N
N

N

HAL

open science

Modular randomized byzantine k-set agreement in
asynchronous message-passing systems

Achour Mostefaoui, Hamouma Moumen, Michel Raynal

» To cite this version:

Achour Mostefaoui, Hamouma Moumen, Michel Raynal. Modular randomized byzantine k-set agree-
ment in asynchronous message-passing systems. The 17th International Conference on Distributed
Computing and Networking (ICDCN’16), Jan 2016, Singapore, Singapore. pp.1-10. hal-02056378

HAL Id: hal-02056378
https://hal.science/hal-02056378
Submitted on 5 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02056378
https://hal.archives-ouvertes.fr

Modular Randomized Byzantine k-Set Agreement
iIn Asynchronous Message-passing Systems

Achour Moséfaoui Hamouma Moumen Michel Raynat*

T LINA, Université de Nantes, 44322 Nantes Cedex, France
t University of Bejaia, Algeria
* Institut Universitaire de France
° |IRISA, Universie de Rennes 35042 Rennes Cedex, France
Achour . Most ef aoui @ini v-nant es. fr hanmouna. nounen@nai | . com raynal @risa. fr

June 29, 2015

Abstract

k-Set agreement is a central problem of fault-toleranthliséid computing. Considering a set of
n processes, where up tanay commit failures, let us assume that each process prepogaue.
The problem consists in defining an algorithm such that eachkfaulty process decides a value, at
mostk dfferent values are decided, and the decided values satisfig context-depending validity
condition. Synchronous message-passing algorithmsngphksset agreement have been proposed
for different failure models (mainly process crashes, amtgss Byzantine failures). Differently,
k-set agreement cannot be solved in failure-prone asynoheomessage-passing systems when
t > k. To circumvent this impossibility an asynchronous systeustibe enriched with additional
computational power.

Assumingt > k, this paper presents a distributed algorithm that sokvest agreement in an
asynchronous message-passing system wher tiprimcesses may commit Byzantine failures. To
that end, each process is enriched with randomization paieile randomized:-set agreement al-
gorithms exist for the asynchronous process crash faila@emwvhere > £, to our knowledge the
proposed algorithm is the first that solveset agreement in the presence of up te k£ Byzantine
processes. Interestingly, this algorithm is sighatuee;frand ensures that no value proposed only
by Byzantine processes can be decided by a non-faulty modtssdesign is based on a modular
construction which rests on a “no-duplicity” one-to-albbdcast abstraction, and two all-to-all com-
munication abstractions.

Keywords: Asynchronous message-passing system, Broadcast dlosty&yzantine process, Coin,
Distributed algorithmk-Set agreement, Randomized algorithm, Signature-fresition.

1 Introduction

Distributed agreement in the presence of process failuresThe world is distributed and more and
more applications are now distributed. Moreover, when considering tteecdaon-trivial distributed
applications, it appears that the computing entities (processes) haveewiagsne way or another,
for example to take a common decision, execute specific actions, or validatecsonmitment. Said
another way, agreement problems lie at the core of distributed computing.

The most famous distributed agreement problem isctiressensugroblem. Let us consider a set
of processes, where some of them may commit failures. Assuming eaasprpposes a value, the
consensus problem is defined by the following properties: each nty-faxocess must decide a value

(termination), such that the same value is decided by the non-faulty pescésgreement), and this
value satisfies some validity condition, which depends on the proposed \aide¢he considered failure
model [7, 17].

The k-set agreement problem is a natural weakening of consensus [@]lols the non-faulty
processes to decide different values, as long as no more:thalues are decided. Hence, consensus is
1-set agreement. Let us notice thaset agreement can be easily solved in crash-prone systemsivhere
(the maximal number of different values that can be decided) is greatet {ttze maximal number of
processes that may be faulty). Theet agreement problem has applications, e.g., to compute a common
subset of wavelengths (each process proposes a wavelength modtat of them are selected), or to
duplicatek state machines where at most one is required to progress forevet.[9, 22

Byzantine failures This failure type has first been introduced in the context of synchi®dstributed
systems[12, 17, 20], and then investigated in the context of asynalsamsiributed systems [1, 13, 21].
A process has Byzantinebehavior when it arbitrarily deviates from its intended behavior. We then say
that it “commits a Byzantine failure” (otherwise we say the proces®isfaultyor correc). This bad
behavior can be intentional (malicious) or simply the result of a transiehtfet altered the local state
of a process, thereby maodifying its behavior in an unpredictable wayud pbtice that process crashes
(unexpected halting) define a strict subset of Byzantine failures.

Let us remind that (as already said) the world is distributed, asynchsomessage-passing sys-
tems are more and more pervasive, processes have to agree in oneamayher, and the assumption
“no process has a bad behavior” is no longer sensible. Hence,nagnéén asynchronous Byzantine
message-passing systems is becoming a more and more important issuetofdearice.

An impossibility result and how to cope with it Let consider a system made up ofprocesses,
where up tof may be faulty. Whatever the value bf(i.e., even ifk < t), k-set agreement can always
be solved if the system is synchronous [20]. The situation is differergéynaronous systems where
k-set agreement is impossible to solve in the process crash failure modelivke ¢ [2, 11, 23].
As Byzantine failures are more severe than process crash failuresmassibility remains true in
asynchronous Byzantine systems.

It follows from this impossibility that, whek < ¢, the underlying asynchronous distributed system
has to be enriched with additional computational powerkfeet agreement to be solved. Such an
additional computational power can be provided with minimal synchronyngsisons (e.g., [3] which
considers: = 1 and Byzantine failures), appropriate failure detectors (e.qg., [8] whocisidersk = 1
and Byzantine failures), or randomization (e.g., [19] which considets 1 and Byzantine failures,
and [5, 15] which considér < t and crash failures, in read/write shared memory systems and message-
passing systems, respectively).

Intrusion-tolerant agreement with respect to Byzantine proceses The validity property associated
with a distributed agreement problem relates its outputs to its inputs. In a systera processes may
commit Byzantine failures, there is no way to direct a Byzantine processidedsome specific value,
and consequently thieset agreement validity property can only be on the values decided bytiteet
processes.

A classical validity property for Byzantine agreement states that, wherothalty processes pro-
pose the same value, they must decide it. Hence, as soon as two non-faoltgges propose different
values, any value can be decided by the correct processes, ewnea‘proposed” by a Byzantine
process. (Let us observe that a Byzantine process can appeaipasipg different values to different
correct processes.) It follows that, as noticed and deeply investig&tss] jnhe solvability of Byzantine
k-set agreement is sensitive to the particular validity property that is carside

In this paper we consider the following validity property (introduced in [Wjere it is called
intrusion-tolerancg no value proposed only by Byzantine processes can be decidechdy-faulty
process. One way to be able to desigk-aet algorithm providing this property, consists in allow-
ing a non-faulty process to decide a default valueexcept (to prevent triviality) when the non-faulty
processes propose the same value. (Ihdecision at some non-faulty processes can occur for ex-
ample in the very adversary scenario where the non-faulty processesse different values, while
the Byzantine processes propose the same value). Another way to ddésiggt algorithm providing
intrusion-tolerance consists in adding a constraint on the total numberfefedif values that can be
proposed by the non-faulty processes. kebe this number. It is shown in [10] that, in a systermof
processes where up t@rocesses may commit Byzantine failures, such a constraint-is > mt (i.e.,
there is a value proposed by at leéist- 1) non-faulty processes).

