicate of line 2 is eventually satisfied at each correct process,
which consequently broadcastsMV VAL (v) to all. As there are at least(n − t) correct processes, the
predicate of line 5 is then eventually satisfied at each correct process, and the MV-Uniformity property
follows.

Proof of the MV-Obligation property. It follows from he feasibility conditionn > (m+1)t, that there
is a valuev MV-broadcast by at least(t+1) correct processes. It then follows that these processes issue
MV broadcast MSG(v), and consequently all correct processes first deliver the messageMV VAL (v) and
then broadcast at line 3 (if not previously done). Hence, each correct processpi eventually delivers this
message from(n−t) processes and and addsv to its setmv validi (line 5-6), which proves the property.

✷Theorem 2

Cost of the algorithm As at mostm values are MV-broadcast by the correct processes, it follows from
the text of the algorithm that each correct process broadcasts each ofthese values at most once (at line 1
or line 3). Hence, if there arec ∈ [n − t..n] correct processes, their broadcasts entail the sending of
at mostm c n messagesMV VAL (). Finally, whatever the number of values that are MV-broadcast, the
algorithm requires at most two communication steps.

3.2 Synchronized multivalued validated all-to-all broadcast

Definition of SMV-broadcast This all-to-all communication abstraction provides the processes with a
single operation denotedSMV broadcast(). As indicated by its name, its aim is to synchronize processes
so that, if a single valuev is delivered to a correct process, thenv is delivered to all the correct processes.

In an SMV-broadcast instance, each correct process invokesSMV broadcast TAG(m), whereTAG is
the type of the message andm value it wants to broadcast. Such an invocation returns to the invoking
processpi a set denotedviewi and called a local view. We say that a processcontributesto a setviewi

if the value it SMV-broadcasts belongs toviewi. SMV-broadcast is defined by the following properties.
• SMV-Termination. The invocation ofSMV broadcast TAG() by a correct process terminates.
• SMV-Obligation. The setviewi returned by a correct processpi is not empty.
• SMV-Justification. Ifpi is correct andv ∈ viewi, then a correct process SMV-broadcastv.
• SMV-Inclusion. Ifpi andpj are correct processes andviewi = {v}, thenv ∈ viewj .
• SMV-Contribution. Ifpi is correct, at least(n− t) processes contribute to its setviewi.
• SMV-No-duplicity. LetVIEW be the union of the setsviewi of the correct processes. A process

contributes to at most one value ofVIEW .

The following property is an immediate consequence of the previous definition. property.
• SMV-Singleton. Ifpi andpj are correct,[(viewi = {v}) ∧ (viewi = {w})] ⇒ (v = w).

Let v ∈ VIEW , pi a correct process, andpj a Byzantine process. It is possible that, while the value
v was SMV-broadcast bypi (hencepi contributed toVIEW), pj also appears as contributing toVIEW
with the same valuev. The SMV-No-duplicity property states the following: no valuew ∈ VIEW \{v}
appears as a contribution ofpj .

8

An SMV-broadcast algorithm Algorithm 3 implements SMV-broadcast inBAMPn,t[t < n/(m +
1)]. A processpi first MV-broadcasts a messageMSG (vi) and waits until the associated setmv valuesi
is not empty (lines 1-2). Let us remind that, whenpi stops waiting,mv valuesi has not necessarily
obtained its final value. Then,pi extracts a valuew from mv valuesi and ND-broadcasts it to all
(line 3). Let us notice that, due to the ND-no-duplicity property, no two correct processes can ND-
deliver different values from the same Byzantine process.

operation SMV broadcast MSG (vi) is
(1) MV broadcast MSG(esti);
(2) wait (mv valuesi 6= ∅);

%mv valuesi has not necessarily its final value when the wait statement terminates %
(3) ND broadcast ND AUX(w) wherew ∈ mv valuesi;
(4) wait (∃ a setviewi such that its values (i) belong tomv valuesi, and

(ii) come from messagesND AUX() received from(n− t) distinct processes);
(5) return (viewi).

