Achour Mostéfaoui
email: achour.mostefaoui@univ-nantes.frhamouma.moumen@gmail.comraynal@irisa.fr

Hamouma Moumen

Michel Raynal

Modular Randomized Byzantine k-Set Agreement in Asynchronous Message-passing Systems

Keywords: Asynchronous message-passing system, Broadcast abstraction, Byzantine process, Coin, Distributed algorithm, k-Set agreement, Randomized algorithm, Signature-free algorithm

k-Set agreement is a central problem of fault-tolerant distibuted computing. Considering a set of n processes, where up to t may commit failures, let us assume that each process proposes a value. The problem consists in defining an algorithm such that each non-faulty process decides a value, at most k dfferent values are decided, and the decided values satisfy some context-depending validity condition. Synchronous message-passing algorithms solving k-set agreement have been proposed for different failure models (mainly process crashes, and process Byzantine failures). Differently, k-set agreement cannot be solved in failure-prone asynchronous message-passing systems when t ≥ k. To circumvent this impossibility an asynchronous system must be enriched with additional computational power.

Assuming t ≥ k, this paper presents a distributed algorithm that solves k-set agreement in an asynchronous message-passing system wher up to t processes may commit Byzantine failures. To that end, each process is enriched with randomization power. While randomized k-set agreement algorithms exist for the asynchronous process crash failure model where t ≥ k, to our knowledge the proposed algorithm is the first that solves k-set agreement in the presence of up to t ≥ k Byzantine processes. Interestingly, this algorithm is signature-free, and ensures that no value proposed only by Byzantine processes can be decided by a non-faulty process. Its design is based on a modular construction which rests on a "no-duplicity" one-to-all broadcast abstraction, and two all-to-all communication abstractions.

Introduction

Distributed agreement in the presence of process failures The world is distributed and more and more applications are now distributed. Moreover, when considering the core of non-trivial distributed applications, it appears that the computing entities (processes) have to agree in one way or another, for example to take a common decision, execute specific actions, or validate some commitment. Said another way, agreement problems lie at the core of distributed computing.

The most famous distributed agreement problem is the consensus problem. Let us consider a set of processes, where some of them may commit failures. Assuming each process proposes a value, the consensus problem is defined by the following properties: each non-faulty process must decide a value (termination), such that the same value is decided by the non-faulty processes (agreement), and this value satisfies some validity condition, which depends on the proposed values and the considered failure model [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF].

The k-set agreement problem is a natural weakening of consensus [START_REF] Chaudhuri | More choices allow more faults: Set consensus problems in totally asynchronous systems[END_REF]. It allows the non-faulty processes to decide different values, as long as no more than k values are decided. Hence, consensus is 1-set agreement. Let us notice that k-set agreement can be easily solved in crash-prone systems where k (the maximal number of different values that can be decided) is greater than t (the maximal number of processes that may be faulty). The k-set agreement problem has applications, e.g., to compute a common subset of wavelengths (each process proposes a wavelength and at most k of them are selected), or to duplicate k state machines where at most one is required to progress forever [9,[START_REF] Raynal | Distributed universality[END_REF].

Byzantine failures

This failure type has first been introduced in the context of synchronous distributed systems [START_REF] Lamport | The Byzantine generals problem[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF][START_REF] Raynal | Fault-tolerant agreement in synchronous message-passing systems[END_REF], and then investigated in the context of asynchronous distributed systems [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles and foundations[END_REF]. A process has a Byzantine behavior when it arbitrarily deviates from its intended behavior. We then say that it "commits a Byzantine failure" (otherwise we say the process is non-faulty or correct). This bad behavior can be intentional (malicious) or simply the result of a transient fault that altered the local state of a process, thereby modifying its behavior in an unpredictable way. Let us notice that process crashes (unexpected halting) define a strict subset of Byzantine failures.

Let us remind that (as already said) the world is distributed, asynchronous message-passing systems are more and more pervasive, processes have to agree in one way or another, and the assumption "no process has a bad behavior" is no longer sensible. Hence, agreement in asynchronous Byzantine message-passing systems is becoming a more and more important issue of fault-tolerance.

An impossibility result and how to cope with it Let consider a system made up of n processes, where up to t may be faulty. Whatever the value of k (i.e., even if k ≤ t), k-set agreement can always be solved if the system is synchronous [START_REF] Raynal | Fault-tolerant agreement in synchronous message-passing systems[END_REF]. The situation is different in asynchronous systems where k-set agreement is impossible to solve in the process crash failure model when k ≤ t [START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF][START_REF] Herlihy | The Topological Structure of Asynchronous Computability[END_REF][START_REF] Saks | Wait-Free k-Set Agreement is Impossible: The Topology of Public Knowledge[END_REF]. As Byzantine failures are more severe than process crash failures, this impossibility remains true in asynchronous Byzantine systems.

It follows from this impossibility that, when k ≤ t, the underlying asynchronous distributed system has to be enriched with additional computational power for k-set agreement to be solved. Such an additional computational power can be provided with minimal synchrony assumptions (e.g., [START_REF] Bouzid | Minimal synchrony for Byzantine consensus[END_REF] which considers k = 1 and Byzantine failures), appropriate failure detectors (e.g., [START_REF] Friedman | Simple and efficient oracle-based consensus protocols for asynchronous Byzantine systems[END_REF] which considers k = 1 and Byzantine failures), or randomization (e.g., [START_REF] Rabin | Randomized Byzantine generals[END_REF] which considers k = 1 and Byzantine failures, and [START_REF] Hillel | Multi-sided shared coins and randomized set agreement[END_REF][START_REF] Mostéfaoui | Randomized k-set agreement[END_REF] which consider k ≤ t and crash failures, in read/write shared memory systems and messagepassing systems, respectively).