Content of the paper This paper is on Byzantine-set agreement. It has two main contributions.

e The first is a pair of all-to-all communication abstractions. The first onkedc#V-broadcast
(where MV stands for “Multivalued Validated”), allows the non-faulty pesses to exchange
values in such a way that all the non-faulty processes eventually obtasateset of values, and
none of these values is from Byzantine processes only. The secendated SMV-broadcast
(where S stands for “Synchronized”) is built on top the first one, arsdiéh that, if a non-faulty
process obtains a set with a single value, the set obtained by any othfauttyrprocess contains
this value. The important point is that these communication abstractions allowdbespes to
exchange values while eliminating the values sent only by Byzantine pesceBley generalize
to the “multivalue” case the communication abstractions introduced in [14}ethe set of values
that the processes exchange is limited to two values.

e The second contribution is a modularset agreement algorithm for asynchronous message-
passing systems where processes may commit Byzantine failures. Thishahgavhich round-
based, relies on the previous SMV-broadcast abstraction, and éaslalannounced) on the ad-
ditional computational power supplied by local random coins (with sewdak). As far as we
know, this is the first randomizédset agreement algorithm for asynchronous Byzantine message-
passing systems.

The previous Byzantine-tolerant algorithms have two noteworthy feattites first is that they all
are signature-free. This means that the “adversary” is not requiteel tomputationally bounded. The
second is their conceptual simplicity, which is a first-class property.

Roadmap The paperis composed of 5 sections. Section 2 presents the computatidrantbdédasic
broadcast abstraction (called ND-broadcast, where ND stand forDijaicity”) introduced in [25].

As indicated by its name, this broadcast operation, which requires:/3, allow to hide a duplicity
behavior which can be produced by Byzantine processes. Then $8cgtiesents the MV-broadcast
and SMV-broadcast abstractions. SMV-broadcast is based on bdthrdddcast and ND-broadcast.
Section 4 presents the modular randomizeset agreement algorithm, whose construction relies on
two instances of SMV-broadcast per round. Finally, Section 5 conslirsepaper.

2 Computation Model and ND-broadcast

2.1 Computation model

Asynchronous processes The system is made up of a finite détof n > 1 asynchronous sequential
processes, namelf = {p1,...,p,}. “Asynchronous” means that each process proceeds at its own
pace, which may vary arbitrarily with time, and remains always unknown tottiex processes.

3

Communication network The processes communicate by exchanging messages through an asyn-
chronous reliable point-to-point network. “Asynchronous” meansdhaessage is eventually received
by its destination process, i.e., there is no bound on message transfey. d8laljable” means that the
network does not loss, duplicate, modify, or create messages. “Pgnui+it-means that there is a
bi-directional communication channel between each pair of processegeHwhen a process receives
a message, it can identify its sender.

A processp; sends a message to a procesdy invoking the primitive $end TAG(m) to p;”,
whereTAG is the type of the message andits content. To simplify the presentation, it is assumed
that a process can send messages to itself. A process receives garn@ssxecuting the primitive
“receive()”.

The operatiorbroadcast TAG(m) is a macro-operation which stands fdot‘each j € {1,...,n}
send TAG(m) to p; end for”.This operation is usually callednreliablebroadcast (if the sender crashes
in the middle of thefor loop, it is possible that only an arbitrary subset correct processes/es a
message).

Failure model Uptot processes may exhibiByzantindboehavior. A process that exhibits a Byzantine
behavior is calledaulty. Otherwise, it iscorrector non-faulty A Byzantine process is a process that
behaves arbitrarily: it may crash, fail to send or receive messaged,abitrary messages, start in
an arbitrary state, perform arbitrary state transitions, etc. As a simple éxamByzantine process,
which is assumed to send a messagto all the processes, can send a messag#o some processes,
a different messagei, to another subset of processes, and no message at all to the othessec
More generally, a Byzantine process has an unlimited computational pameiByzantine processes
can collude to “pollute” the computation. Let us notice that, as each pair eepses is connected
by a channel, no Byzantine process can impersonate another progeByzantine processes are not
prevented from influencing the delivery order of messages sentteatq@rocesses.

Discarding messages from Byzantine processedf, according to its algorithm, a procegs is as-
sumed to send a single message() to a proces®;, thenp, processes only the first messages (v)

it receives fromp;. This means that, ip; is Byzantine and sends several messagesv), TAG(v')
wherev’ # v, etc., all of them except the first one are discarded by their receilezsus observe that
this does not prevent multiple copies of the first messag®) to be received and processed by their
receiver.)

Notation This computation model is denotd$iAMP,, ;[}] (BAMP stands for “Byzantine Asyn-
chronous Message Passing”). In the following, this model is both restrigih a constraint ort
and enriched with an object providing processes with additional compuiafiover. More precisely,
BAMP,, [t < n/a] (Wherea is a positive integer) denotes the mo#dMP,, ;[] where the maxi-
mal number of faulty processes is smaller thaia, andBAMP,, [t < n/«, LRC] denotes the model
BAMP,+[t < n/a] where each process is enriched with a local random coin (LRC). Lregtice that,
as LRC belongs to the model, it is given for freeBMMP,, ;[t < n/a, LRC].

Time complexity When computing the time complexity we ignore local computation time, and con-
sider the longest sequence of causally relate messagesns, ..., m. (i.e., for anyz € [2..z], the
reception ofm,_4 is a requirement for the sendingf,). The size of such a longest sequence defines
the time complexity.

2.2 No-duplicity broadcast

Definition of ND-broadcast The ND-broadcast communication abstraction was introduced by S.
Toueg in [25]. It is defined by two operations denodd_broadcast() andND_deliver(), which allow

the processes to eliminate bad behaviors of Byzantine processes. Moigety, a Byzantine process

is prevented from sending different messages to different correcepses, while it is assumed to send
the very same message to all of them.

When a process invokéd#D _broadcast() we say that it "ND-broadcasts” a message, and when it in-
vokesND _deliver() we say that it "ND-delivers” a messalgeConsidering an instance of ND-broadcast
where the operatioND_broadcast() is invoked by a process;, this communication abstraction is de-
fined by the following properties.

e ND-Validity. If a non-faulty process ND-delivers a message fromthen, if it is non-faulty,p;
ND-broadcast this message.

e ND-No-duplicity. No two non-faulty processes ND-deliver distinct mgssaromp;.

e ND-Termination. If the sendar; is non-faulty, all the non-faulty processes eventually ND-deliver
its message.