Algorithm 3: Implementing SMV-broadcast inBAMPn,t[t < n/(m+ 1)]

Finally, pi waits until the predicate of line 4 is satisfied. This predicate has two aims. The first is to
discard fromviewi (the set returned bypi) a value broadcast only by Byzantine processes. Hence the
predicateviewi ⊆ mv valuesi. The second aim is to ensure that, if the viewviewi of a correct process
pi contains a single value, then this value eventually belongs to the viewviewj of any correct process
pj . To this end,(n − t) different processes (hence, at least(n − 2t) correct processes) must contribute
to viewi.

Multiset version of SMV-broadcast While a value belongs or does not belong to a set, a multiset
(also called a bag) is a set in which the same value can appear several times.As an example, while
{a, b, c} and{a, b, b, c, c, c} are the same set, they are different multisets.

It is easy to see that the “set” version of the SMV-broadcast (whereviewi is a set) and Algorithm 3
can be easily converted into a “multiset” version whereviewi is a multiset. Both versions will be used
in the randomizedk-set agreement presented in Section 4.

Theorem 3. Algorithm3 implementsSMV-broadcastin the system modelBAMPn,t[t < n/(m+ 1)].

Proof Proof of the SMV-Termination property. Let us first observe that, due tothe MV-Termination
property and the MV-Obligation property of the underlying MV-broadcast, no correct process blocks
forever at line 2. As there are at least(n− t) correct processes, and none of them blocks forever a line 2,
it follows from the ND-Termination property that each correct process return from the ND-broadcast
at line 3, and eventually ND-delivers values from at least the(n − t) correct processes. Moreover,
due to the MV-Justification property, these values have been SMV-broadcast by correct processes, and,
due to the MV-Uniformity property, the setsmv validi of all correct processes are eventually equal.
It then follows that the predicate of line 4 becomes eventually satisfied at anycorrect processpi, and
consequently the invocations ofSMV broadcast() of the correct processes terminate.

Proof of the SMV-Obligation property. Any correct processpi eventually ND-delivers(n − t)
messagesND AUX() sent by correct processes. As (a) these messages carry values taken from the set
mv valuesx of correct processes, and (b) these sets (b.1) are eventually equalat all correct processes,
and (b.2) contain all values ND-broadcast at line 3 by the correct processes, it follows (from the predicate
of line 4) that the setviewi returned by a correct process is not empty.

Proof of the SMV-Justification property. This property follows directly from the fact that the predi-
cate of line 4 discards the values ND-broadcast only by Byzantine processes, and from the MV-Justification
property, namely, the setmv valuesi of a correct process contains only values MV-broadcast by correct
processes.

9

Proof of the SMV-Inclusion property. Let us consider a correct processpi and assumeviewi = {v}.
It follows from the predicate of line 4 thatpi has ND-delivered the same messageND AUX(v) from at
least(n− t) different processes. As at mostt of them are Byzantine, it follows thatpi ND-delivered this
message from at least(n− 2t) different correct processes, i.e., asn− 2t ≥ t+ 1, from at least(t+ 1)
correct processes.

Let us consider any correct processpj . This process ND-delivered messagesND AUX() from at least
(n − t) different processes. As(n − t) + (t + 1) > n, it follows that there is a correct processpx that
ND-broadcast the same messageND AUX(v) to pi andpj . It follows thatv ∈ viewj , which concludes
the proof of the lemma.

Proof of the SMV-Contribution property. This property follows trivially from the part (ii) of the
waiting predicate of line 4.

Proof of the SMV-No-duplicity property. This property is an immediate consequence of the ND-No-
duplicity property of the ND-broadcast issued at line 3. ✷Theorem 3

4 Randomized Byzantinek-Set Agreement

This section presents and proves correct a Byzantinek-set agreement algorithm, which is modularly
built on top of the SMV-broadcast communication abstraction and the additional computational power
supplied to each process by a local random coin (LRC).

4.1 Intrusion-tolerant Byzantine k-set agreement

The intrusion-tolerant Byzantine (ITB)k-set agreement was informally presented in the introduction.
It is assumed that each non-faulty process invokes an operation calledproposek(). This operation has
an input parameterv, which is the value proposed by the invoking process. It returns a value, which is
called the “value decided” by the invoking process. ITBk-set agreement is formally defined in terms of
properties that any solution must to satisfy. When considering deterministick-set agreement algorithms,
these properties are the following ones.