Let us observe that, if the sendgr is faulty, it is possible that some non-faulty processes ND-
deliver a message from; while others do not ND-deliver a message frpm As already indicated,
the no-duplicity property prevents non-faulty processes from ND«eigtig different messages from a
faulty sender.

An algorithm implementing ND-broadcast It is shown in [25] that < n/3 is a necessary require-
ment to implement ND-broadcast in a Byzantine asynchronous messsgjagpaystem. Algorithm 1
(from [25]) implements ND-broadcast BAMP,, ;, [t < n/3] as follows.

operation ND _broadcast MSG(v;) is
(1) broadcast ND_INIT (4, v;).

whenND_INIT (4, v) is delivered do
(2) if (first reception oND_INIT(j, —)) then UB_broadcast ND_ECHO(j, v) end if.

whenND_ECHO(j, v) is delivered do

(3) if (ND_ECHO(j, v) received from(n — t) different processes anasG(j, v) not yet ND.delivered
4 then ND_deliver MSG(j, v)

(5) endif.

Algorithm 1: Implementing ND-broadcast BBAMP,, ;[t < n/3]

When a procesg; wants to ND-broadcast a message whose content ilsbroadcasts the message
ND_INIT (,v;) (line 1). When a process receives a messamenIT (7, —) for the first time, it broad-
casts a messaged_ECHO(j, v) wherew is the data content of thed_INIT() message (line 2). If the
message@lD_INIT (j, v) received is not the first message_INIT (j, —), p; is Byzantine and the message
is discarded. Finally, whep; has received the same messageECHO(j,v) from (n — t) different
processes, it locally ND-deliverssG(j, v) (lines 3-4).

The algorithm considers an instance of ND-broadcast, i.e., a correctgs invokes at most once
ND-broadcast. Adding a sequence number to each message allowsreaebspto ND-broadcast a
sequence of messages.

Theorem 1. Algorithm 1 implementdND-broadcasin the system mod@&@AMP,, ,[t < n/3].

A similar vocabulary will be used for the abstractions MV-broadcast@My-broadcast introduced in Section 3.

Proof To prove the ND-termination property, let us consider a non-faulty p)gehat ND-broadcasts
the messag®sG(v;). As p; is non-faulty, the messaged_INIT (i, v;) is received by all the non-faulty
processes, which are at le@st— ¢), and every non-faulty process broadcastseCHO(i, v;) (line 2).
Hence, each non-faulty process receives the messagecHO(Z, v;). from (n — ¢) different processes.
It follows that every non-faulty process eventually ND-delivers thesagemsG(i, v;) (lines 3-4).

To prove the ND-no-duplicity property, let us assume by contradictiortty@mhon-faulty processes
p; andp; ND-deliver different messages; andm, from some procesg, (i.e., m; = MSG(k, v) and
ma = MSG(k, w), with v # w). It follows from the predicate of line 3, that receivedecHO(k, v) from
a set of(n — t) distinct processes, ang receivedecHO(k, w) from a set of(n — ¢) distinct processes.
Asn > 3t, it follows that the intersection of these two sets contains a non-faulty gsodgut, as it
is non-faulty, this sent the same messageecHO() to p; andp; (line 2). Henceyn; = my, which
contradicts the initial assumption.

To prove the ND-validity property, we show that, if Byzantine processegef and broadcast a
messagelD_ECHO(i, w) such thaip; is correct and has never invok®&iD _broadcast MSG(w), then no
correct process can ND-deliversG(i, w). Let us observe that at mosprocesses can broadcast the
messagelD_ECHO(i, w). Ast < n — t, it follows that the predicate of line 3 can never be satisfied at
a correct process. Hencepifis correct, no correct process can ND-deliver frppa message that was
not been ND-broadcast hy. OTheorem 1

It is easy to see that this implementation uses two consecutive communicatiorastbpgn?)
underlying messages ¢ 1 in the first communication step, andn — 1) in the second one). Moreover,
there are two types of protocol messages, and the size of the controhatfon added to a message is
log, n (sender identity).

3 Multivalued Validated Broadcast: MV-broadcast and SMV-broadcast

This section presents the all-to-all MV-broadcast and SMV-broadoasinunication abstractions. “All-
to-all” mean that it is assumed that all the non-faulty processes invoke thesponding broadcast
operation. As indicated in the introduction, these abstractions extend to thivalue” case the BV-

broadcast and SBV-broadcast communication abstractions introdudéd]jnwvhich consider binary
values only.

3.1 Multivalued validated all-to-all broadcast

Definition of MV-broadcast This communication abstraction provides the processes with a single
operation denote®1V broadcast(). When a process invokddV _broadcast TAG(m), we say that it
“MV-broadcasts the message typeatc and carrying the value:”. The invocation ofMV _broadcast
TAG(m) does not block the invoking process. The aim of MV-broadcast is to elteithee values (if
any) that have been broadcast only by Byzantine processes.

In an MV-broadcast instance, each correct progedsV-broadcasts a value and eventually obtains
a set of values. To store these values, MV-broadcast providespeacbssp; with a read-only local
variable denotednv_values;. This set variable, initialized t@, increases asynchronously when new
values are received.

Definition Each instance of MV-broadcast is defined by the four following pridger
e MV-Termination. The invocation df1V _broadcast() by a correct process terminates.

e MV-Justification. Ifp; is a correct process ande muv_valid;, v has been MV-broadcast by a
correct process.

e MV-Uniformity. If p; is a correct process ande muv_valid;, eventuallyy € mv_valid; at every
correct process;.

e MV-Obligation. Eventually the setww_valid; of each correct process is not empty.

The following properties are immediate consequences of the previougidafin
e MV-Equality. The setsnv_valid; of the correct processes are eventually non-empty and equal.

e MV-Integrity. The setmwv_valid; of a correct procesg; never contains a value MV-broadcast
only by Byzantine processes.

Feasibility condition in the presence of up tot Byzantine processes Let m be the number of dif-
ferent values MV-broadcast by correct processes. It folloemfthe previous specification that, even
when the (at most) Byzantine processes propose the same valu@hich is not proposed by correct
processesw cannot belong to the setwv_valid; of a correct procesg;. This can be ensured if and
only if there is a value MV-broadcast by at le@st- 1) correct processes. This feasibility condition is
captured by the predicate— ¢ > mt (a proof of this feasibility condition can be found in [10]). Hence
n > (m + 1)t is a feasibility condition for MV-broadcast to cope with upttByzantine processes. Let
us notice that, as: > 2, n > (m + 1)t impliesn > 3t.