• KS-D-Termination. If a correct process invokesproposek(), it decides a value.

• KS-Validity. If a correct process decidesv, thenv was proposed by a correct process.

• KS-Agreement. The set of values decided by the correct processes contains at mostk values.

As we are interested in a randomized algorithm to solvek-set agreement, the termination property
has to be weakened as follows: any correct process decides with probability 1. In the context of round-
based randomized algorithms, this property can restated as follows.

• KS-RR-Termination.limr→+∞

(

Probability[pi decides by roundr]
)

= 1.

4.2 Enriching the basic Byzantine asynchronous model with a random coin

As announced, the additional computational power used to solve ITBk-set agreement despite Byzantine
processes is supplied by a multi-sided random coin denoted LRC. The random abstraction LRC provides
each process with a local coin that provides it with a single operation denoted random(). Each invocation
takes a finite setX as input parameter, and returns a value ofX such that each value ofX as the
probability1/|X| to be returned.

As seen in the introduction, we assumek ≤ t. Moreover, we have also seen that, in order a correct
process decides neither a value proposed only by Byzantine processes, nor a predefined default value, it
is assumed that, whatever the domain of the values that can be proposed by the correct processes, in any
execution, at mostm different values are proposed by correct processes, wherem depends onn andt,

10

namely,n > m(t + 1). Finally, to rule out the trivial algorithm in which a correct process decides the
value it proposes, we assumek < m.

Hence, assuming the non-triviality conditionsk < m andk ≤ t, and the fact that, in any execution,
at mostm different values are proposed by the correct processes, the system model considered here to
solve the ITBk-set agreement problem isBAMPn,t[t < n/(m+ 1), LRC].

4.3 A randomized Byzantinek-set agreement algorithm

Local variables To solve the ITBk-set agreement problem, Algorithm 4, which is round-based, relies
on a very modular construction. Each processpi manages two local variables whose scope is the whole
execution: a local round numberri, and a local estimate of a decision value, denotedesti. It also
manages three local variables whose scope is the current roundr: a multisetviewi[r, 1], an auxiliary
variableaux, and a setviewi[r, 2].

Description of the algorithm Whenpi invokesproposek(vi) it assignsvi to esti and initializesri to 0
(line 1). Thenpi enters a loop that it will exit at line 8 by executingreturn(v), which returns the decided
valuev and stops its participation in the algorithm.

operation propose
k
(vi) is

(1) esti ← vi; ri ← 0;
(2) repeat forever
(3) ri ← ri + 1;
// ———————————— phase 1 ———————————————————–
(4) viewi[ri, 1]← SMV broadcast PHASE[ri, 1](esti); % viewi[ri, 1] is a multiset %
(5) if (∃v appearingW times inviewi[ri, 1]) then aux← v elseaux← ⊥ end if;
// ———————————— phase 2 ———————————————————–
(6) viewi[ri, 2]← SMV broadcast PHASE[ri, 2](aux); % viewi[ri, 2] is a set %
(7) case(⊥ /∈ viewi[ri, 2]) then let v be any value∈ viewi[ri, 2];
(8) broadcast DECIDE(v); return(v)
(9) (viewi[ri, 2] = {⊥, v, · · · }) then esti ← any value non-⊥ ∈ viewi[ri, 2]
(10) (viewi[ri, 2] = {⊥}) then esti ← random(mv validi[1, 1])
(11) end case
(12) end repeat.

Algorithm 4: Byzantinek-set agreement based on SMV-broadcast, and local random coins

Each roundr executed by a processpi is made up of two phases. During the first phase of roundr,
each correct processpi invokesSMV broadcast(esti) (multiset version) and stores the multiset returned
by this invocation inviewi[r, 1]. Let us remind that this multiset contains only values SMV-broadcast
by at least one correct process. The aim of this phase is to build a globalset2, denotedAUX [r], which
contains at most(k + 1) values, such that at mostk of them are contributed by correct processes, and
the other one is the default value⊥. To this end, each correct processpi checks if there is a valuev
that appears “enough” (sayW) times in the multisetviewi[r, 1]. If there is such a valuev, pi adopts it
(assignmentaux← v), otherwise it adopts the default value⊥ (line 5).