An MV-broadcast algorithm Algorithm 2 describes a simple implementation of MV-broadcast, suited
to the system moddB AMP,, [t < n/(m + 1)]. This algorithm is based on a simple “echo” mecha-
nism. Differently from previous echo-based algorithms (e.qg., [4, 24¢)ettho is used here with respect
to each value that has been received (whatever the number of predkasbroadcast it), and not with
respect to each pair composed of a value plus the identity of the procebsdhdcast this value. Hence,
a value entails at most one echo per process, whatever the numbece$sges that MV-broadcast this
value.

let witness(v) = number of different processes from whikly _vAL (v) was received.

operation MV _broadcast MSG(v;) is
(1) broadcast MV _VAL (v;); return().

whenmv _vAL (v) is received

(2) if (witness(v) >t + 1) A (MV_VAL (v) not yet broadcast)

3) then broadcast MV _VAL (v) % a process echoes a value only once %
(4) endif;

(5) if (witness(v) > n —t) A (v ¢ mv_valid;)

(6) then mv_valid; < mv_valid; U{v} % local delivery of a value %

(7) endif.

Algorithm 2: Implementing MV-broadcast BAMP,, +[t < n/(m + 1)]

When a procesg; invokesMV _broadcast MSG(v;), it broadcastsiv VAL (v;) to all the processes
(line 1). Then, when a procepsreceives (from any process) a messsgeVvAL (v), (if not yet done) it
forwards this message to all the processes (line 3) if it has receivedrtieeraessage from at ledst-1)
different processes (line 2). Moreoverpifhas received from at leas{2t¢ + 1) different processes, the
valuev is added tonv_valid; (lines 5-6). Let us notice that, except in the case where valid;| = m,
no correct process; can know if its setnv_valid; has obtained its final value.

Theorem 2. Algorithm2 implements MV-broadcast in the system md@ldIMP,, ;[t < n/(m + 1)].

Proof The proof of the MV-Termination property is trivial. If a correct pros@s/okesVV _broadcast(),
it eventually sends a message to each process, and terminates.

7

Proof of the MV-Justification property. To show this property, we pritnzg a value MV-broadcast
only by faulty processes cannot be added to thensetalid; of a correct procesg;. Hence, let us
assume that only faulty processes MV-broadaeastit follows that a correct process can receive the
message1V VAL (v) from at most different processes. Consequently the predicate of line 2 cannot be
satisfied at a correct process. Moreovemast > t, the predicate of line 5 cannot be satisfied either at
a correct process, and the property follows.

Proof of the MV-Uniformity property. If a value is added to the setwv_valid; of a correct process
pi (local delivery), this process receive _VAL (v) from at least{n —t) different processes (line 5), i.e.,
from at leastn — 2t) different correct processes. As each of these correct pregsesit this message
to all the processes, it follows that the predicate of line 2 is eventually sdtaffieach correct process,
which consequently broadcasty VAL (v) to all. As there are at lea$t — ¢) correct processes, the
predicate of line 5 is then eventually satisfied at each correct progessha MV-Uniformity property
follows.

Proof of the MV-Obligation property. It follows from he feasibility condition> (m-+1)¢, that there
is a valuev MV-broadcast by at least + 1) correct processes. It then follows that these processes issue
MV _broadcast MSG(v), and consequently all correct processes first deliver the messageL (v) and
then broadcast at line 3 (if not previously done). Hence, eacha@reces®; eventually delivers this
message fronin —t) processes and and addto its setmv_valid; (line 5-6), which proves the property.

|:]Theorem 2

Cost of the algorithm As at mostn values are MV-broadcast by the correct processes, it follows from
the text of the algorithm that each correct process broadcasts eti@sefvalues at most once (at line 1
or line 3). Hence, if there are € [n — t..n| correct processes, their broadcasts entail the sending of
at mostm ¢ n messagestv_VAL (). Finally, whatever the number of values that are MV-broadcast, the
algorithm requires at most two communication steps.

3.2 Synchronized multivalued validated all-to-all broad@st

Definition of SMV-broadcast This all-to-all communication abstraction provides the processes with a
single operation denot&MV _broadcast(). As indicated by its name, its aim is to synchronize processes
so that, if a single value is delivered to a correct process, theis delivered to all the correct processes.

In an SMV-broadcast instance, each correct process in&W&s broadcast TAG(m), whereTAG is
the type of the message andvalue it wants to broadcast. Such an invocation returns to the invoking
procesy; a set denotediew; and called a local view. We say that a processtributesto a setiew;
if the value it SMV-broadcasts belongsdéew,;. SMV-broadcast is defined by the following properties.

e SMV-Termination. The invocation &MV _broadcast TAG() by a correct process terminates.

e SMV-Obligation. The setiew; returned by a correct procegsis not empty.

e SMV-Justification. Ifp; is correct and € view;, then a correct process SMV-broadcast

e SMV-Inclusion. Ifp; andp; are correct processes andw; = {v}, thenv € view;.

e SMV-Contribution. Ifp; is correct, at leastn — t) processes contribute to its sétw;.

e SMV-No-duplicity. Let VIEW be the union of the setgew; of the correct processes. A process

contributes to at most one value BGTEW .

The following property is an immediate consequence of the previous defingtioperty.

e SMV-Singleton. Ifp; andp; are correct|(view; = {v}) A (view; = {w})] = (v=w).

Letv € VIEW, p; a correct process, ang a Byzantine process. Itis possible that, while the value
v was SMV-broadcast by; (hencep; contributed toVIEW), p; also appears as contributing WE W
with the same value. The SMV-No-duplicity property states the following: no values VIEW \ {v}
appears as a contribution pf.

An SMV-broadcast algorithm Algorithm 3 implements SMV-broadcast AMP,, [t < n/(m +
1)]. A procesy; first MV-broadcasts a messagsa (v;) and waits until the associated set_values;

is not empty (lines 1-2). Let us remind that, whgnstops waiting,nv_values; has not necessarily
obtained its final value. Them; extracts a valuev from muv_values; and ND-broadcasts it to all
(line 3). Let us notice that, due to the ND-no-duplicity property, no twoexrprocesses can ND-
deliver different values from the same Byzantine process.

operation SMV _broadcast MSG (v;) is
(1) MV_broadcast MSG(est;);
(2) wait (mv_values; # 0);

% muv_values; has not necessarily its final value when the wait statement terminates %
(3) ND_broadcast ND_AUX (w) wherew € mv_values;;
(4) wait (3 a setview; such that its values (i) belong tav_values;, and

(if) come from messagesb_AUX () received from(n — t) distinct processes);

(5) return (view;).

Algorithm 3: Implementing SMV-broadcast BAMP,, ;[t < n/(m + 1)]

Finally, p; waits until the predicate of line 4 is satisfied. This predicate has two aims. Bhéesfio
discard fromwiew; (the set returned by;) a value broadcast only by Byzantine processes. Hence the
predicateview; C mv_values;. The second aim is to ensure that, if the vieiww; of a correct process
p; contains a single value, then this value eventually belongs to thewdiew; of any correct process
p;. To this end(n — t) different processes (hence, at le@st- 2t) correct processes) must contribute
to view;.

Multiset version of SMV-broadcast While a value belongs or does not belong to a set, a multiset
(also called a bag) is a set in which the same value can appear several imas. example, while
{a,b,c} and{a,b,b, ¢, c,c} are the same set, they are different multisets.

It is easy to see that the “set” version of the SMV-broadcast (whene; is a set) and Algorithm 3
can be easily converted into a “multiset” version wheiew; is a multiset. Both versions will be used
in the randomized-set agreement presented in Section 4.

Theorem 3. Algorithm3 implementsSMV-broadcasin the system mod&@AMP,, ,[t < n/(m + 1)].

Proof Proof of the SMV-Termination property. Let us first observe that, duta¢éoMV-Termination
property and the MV-Obligation property of the underlying MV-broadcae correct process blocks
forever at line 2. As there are at le@st— ¢) correct processes, and none of them blocks forever a line 2,
it follows from the ND-Termination property that each correct procesgrn from the ND-broadcast
at line 3, and eventually ND-delivers values from at least (the- ¢) correct processes. Moreover,
due to the MV-Justification property, these values have been SMV-taisaly correct processes, and,
due to the MV-Uniformity property, the setav_valid; of all correct processes are eventually equal.
It then follows that the predicate of line 4 becomes eventually satisfied at@ngct procesg;, and
consequently the invocations 8MV _broadcast() of the correct processes terminate.

Proof of the SMV-Obligation property. Any correct procasseventually ND-delivergn — t)
messagesiD_AUX () sent by correct processes. As (a) these messages carry valeedrak the set
mu_values, Of correct processes, and (b) these sets (b.1) are eventuallyaalbtorrect processes,
and (b.2) contain all values ND-broadcast at line 3 by the correcepsas, it follows (from the predicate
of line 4) that the setiew; returned by a correct process is not empty.

Proof of the SMV-Justification property. This property follows directlyrfrthe fact that the predi-
cate of line 4 discards the values ND-broadcast only by Byzantine ggeseand from the MV-Justification
property, namely, the setv_values; Of a correct process contains only values MV-broadcast by dorrec
processes.

Proof of the SMV-Inclusion property. Let us consider a correctessp; and assumeiew; = {v}.
It follows from the predicate of line 4 thai has ND-delivered the same messageAuX (v) from at
least(n — t) different processes. As at masif them are Byzantine, it follows that ND-delivered this
message from at leagt — 2t) different correct processes, i.e.,7as- 2t > ¢ + 1, from at leas{t + 1)
correct processes.

Let us consider any correct process This process ND-delivered messagesAuUX () from at least
(n — t) different processes. A — t) + (t + 1) > n, it follows that there is a correct processthat
ND-broadcast the same messageAUX (v) to p; andp;. It follows thatv € view;, which concludes
the proof of the lemma.

Proof of the SMV-Contribution property. This property follows triviallyom the part (ii) of the
waiting predicate of line 4.

Proof of the SMV-No-duplicity property. This property is an immediate cqneece of the ND-No-
duplicity property of the ND-broadcast issued at line 3. O7heorem 3

4 Randomized Byzantinek-Set Agreement

This section presents and proves correct a Byzaritiset agreement algorithm, which is modularly
built on top of the SMV-broadcast communication abstraction and the additongutational power
supplied to each process by a local random coin (LRC).

4.1 Intrusion-tolerant Byzantine k-set agreement

The intrusion-tolerant Byzantine (ITB)-set agreement was informally presented in the introduction.
It is assumed that each non-faulty process invokes an operation pediesse; (). This operation has
an input parameter, which is the value proposed by the invoking process. It returns a,vahieh is
called the “value decided” by the invoking process. IFBet agreement is formally defined in terms of
properties that any solution must to satisfy. When considering determihisgtagreement algorithms,
these properties are the following ones.

e KS-D-Termination. If a correct process invokespose, (), it decides a value.
e KS-Validity. If a correct process decidesthenv was proposed by a correct process.
e KS-Agreement. The set of values decided by the correct processtsines at most values.

As we are interested in a randomized algorithm to séhset agreement, the termination property
has to be weakened as follows: any correct process decides witalpliigbl. In the context of round-
based randomized algorithms, this property can restated as follows.

e KS-RR-Terminationlim,_, . (Probability[p; decides by round]) = 1.

4.2 Enriching the basic Byzantine asynchronous model with a radom coin

As announced, the additional computational power used to solvé13& agreement despite Byzantine
processes is supplied by a multi-sided random coin denoted LRC. Themaatastraction LRC provides
each process with a local coin that provides it with a single operation deraeidom (). Each invocation
takes a finite sefX as input parameter, and returns a valueXosuch that each value of as the
probability 1 /| X'| to be returned.

As seen in the introduction, we assume ¢. Moreover, we have also seen that, in order a correct
process decides neither a value proposed only by Byzantine precassa predefined default value, it
is assumed that, whatever the domain of the values that can be proposecdbyrétt processes, in any
execution, at most. different values are proposed by correct processes, whatepends om andt,

10

namely,n > m(t + 1). Finally, to rule out the trivial algorithm in which a correct process dexitie
value it proposes, we assurhe< m.

Hence, assuming the non-triviality conditiohs< m andk < t, and the fact that, in any execution,
at mostm different values are proposed by the correct processes, thersysidel considered here to
solve the ITBk-set agreement problem BAMP,, +[t < n/(m + 1),LRC].

4.3 Arandomized Byzantinek-set agreement algorithm

Local variables To solve the ITBk-set agreement problem, Algorithm 4, which is round-based, relies
on a very modular construction. Each procgsmanages two local variables whose scope is the whole
execution: a local round numbey, and a local estimate of a decision value, denateqg. It also
manages three local variables whose scope is the current roumanultisetview;[r, 1], an auxiliary
variableauz, and a setiew;[r, 2].

Description of the algorithm Whenp; invokespropose,, (v;) it assign; to est; and initializes-; to 0
(line 1). Thenp; enters a loop that it will exit at line 8 by executirgurn(v), which returns the decided
valuev and stops its participation in the algorithm.

operation propose,, (v;) is

(1) est; + vi; i < 0;

(2) repeat forever

3) r; <—r; +1;

I phase 1
(4) wview;[ri, 1] <~ SMV _broadcast PHASHr;, 1](est;); % view;|[r;, 1] is a multiset %
(5) if (3v appearingV times inview;|[r;, 1]) then auz < v elseaux + L end if;

I phase 2

(6) wview;[ri,2] < SMV_broadcast PHASHr;, 2|(auz); % view;[r;,2] is a set %
(7) case(L ¢ view;[rs,2]) then letv be any values view;[r;, 2];

(8) broadcast DECIDE(v); return(v)

9) (view;[r;,2] = {L,v,---}) thenest; + any value nont. € view;[r;, 2]
(10) (iew;[r:, 2] = {L}) then est; < random(muv_valid;[1,1])

(11) end case
(12) end repeat

Algorithm 4: Byzantinek-set agreement based on SMV-broadcast, and local random coins

Each round- executed by a procegs is made up of two phases. During the first phase of raynd
each correct procegs invokesSMV _broadcast(est;) (multiset version) and stores the multiset returned
by this invocation inview;[r, 1]. Let us remind that this multiset contains only values SMV-broadcast
by at least one correct process. The aim of this phase is to build a glelSatlenotedA UX [r], which
contains at mostk + 1) values, such that at moatof them are contributed by correct processes, and
the other one is the default value To this end, each correct processchecks if there is a value
that appears “enough” (say’) times in the multiseview;[r, 1]. If there is such a value, p; adopts it
(assignmentux < v), otherwise it adopts the default value(line 5).