The setAUX [r] is made up of theaux variables of all the correct processes. ForAUX [r] to contain
at mostk non-⊥ values,W has to be such that(k+1)W > n (there are not enough processes for(k+1)
different values such that each of them was contributed byW processes)3. Hence,W > n/(k + 1).

When it starts the second phase of roundr, each correct processpi invokesSMV broadcast(aux)
(set version) and stores the set it obtains inviewi[r, 2]. Due to the properties of SMV-broadcast,

2While the value of this set could be known by an external global observer, its value can never be explicitly known by a
correct process. However, a process can locally build an approximation of it during the second phase, see below.

3Let us remind that, due to the ND-broadcast used in the algorithm implementing SMV-broadcast, two correct processes
cannot ND-deliver different values from the same Byzantine process.

11

viewi[r, 2] is a local approximation ofAUX [r], namely,viewi[r, 2] ⊆ AUX [r]. Then, the behavior
of pi depends on the content of the setviewi[r, 2].

• If ⊥ /∈ viewi[r, 2], pi decides any value inviewi[r, 2] (lines 7-8).

• If viewi[r, 2] contains⊥ and non-⊥ values,pi updates its current estimateesti to any non-⊥ value
of viewi[r, 2] and starts new round (line 9).

• If viewi[r, 2] contains only⊥, pi starts a new round, but updates previously its current esti-
mateesti to a random value (line 10). This random value is obtained from the set (denoted
mv validi[1, 1] in the algorithm) locally output by the first MV-broadcast instance invoked by pi.
The use of these sets allows the algorithm to benefit from the fact that thesesets are eventually
equal at all correct processes (MV-Equality property). The KS-Termination relies on this property.

As shown in the proof, an important behavioral property of the algorithm lies in the fact that, at any round
r, it is impossible for two correct processespi andpj to be such that(⊥ /∈ viewi[r, 2]) ∧ (viewi[r, 2] =
{⊥}). These two predicates are mutually exclusive.

On the value ofW The valueW is used at line 5 for a safety reason, namely, no more thank non-⊥
values can belong to the setAUX [r]. As we have seen, this is captured by the constraintW (k+1) > n.
It appears thatW has also to be constrained for a liveness reason, namely, when the correct processes
start a new roundr with at mostk different estimates values, none of them must adopt the value⊥ at
line 5 (otherwise, instead of deciding at line 7, they could loop forever).

This liveness constraint is as follows. Let us consider the size of the multisetviewi[r, 1] obtained
at line 4. In the worst case, when the correct processes start a new roundr with at mostk different
estimates,viewi[r, 1] may contain(k− 1) different values, each appearing(W − 1) times, and only one
value that appearsW times. Hence,viewi[r, 1] must contain at least(W−1)(k−1)+W = (W−1)k+1
elements. As it follows from Algorithm 3 that|viewi[r, 1] ≥ n − t, we obtain the liveness constraint
n− t ≥ (W − 1)k + 1.

On message identities The messagesPHASE() SVM-broadcast at line 4 and line 6 are identified by
a pair[r, x] wherer is a round number andx ∈ {1, 2} a phase number. Each of these messages gives
rise to underlying messagesND AUX() (Algorithm 2), MV VAL () (Algorithm 1), and underlying sets
witness() (Algorithm 1). Each of them inherits the pair identifying the messagePHASE() it originates
from.

On the messagesDECIDE() Before a correct process decides a valuev, it sends a messageDECIDE(v)
to each other process (line 8). Then, it stops its execution. This halting hasnot to prevent correct
processes from terminating, which could occur if they wait forever underlying messagesND AUX() or
MV VAL () from pi.

To this end, a messageDECIDE(v) has to be considered as representing an infinite set of messages.
More precisely if, while executing a roundr, a processpi receives a messageDECIDE(v) from a pro-
cesspj , it considers that it has received frompj the following set of messages:{ND AUX [r′, 1](v),
ND AUX [r′, 2](v), MV VAL [r′, 1](v), MV VAL [r′, 2](v)}r′≥r. It is easy to see that the messagesDECIDE()
simulate a correct message exchange that could be produced, after it has decided, by a deciding but non-
terminating process.

Another solution would consist in using a Reliable Broadcast abstraction that copes with Byzantine
processes. In this case, a process could decide a valuev as soon as it has RB-delivered(t+1) messages
DECIDE(v). An algorithm implementing such a reliable broadcast is presented in [4]. Thisalgorithm
requiresO(n3) messages and assumesn < t/3, which is a necessary requirement to implement reliable
broadcast in the presence of Byzantine processes.

12

4.4 Proof of the algorithm

The proof considers the system modelBAMPn,t[t < n/(m + 1), LRC], the algorithmic safety and
liveness constraints onW , namely,W (k + 1) > n andn − t ≥ (W − 1)k + 1, and the non-triviality
condition(k < m) ∧ (k ≤ t).

Preliminary remark 1 The proof considers the semantic of the messagesDECIDE() described pre-
viously. This is equivalent to consider that, after it has decided, a correct process continues executing
while skipping line 8.

Notation Given a roundr, letEST [r] be the set of estimate values of the correct processes when they
start roundr, andAUX [r] be the set including the values of theauxi variables of the correct processes
at the end of the first phase of roundr (i.e., just after line 5). let us notice thatAUX [r] can contain⊥.

Preliminary remark 2 The proof of the MV-Obligation property requires that at mostm different val-
ues are MV-broadcast. Hence, this requirement extends to the invocationsSMV broadcastPHASE[r, x](),
wherex ∈ {1, 2}. By assumption, this requirement is initially satisfied, namely,|EST [1]| ≤ m. We
will see in the proof that (i)AUX [r] contains at mostk values proposed by correct processes plus pos-
sibly⊥, (ii) viewi[r, 2] is a subset ofAUX [r], and (iii) mv validi[1, 1] contains only values proposed
by correct processes. From the previous observations we concludethat at mostm different values are
SMV-broadcast at line 4 and line 6 of Algorithm 4.

Lemma 1. If a correct process decides a value, this value was proposed by a correct process.

Proof Let us consider the first roundr = 1. It follows from the MV-Justification property of the SMV-
broadcast invocation at line 4 that the multisetviewi[1, 1] of any correct processpi contains only values
SMV-broadcast by correct processes. The same is true for the setviewi[1, 2] which, in addition, can also
contain the default value⊥. It follows that, if a correct process decides at lines 7-8, it decides a value
proposed by a correct process. If a correct process progresses to the next round, it executes line 9 or
line 10 (for line 10, this follows from the MV-Justification property of the of the MV-broadcast generated
by the invocationSMV broadcast PHASE[1, 1](esti)). In both cases, its new estimate value is a value
proposed by a correct process. Hence the estimate values of the processes that start the second round are
values proposed by correct processes. Applying this reasoning to thesequence of rounds, it follows that
no correct process can decide a value not proposed by a correct process. ✷Lemma 1

Lemma 2. AUX [r] contains at mostk non-⊥ values, plus possibly the default value⊥.

Proof Let us assume thatAUX [r] contains(k+1) non-⊥ values. If a value belongs to this set, it is the
value of the local variableauxi of a correct processpi, which appears at leastW times in the multiset
viewi[r, 1] (line 5). Moreover, due to SMV-No-duplicity property, a process (correct or Byzantine)
contribute to at most one of these values. It follows from these observations that, ifAUX [r] contains
(k+1) non-⊥ values,(k+1)W distinct processes have contributed toAUX [r], i.e., have SMV-broadcast
PHASE[r, 1]() messages. As(k + 1)W > n, this is impossible. ✷Lemma 2

Lemma 3. If |EST [r]| ≤ k, any correct process that starts roundr decides duringr a value ofEST [r].