The setA UX [r| is made up of theux variables of all the correct processes. Bdr X [r] to contain
at mostk non-L values,W has to be such thék +1)W > n (there are not enough processes(fo#1)
different values such that each of them was contributetVbgrocesses) Hence W > n/(k + 1).

When it starts the second phase of roun@ach correct procegs invokesSMV _broadcast(auz)

(set version) and stores the set it obtainsvipw;[r,2]. Due to the properties of SMV-broadcast,

2While the value of this set could be known by an external global obsetseralue can never be explicitly known by a
correct process. However, a process can locally build an approgimat it during the second phase, see below.

3Let us remind that, due to the ND-broadcast used in the algorithm implergeBhitv-broadcast, two correct processes
cannot ND-deliver different values from the same Byzantine psoces

11

view;[r, 2] is a local approximation ofl UX [r], namely,view;[r,2] € AUX]|r]. Then, the behavior
of p; depends on the content of the sétw;[r, 2].

o If L & view;|r,2], p; decides any value imniew;|r, 2] (lines 7-8).

e If view;|r, 2] containsL and non-. valuesp; updates its current estimatet; to any non- value
of view;[r, 2] and starts new round (line 9).

e If view;[r,2] contains onlyL, p; starts a new round, but updates previously its current esti-
mateest; to a random value (line 10). This random value is obtained from the sebt@ikn
mu_valid;[1, 1] in the algorithm) locally output by the first MV-broadcast instance invokeg; b
The use of these sets allows the algorithm to benefit from the fact thatdbtsare eventually
equal at all correct processes (MV-Equality property). The KBwrileation relies on this property.

As shown in the proof, an important behavioral property of the algorithsrri¢he fact that, at any round
r, itis impossible for two correct processgsandp; to be such that L ¢ view;[r, 2]) A (view;[r, 2] =
{L}). These two predicates are mutually exclusive.

On the value of W The valuelV is used at line 5 for a safety reason, namely, no more thaon-L
values can belong to the séU/X [r|. As we have seen, this is captured by the consti&itk + 1) > n.

It appears thall’ has also to be constrained for a liveness reason, namely, when teetqmocesses
start a new rouna with at mostk different estimates values, none of them must adopt the valae
line 5 (otherwise, instead of deciding at line 7, they could loop forever).

This liveness constraint is as follows. Let us consider the size of the muliiset[r, 1] obtained
at line 4. In the worst case, when the correct processes start aonew i+ with at mostk different
estimatesyiew;[r, 1] may containk — 1) different values, each appearifig’ — 1) times, and only one
value that appeafd’ times. Henceyiew;[r, 1] must contain at leagtV —1)(k—1)+W = (W —-1)k+1
elements. As it follows from Algorithm 3 thaview;[r, 1] > n — t, we obtain the liveness constraint
n—t>(W-1)k+1.

On message identities The messageBHASE() SVM-broadcast at line 4 and line 6 are identified by
a pair[r,] wherer is a round number and € {1,2} a phase number. Each of these messages gives
rise to underlying message®_AuUX () (Algorithm 2), mv_vAL () (Algorithm 1), and underlying sets
witness() (Algorithm 1). Each of them inherits the pair identifying the messagesky) it originates
from.

On the messagesEeCIDE() Before a correct process decides a valuié sends a messageECIDE(v)
to each other process (line 8). Then, it stops its execution. This haltingdta® prevent correct
processes from terminating, which could occur if they wait forever tiyidg messagesiD_AUX () or
MV _VAL () from p;.

To this end, a messageECIDE(v) has to be considered as representing an infinite set of messages.
More precisely if, while executing a round a proces®; receives a messageECIDE(v) from a pro-
cessp;, it considers that it has received fropy the following set of messagegND_AUX[r’, 1](v),
ND_AUX [17, 2](v), MV _VAL [/, 1](v), MV _VAL [, 2](v) },»>,. Itis easy to see that the messapesIDE()
simulate a correct message exchange that could be produced, aftedédided, by a deciding but non-
terminating process.

Another solution would consist in using a Reliable Broadcast abstractibndpas with Byzantine
processes. In this case, a process could decide awvasisoon as it has RB-deliverédt- 1) messages
DECIDE(v). An algorithm implementing such a reliable broadcast is presented in [4]. aldusithm
requiresO(n?) messages and assumes: t/3, which is a necessary requirement to implement reliable
broadcast in the presence of Byzantine processes.

12

4.4 Proof of the algorithm

The proof considers the system modeMP,, [t < n/(m + 1),LRC], the algorithmic safety and
liveness constraints o, namely,W(k + 1) > nandn —t > (W — 1)k + 1, and the non-triviality
condition(k < m) A (k < t).

Preliminary remark 1 The proof considers the semantic of the messagesDE() described pre-
viously. This is equivalent to consider that, after it has decided, aaqgorecess continues executing
while skipping line 8.

Notation Given around-, let EST[r] be the set of estimate values of the correct processes when they
start round-, and AUX [r] be the set including the values of thex; variables of the correct processes
at the end of the first phase of roundi.e., just after line 5). let us notice thdtUX [r] can containL.

Preliminary remark 2 The proof of the MV-Obligation property requires that at mestifferent val-

ues are MV-broadcast. Hence, this requirement extends to the invaa@itidfLbroadcastPHASHr, x](),
wherex € {1,2}. By assumption, this requirement is initially satisfied, namgh§7'[1]| < m. We

will see in the proof that (i4 UX [r] contains at most values proposed by correct processes plus pos-
sibly L, (ii) view;[r, 2] is a subset ofd UX [r], and (iii) mv_valid;[1, 1] contains only values proposed
by correct processes. From the previous observations we coritladat mostn different values are
SMV-broadcast at line 4 and line 6 of Algorithm 4.

Lemma 1. If a correct process decides a value, this value was proposed byrect@rocess.