Proof As by assumption the correct processes have at mostk different estimate values at the beginning
of roundr, it follows from the SMV-Contribution property of the SMV-broadcast ofline 4 that at least
(n− t) different processes contributed to the multisetviewi[r, 1]. Asn− t ≥ (W − 1)k+1 (algoritmic
liveness), it follows that the multisetviewi[r, 1] of any correct processpi contains at leastW copies of a

13

value ofEST [r]. Hence,auxi ∈ EST [r] at each correct process. ConsequentlyAUX [r] ⊆ EST [r]. it
then follows that the predicate of line 7 is satisfied at any correct processpi, which decides accordingly
a value ofviewi[r, 2] ⊆ AUX [r] ⊆ EST [r], which concludes the proof of the lemma. ✷Lemma 3

Lemma 4. Let pi andpj be two correct processes. At any roundr, the predicates⊥ /∈ viewi[r, 2] and
viewj [r, 2] = {⊥} are mutually exclusive.

Proof let us assume by contradiction thatpi is a correct process such that the predicate⊥ /∈ viewi[r, 2]
is satisfied (line 7), andpj a correct process such that the predicateviewj [r, 2] = {⊥} is satisfied
(line 10).

It follows from the SMV-Contribution property of the SMV-broadcast issued byi andj at line 6 that
viewi[r, 2] contains values contributed by at least(n− t) processes, and similarly for the setviewj [r, 2]
of pj . Asn > 3t, the intersection of any two sets of(n− t) processes contains at least(t+1) processes,
i.e., one correct process. It then follows that there is a correct process that contributed to bothviewi[r, 2]
andviewj [r, 2], from which we conclude that eitherviewi[r, 2] contains⊥, or viewj [r, 2] contains a
non-⊥ estimate value. ✷Lemma 4

Lemma 5. No more thank different values are decided by the correct processes.

Proof Let r be the first round during which correct processes decide. They decide at line 8. Due to
Lemma 2, the setAUX [r] contains at mostk non-⊥ values. Moreover, due to the SMV-broadcast issued
by the correct processes at line 6 that we haveviewi[r, 2] ⊆ AUX [r] at each correct processpi. Hence,
due to line 7, a process that decides during roundr can only decide a value ofAUX [r].

Let us now consider a correct processpj that proceeds to round(r + 1). Let pi be a process that
decides at roundr. It follows from Lemma 4 that the predicates⊥ /∈ viewi[r, 2] andviewj [r, 2] = {⊥}
are mutually exclusive. Consequently,pj executes line 9 before progressing to the next round. Hence,pj
updatedestj to a non-⊥ value ofviewj [r, 2] ⊆ AUX [r] before progressing to the next round. It follows
that the estimates of the correct processes progressing to the next round are non-⊥ values ofAUX [r].
Hence,EST [r+ 1] ⊆ AUX [r] \ {⊥}. It then follows from Lemma 3 that at mostk values are decided.

✷Lemma 5

Lemma 6. No correct process blocks forever in a round.

Proof The proof is by contradiction. Letr be the first round at which a correct processpi blocks
forever. It can block at line 4 or line 6. Let us first consider line 4. As no correct process blocked forever
at a roundr′ < r, all correct processes start roundr and invokeSMV broadcast PHASE[r, 1](−). It
then follows from the MV-termination property thatpi returns from its invocation. The same reasoning
applies to line 6, which concludes the proof of the lemma. ✷Lemma 6

Lemma 7. If a correct process decides during a roundr, any other correct process that does not decide
by roundr, decides during the round(r + 1).

Proof The proof is by contradiction. Let us suppose that a correct processpi decidesv at roundr (line
8) and a correct processpj , which does not decide by roundr. Due to Lemma 6,pj proceeds to round
(r + 1). Due to to Lemma 4 and the fact thatpi decides at roundr, it follows thatviewj [r, 2] 6= {⊥}.
Hence,pj executes line 9, an assigns a non-⊥ of AUX [r] to estj . AsAUX [r] contains at mostk non-⊥
values (Lemma 2), we haveEST [r + 1] ⊆ AUX [r], i.e., the round(r + 1) starts with at mostk non-⊥
values. Due to to the Lemma 3,pj decides in the roundr + 1. A contradiction. ✷Lemma 7

14

Lemma 8. Let VALID [1, 1] be the final (common) value of the setsmv validi[1, 1] of the correct
processes.∀r we haveAUX [r] ⊆ VALID [1, 1].

Proof The proof follows from the observation that the values, proposed by a correct process, which are
not inVALID [1, 1] can appear neither inviewi[r, 1] nor inviewi[r, 2]. Hence, they cannot appear either
in a setAUX [r], and we haveAUX [r] ⊆ VALID [1, 1]. ✷Lemma 8

Lemma 9. All correct processes decide with probability1.

Proof Due Lemma 7 if a correct process decides, all correct processes decides. Hence, let us assume
by contradiction that no correct process decides.

Due to the MV-Equality property of the MV-broadcast generated by the invocations ofSMV broadcast

PHASE[1, 1]() issued by the correct processes, there is a finite timeτ after which the setsmv validi[1, 1]
of the correct processes remain forever non-empty and equal.

As no correct process blocks forever in a round (Lemma 6), all correct processes progress from round
to round forever. Moreover, as the decision predicate of line 7 is neversatisfied at a correct process, it
follows that, afterτ , any correct process executes line 9 or line 10. Let us consider a roundr entered by
all correct processes after timeτ . There are three cases.

• Case 1: At roundr, all the correct processes execute line 9. So, each correct process sets its
estimate to a non-⊥ value ofAUX [r]. Due to Lemma 2, there are then at mostk different estimate
(non-⊥) values inAUX [r]. Hence, all the correct processes start the round(r+1), andEST [r+1]
contains at mostk different estimate values (none being⊥). It then follows from Lemma 3 that
all correct processes decide.

• Case 2: Duringr at least one process (but not all) executes line 9. In this case, due to Lemma 2,
each correct processpi that executes line 9 sets its current estimateesti to a non-⊥ value taken
from the setAUX [r], which contains at mostk non-⊥ values. The other processes execute line 10.
This means that each of these processesi sets its estimate valueesti to a value∈ mv validi[r, 1] =
VALID [1, 1]. As AUX [r] ⊆ VALID [1, 1] (Lemma 8), there is a probabilityp1 > 0 that they
obtain values fromAUX [r].

• Case 3: Duringr no process executes line 9. In this case, all the processes execute line 10. There
is a probabilityp2 > 0 that they obtain at mostk different estimate values.

In Case 1, all correct processes decide. Let us consider Case 2 and Case 3. During any round afterτ ,
there is a probabilityp = min(p1, p2) that the correct processes have at mostk different estimate values.
Hence, there is a probabilityP (α) = p + p(1 − p) + p(1 − p)2 + ... + p(1 − p)α−1 = 1 − (1 − p)α

that, after at mostα rounds, the processes have no more thank estimate values. Aslimα→∞ P (α) = 1,
it follows that, with probability 1, all processes will start a round with no more than k estimate values.
Then, according to Lemma 3, they will decide. ✷Lemma 9

Theorem 4. Algorithm4 solves the randomized Byzantinek-set agreement problem in the system model
BAMPn,t[t < n/(m+ 1), LRC].

Proof The KS-Validity property follows from Lemma 1. The KS-Agreement property follows from
Lemma 5. The KS-RR-Termination follows from Lemma 9. ✷Theorem 4

5 Conclusion

This paper presented a signature-free randomized distributed algorithm that solvesk-set agreement in
asynchronous message-passing systems where up tot ≥ k processes may commit Byzantine failures.

15

Its design is based on a modular construction which rests on (i) a broadcast abstraction which guaran-
tees that two non-faulty processes cannot receive distinct messages from the same (possibly Byzantine)
sender, and (ii) the stacking of two all-to-all communication abstractions whichgeneralize the “binary”
communication abstractions introduced in [14] to the multivalue domain. An interesting feature of the
propsed algorithm lies in the validity condition it ensures, namely, no value proposed only by Byzantine
processes can be decided by non-faulty processes.

Acknowledgments

This work has been partially supported by the French ANR project DISPLEXITY devoted to com-
putability and complexity in distributed computing, and the Franco-German project DISCMAT devoted
to the mathematics of distributed computing.

References

[1] Attiya H. and Welch J.,Distributed computing: fundamentals, simulations and advanced topics, (2d Edition), Wiley-
Interscience, 414 pages, 2004.