Proof Let us consider the first round= 1. It follows from the MV-Justification property of the SMV-
broadcast invocation at line 4 that the multisétw;[1, 1] of any correct procegs contains only values
SMV-broadcast by correct processes. The same is true for théesgf1, 2] which, in addition, can also
contain the default valué.. It follows that, if a correct process decides at lines 7-8, it decidesus va
proposed by a correct process. If a correct process pragésshe next round, it executes line 9 or
line 10 (for line 10, this follows from the MV-Justification property of the af 1V-broadcast generated
by the invocatiorSMV _broadcast PHASE1, 1](est;)). In both cases, its new estimate value is a value
proposed by a correct process. Hence the estimate values of theggetkat start the second round are
values proposed by correct processes. Applying this reasoning sediuence of rounds, it follows that
no correct process can decide a value not proposed by a coroeesg. OrLemma 1

Lemma 2. AUX [r] contains at most non-L values, plus possibly the default value

Proof Let us assume that UX [r] contains(k + 1) non-L values. If a value belongs to this set, it is the
value of the local variableuz; of a correct procesg;, which appears at leadt’ times in the multiset
view;[r, 1] (line 5). Moreover, due to SMV-No-duplicity property, a process Kgcir or Byzantine)
contribute to at most one of these values. It follows from these obsemsatiat, if AUX [r] contains
(k+1) non-L values,(k+1)W distinct processes have contributedit&’ X [r|, i.e., have SMV-broadcast
PHASEr, 1]() messages. AG + 1)W > n, this is impossible. O Lemma 2

Lemma 3. If |[EST[r]| < k, any correct process that starts roundiecides during a value of EST[r].

Proof As by assumption the correct processes have at nditerent estimate values at the beginning
of roundr, it follows from the SMV-Contribution property of the SMV-broadcastiog 4 that at least
(n — t) different processes contributed to the multiseto; [r, 1]. Asn —t > (W — 1)k + 1 (algoritmic
liveness), it follows that the multisetew;[r, 1] of any correct procegs contains at leasi” copies of a

13

value of EST[r]|. Henceaux; € EST|[r] at each correct process. ConsequentlyX [r] C EST[r]. it
then follows that the predicate of line 7 is satisfied at any correct prggeadich decides accordingly
avalue ofview;[r,2] C AUX|[r] C EST]r|, which concludes the proof of the lemma. Orcmma 3

Lemma 4. Letp; andp; be two correct processes. At any roundhe predicates. ¢ view;|r, 2] and
view;|r,2] = {_L} are mutually exclusive.

Proof let us assume by contradiction thatis a correct process such that the predicatg view;[r, 2]
is satisfied (line 7), ang; a correct process such that the predicaiew;[r,2] = {1} is satisfied
(line 10).

It follows from the SMV-Contribution property of the SMV-broadcastied by and; at line 6 that
view;[r, 2] contains values contributed by at le@st— t) processes, and similarly for the sétw)[r, 2]
of p;. Asn > 3t, the intersection of any two sets @f — t) processes contains at le@st- 1) processes,
i.e., one correct process. It then follows that there is a correct gsdbat contributed to bothew;[r, 2]
andview;[r, 2|, from which we conclude that eithetiew;[r, 2] containsL, or view;[r, 2] contains a
non-L estimate value. O Lemma 4

Lemma 5. No more thark different values are decided by the correct processes.

Proof Let r be the first round during which correct processes decide. Theagalatline 8. Due to
Lemma 2, the setl UX [r] contains at most non-L values. Moreover, due to the SMV-broadcast issued
by the correct processes at line 6 that we haev;[r, 2] C AUX|[r] at each correct proceps Hence,
due to line 7, a process that decides during roundn only decide a value of UX [r].

Let us now consider a correct procegsgsthat proceeds to round + 1). Letp; be a process that
decides at round. It follows from Lemma 4 that the predicatés¢ view;|r, 2] andview;[r,2] = {1}
are mutually exclusive. Consequently,executes line 9 before progressing to the next round. Hence,
updateckst; to a non-L value ofview;[r, 2] C AUX [r] before progressing to the next round. It follows
that the estimates of the correct processes progressing to the nedta@nond values of AUX [r].
Hence EST|r + 1] C AUX|[r]\ {L}. It then follows from Lemma 3 that at moktvalues are decided.

DLemma 5

Lemma 6. No correct process blocks forever in a round.

Proof The proof is by contradiction. Let be the first round at which a correct processblocks
forever. It can block at line 4 or line 6. Let us first consider line 4. Azarrect process blocked forever
at a round’ < r, all correct processes start roun@nd invokeSMV _broadcast PHASHr, 1](—). It
then follows from the MV-termination property that returns from its invocation. The same reasoning
applies to line 6, which concludes the proof of the lemma. Oremma 6

Lemma 7. If a correct process decides during a roundany other correct process that does not decide
by roundr, decides during the roun@ + 1).

Proof The proof is by contradiction. Let us suppose that a correct progetesidesy at roundr (line
8) and a correct procegs, which does not decide by roumd Due to Lemma 6p; proceeds to round
(r+1). Due to to Lemma 4 and the fact thatdecides at round, it follows thatview;[r, 2] # {L}.
Hencep; executes line 9, an assigns a norof AUX [r] to est;. As AUX [r] contains at most non-L
values (Lemma 2), we hav8ST[r + 1] C AUX]|r], i.e., the roundr + 1) starts with at most non-L
values. Due to to the Lemma 8; decides in the round + 1. A contradiction. Oremma 7

14

Lemma 8. Let VALID[1,1] be the final (common) value of the set$_valid;[1,1] of the correct
processesvr we haveAUX [r] C VALIDI1,1].

Proof The proof follows from the observation that the values, proposed loyraat process, which are
notin VALIDI[1,1] can appear neither imew;[r, 1] nor inview;[r, 2]. Hence, they cannot appear either
ina setAUX|[r|, and we haved UX [r] C VALIDI1,1]. Ofemma 8

Lemma 9. All correct processes decide with probability

Proof Due Lemma 7 if a correct process decides, all correct processekedetience, let us assume
by contradiction that no correct process decides.

Due to the MV-Equality property of the MV-broadcast generated by theciations o5MV _broadcast
PHASE[1, 1]() issued by the correct processes, there is a finite tiadter which the setswv_valid;[1, 1]
of the correct processes remain forever non-empty and equal.

As no correct process blocks forever in a round (Lemma 6), all coprecesses progress from round
to round forever. Moreover, as the decision predicate of line 7 is reatesfied at a correct process, it
follows that, afterr, any correct process executes line 9 or line 10. Let us considend raentered by
all correct processes after time There are three cases.

e Case 1. At round-, all the correct processes execute line 9. So, each correct preessits
estimate to a non- value of AUX [r]. Due to Lemma 2, there are then at mbslifferent estimate
(non-L) values inAUX [r]. Hence, all the correct processes start the rqunredl), and EST [r+1]
contains at most different estimate values (none being. It then follows from Lemma 3 that
all correct processes decide.

e Case 2: During- at least one process (but not all) executes line 9. In this case, duenim&é.@,
each correct procegs that executes line 9 sets its current estimatig to a non-L value taken
from the setd UX [r|, which contains at mogtnon-L values. The other processes execute line 10.
This means that each of these processess its estimate valugt; to a values mv_valid;[r, 1] =
VALIDI[1,1]. As AUX|r] € VALIDI[1,1] (Lemma 8), there is a probabilityy, > 0 that they
obtain values fromd UX [r].

e Case 3: During no process executes line 9. In this case, all the processes execut@. [iffecte
is a probabilityps > 0 that they obtain at mogt different estimate values.