[2] Borowsky E. and Gafni E., Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations.Proc.
25th ACM Symposium on Theory of Computing (STOC’93), ACM Press, pp. 91-100, 1993.

[3] Bouzid Z., Most́efaoui A., and Raynal M., Minimal synchrony for Byzantine consensus.Proc. 34th ACM Symposium
on Principles of Distributed Computing (PODC’15), ACM Press, 2015.

[4] Bracha G., Asynchronous Byzantine agreement protocols.Information & Computation, 75(2):130-143, 1987.

[5] Censor Hillel K., Multi-sided shared coins and randomized set agreement.Proc. 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA’10), ACM Press, pp. 60-68, 2010.

[6] Chaudhuri S., More choices allow more faults: Set consensus problems in totally asynchronous systems.Information
and Computation, 105(1):132158, 1993.

[7] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.Journal of
the ACM, 32(2):374-382, 1985.

[8] Friedman R., Most́efaoui A., and Raynal M., Simple and efficient oracle-based consensus protocols for asynchronous
Byzantine systems.IEEE Transactions on Dependable and Secure Computing, 2(1):46-56, 2005.

[9] Gafni E. and Guerraoui R., Generalizing universality.Proc. 22nd Int’l Conference on Concurrency Theory (CON-
CUR’11), Springer LNCS 6901, pp. 17-27, 2011.

[10] Herlihy M.P., Kozlov D., and Rajsbaum S.,Distributed computing through combinatorial topology, Morgan Kauf-
mann/Elsevier, 336 pages, 2014.

[11] Herlihy M., Shavit N., The Topological Structure of Asynchronous Computability.Journal of the ACM, 46(6):858-923,
1999.

[12] Lamport L., Shostack R., and Pease M., The Byzantine generals problem.ACM Transactions on Programming Lan-
guages and Systems, 4(3)-382-401, 1982.

[13] Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN 1-55860-
384-4).

[14] Most́efaoui A., Moumen H., and Raynal M., Signature-free asynchronous binary Byzantine consensus witht < n/3,
O(n2) messages, andO(1) expected time.Journal of the ACM, To appear, 2015.

[15] Most́efaoui A. and Raynal M., Randomizedk-set agreement.Proc. 12nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA’00), ACM Press, pp. 291-297, 2000.

16

[16] Most́efaoui A. and Raynal M., Signature-free broadcast-based intrusion tolerance: never decide a Byzantine value.Proc.
14th Int’l Conference On Principles Of Distributed Systems (OPODIS’10), Springer LNCS 6490, pp. 144-159, 2010.

[17] Pease M., R. Shostak R., and Lamport L., Reaching agreement in the presence of faults.J. of the ACM, 27:228-234,
1980.

[18] de Prisco R., Malkhi D., and Reiter M.K., Onk-Set consensus problems in asynchronous systems.IEEE Transactions
on Parallel Distributed Systems, 12(1):7-21, 2001.

[19] Rabin M., Randomized Byzantine generals.Proc. 24th IEEE Symposium on Foundations of Computer Science
(FOCS’83), IEEE Computer Society Press, pp. 116-124, 1983.

[20] Raynal M.,Fault-tolerant agreement in synchronous message-passing systems. Morgan & Claypool, 165 pages, 2010
(ISBN 978-1-60845-525-6).

[21] Raynal M.,Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, 2013 (ISBN 978-3-
642-32026-2).

[22] Raynal M., Stainer J., and Taubenfeld G., Distributed universality. Proc. 18th Int’l Conference on Principles of Dis-
tributed Systems (OPODIS’14), Springer LNCS 8878, pp. 469-484, 2014.

[23] Saks M. and Zaharoglou F., Wait-Freek-Set Agreement is Impossible: The Topology of Public Knowledge.SIAM
Journal on Computing, 29(5):1449-1483, 2000.

[24] Srikanth T.K. and Toueg S., Simulating authenticated broadcasts to derive simple fault-tolerant algorithms.Distributed
Computing, 2:80-94, 1987.

[25] Toueg S., Randomized Byzantine agreement.Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’84), ACM Press, pp. 163-178, 1984.

17