In Case 1, all correct processes decide. Let us consider CaskQame 3. During any round after
there is a probability = min(p1, p2) that the correct processes have at niadifferent estimate values.
Hence, there is a probabilit () = p + p(1 —p) + p(1 —=p)® + ... + p(1 —p)*~L =1 - (1 — p)*
that, after at most rounds, the processes have no more thastimate values. ABm,,_,~, P(«) = 1,
it follows that, with probability 1, all processes will start a round with no mora thastimate values.
Then, according to Lemma 3, they will decide. O Lemma 9

Theorem 4. Algorithm4 solves the randomized Byzantikeset agreement problem in the system model
BAMP [t <n/(m+1),LRC].

Proof The KS-Validity property follows from Lemma 1. The KS-Agreement proypéollows from
Lemma 5. The KS-RR-Termination follows from Lemma 9. OTheorem 4

5 Conclusion

This paper presented a signature-free randomized distributed algorighreolliesk-set agreement in
asynchronous message-passing systems wheretup tb processes may commit Byzantine failures.

15

Its design is based on a modular construction which rests on (i) a braadsisaction which guaran-
tees that two non-faulty processes cannot receive distinct messagethe same (possibly Byzantine)
sender, and (ii) the stacking of two all-to-all communication abstractions vg&okralize the “binary”
communication abstractions introduced in [14] to the multivalue domain. An iniegeeature of the
propsed algorithm lies in the validity condition it ensures, namely, no valygogeal only by Byzantine
processes can be decided by non-faulty processes.

Acknowledgments

This work has been partially supported by the French ANR project DES®#LY devoted to com-
putability and complexity in distributed computing, and the Franco-German piRjSCMAT devoted
to the mathematics of distributed computing.

References

[1] Attiya H. and Welch J.Distributed computing: fundamentals, simulations and advanced tofddsEdition), Wiley-
Interscience, 414 pages, 2004.

[2] Borowsky E. and Gafni E., Generalized FLP Impossibility ResultstfResilient Asynchronous Computatiori&oc.
25th ACM Symposium on Theory of Computing (STOCABM Press, pp. 91-100, 1993.

[3] Bouzid Z., Moséfaoui A., and Raynal M., Minimal synchrony for Byzantine corsmenProc. 34th ACM Symposium
on Principles of Distributed Computing (PODC’15ACM Press, 2015.

[4] Bracha G., Asynchronous Byzantine agreement prototistmation & Computation75(2):130-143, 1987.

[5] Censor Hillel K., Multi-sided shared coins and randomized seteagest.Proc. 22nd ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA'I®ACM Press, pp. 60-68, 2010.

[6] Chaudhuri S., More choices allow more faults: Set consensasgmns in totally asynchronous systeritrdormation
and Computation105(1):132158, 1993.

[7] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility ofritisited consensus with one faulty proceksurnal of
the ACM 32(2):374-382, 1985.

[8] Friedman R., Mogfaoui A., and Raynal M., Simple and efficient oracle-based emuseprotocols for asynchronous
Byzantine system$EEE Transactions on Dependable and Secure Comp,u2ifig:46-56, 2005.

[9] Gafni E. and Guerraoui R., Generalizing universalRyoc. 22nd Int'l Conference on Concurrency Theory (CON-
CUR’11), Springer LNCS 6901, pp. 17-27, 2011.

[10] Herlihy M.P., Kozlov D., and Rajsbaum Djstributed computing through combinatorial topologylorgan Kauf-
mann/Elsevier, 336 pages, 2014.

[11] Herlihy M., Shavit N., The Topological Structure of AsynchrasaComputabilityJournal of the ACM46(6):858-923,
1999.

[12] Lamport L., Shostack R., and Pease M., The Byzantine gknprablem.ACM Transactions on Programming Lan-
guages and Systen¥(3)-382-401, 1982.

[13] Lynch N.A., Distributed algorithmsMorgan Kaufmann Pub., San Francisco (CA), 872 pages, 18N\ 11-55860-
384-4).

[14] Mostefaoui A., Moumen H., and Raynal M., Signature-free asynabuerbinary Byzantine consensus witk< n/3,
O(n®) messages, and(1) expected timeJournal of the ACMTo appear, 2015.

[15] Mostefaoui A. and Raynal M., Randomizéeset agreemenBroc. 12nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA'OOACM Press, pp. 291-297, 2000.

16

[16] Mostefaoui A. and Raynal M., Signature-free broadcast-based intrtierance: never decide a Byzantine vaRiec.
14th Int'l Conference On Principles Of Distributed Systems (OPODIS'3f)inger LNCS 6490, pp. 144-159, 2010.

[17] Pease M., R. Shostak R., and Lamport L., Reaching agraeméme presence of faults. of the ACM 27:228-234,
1980.

[18] de Prisco R., Malkhi D., and Reiter M.K., GriSet consensus problems in asynchronous syst&f&& Transactions
on Parallel Distributed System&2(1):7-21, 2001.

[19] Rabin M., Randomized Byzantine generaloc. 24th IEEE Symposium on Foundations of Computer Science
(FOCS'83) IEEE Computer Society Press, pp. 116-124, 1983.

[20] Raynal M.,Fault-tolerant agreement in synchronous message-passing sy$tergan & Claypool, 165 pages, 2010
(ISBN 978-1-60845-525-6).

[21] Raynal M.,Concurrent programming: algorithms, principles and foundatid®sringer, 515 pages, 2013 (ISBN 978-3-
642-32026-2).

[22] Raynal M., Stainer J., and Taubenfeld G., Distributed uniigys&@roc. 18th Int'l Conference on Principles of Dis-
tributed Systems (OPODIS’ 14 pringer LNCS 8878, pp. 469-484, 2014.

[23] Saks M. and Zaharoglou F., Wait-FréeSet Agreement is Impossible: The Topology of Public Knowledgid\M
Journal on Computing29(5):1449-1483, 2000.

[24] Srikanth T.K. and Toueg S., Simulating authenticated broadcastsiteedimple fault-tolerant algorithmBistributed
Computing 2:80-94, 1987.

[25] Toueg S., Randomized Byzantine agreemerdac. 3rd Annual ACM Symposium on Principles of Distributed Computing
(PODC'84), ACM Press, pp. 163-178, 1984.

17