Intrusion-tolerant agreement with respect to Byzantine processes

The validity property associated with a distributed agreement problem relates its outputs to its inputs. In a system where processes may commit Byzantine failures, there is no way to direct a Byzantine process to decide some specific value, and consequently the k-set agreement validity property can only be on the values decided by the correct processes.

A classical validity property for Byzantine agreement states that, when the non-faulty processes propose the same value, they must decide it. Hence, as soon as two non-faulty processes propose different values, any value can be decided by the correct processes, even a value "proposed" by a Byzantine process. (Let us observe that a Byzantine process can appear as proposing different values to different correct processes.) It follows that, as noticed and deeply investigated in [START_REF] De Prisco | On k-Set consensus problems in asynchronous systems[END_REF], the solvability of Byzantine k-set agreement is sensitive to the particular validity property that is considered.

In this paper we consider the following validity property (introduced in [START_REF] Mostéfaoui | Signature-free broadcast-based intrusion tolerance: never decide a Byzantine value[END_REF] where it is called intrusion-tolerance): no value proposed only by Byzantine processes can be decided by a non-faulty process. One way to be able to design a k-set algorithm providing this property, consists in allowing a non-faulty process to decide a default value ⊥, except (to prevent triviality) when the non-faulty processes propose the same value. (The ⊥ decision at some non-faulty processes can occur for example in the very adversary scenario where the non-faulty processes propose different values, while the Byzantine processes propose the same value). Another way to design a k-set algorithm providing intrusion-tolerance consists in adding a constraint on the total number of different values that can be proposed by the non-faulty processes. Let m be this number. It is shown in [START_REF] Herlihy | Distributed computing through combinatorial topology[END_REF] that, in a system of n processes where up to t processes may commit Byzantine failures, such a constraint is nt > mt (i.e., there is a value proposed by at least (t + 1) non-faulty processes).

Content of the paper

This paper is on Byzantine k-set agreement. It has two main contributions.

• The first is a pair of all-to-all communication abstractions. The first one, called MV-broadcast (where MV stands for "Multivalued Validated"), allows the non-faulty processes to exchange values in such a way that all the non-faulty processes eventually obtain the same set of values, and none of these values is from Byzantine processes only. The second one, called SMV-broadcast (where S stands for "Synchronized") is built on top the first one, and is such that, if a non-faulty process obtains a set with a single value, the set obtained by any other non-faulty process contains this value. The important point is that these communication abstractions allow the processes to exchange values while eliminating the values sent only by Byzantine processes. They generalize to the "multivalue" case the communication abstractions introduced in [START_REF] Mostéfaoui | Signature-free asynchronous binary Byzantine consensus with t < n/3, O(n 2) messages, and O(1) expected time[END_REF], where the set of values that the processes exchange is limited to two values. • The second contribution is a modular k-set agreement algorithm for asynchronous messagepassing systems where processes may commit Byzantine failures. This algorithm, which roundbased, relies on the previous SMV-broadcast abstraction, and (as already announced) on the additional computational power supplied by local random coins (with several sides). As far as we know, this is the first randomized k-set agreement algorithm for asynchronous Byzantine messagepassing systems.

The previous Byzantine-tolerant algorithms have two noteworthy features. The first is that they all are signature-free. This means that the "adversary" is not required to be computationally bounded. The second is their conceptual simplicity, which is a first-class property.

Roadmap

The paper is composed of 5 sections. Section 2 presents the computation model and a basic broadcast abstraction (called ND-broadcast, where ND stand for "No Duplicity") introduced in [START_REF] Toueg | Randomized Byzantine agreement[END_REF]. As indicated by its name, this broadcast operation, which requires t < n/3, allow to hide a duplicity behavior which can be produced by Byzantine processes. Then Section 3 presents the MV-broadcast and SMV-broadcast abstractions. SMV-broadcast is based on both MV-broadcast and ND-broadcast. Section 4 presents the modular randomized k-set agreement algorithm, whose construction relies on two instances of SMV-broadcast per round. Finally, Section 5 concludes the paper.

Computation Model and ND-broadcast 2.1 Computation model

Asynchronous processes

The system is made up of a finite set Π of n > 1 asynchronous sequential processes, namely Π = {p 1 , . . . , p n }. "Asynchronous" means that each process proceeds at its own pace, which may vary arbitrarily with time, and remains always unknown to the other processes.

Communication network

The processes communicate by exchanging messages through an asynchronous reliable point-to-point network. "Asynchronous" means that a message is eventually received by its destination process, i.e., there is no bound on message transfer delays. "Reliable" means that the network does not loss, duplicate, modify, or create messages. "Point-to-point" means that there is a bi-directional communication channel between each pair of processes. Hence, when a process receives a message, it can identify its sender.

A process p i sends a message to a process p j by invoking the primitive "send TAG(m) to p j ", where TAG is the type of the message and m its content. To simplify the presentation, it is assumed that a process can send messages to itself. A process receives a message by executing the primitive "receive()".

The operation broadcast TAG(m) is a macro-operation which stands for "for each j ∈ {1, . . . , n} send TAG(m) to p j end for".This operation is usually called unreliable broadcast (if the sender crashes in the middle of the for loop, it is possible that only an arbitrary subset correct processes receives a message).

Failure model Up to t processes may exhibit a Byzantine behavior. A process that exhibits a Byzantine behavior is called faulty. Otherwise, it is correct or non-faulty. A Byzantine process is a process that behaves arbitrarily: it may crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions, etc. As a simple example, a Byzantine process, which is assumed to send a message m to all the processes, can send a message m 1 to some processes, a different message m 2 to another subset of processes, and no message at all to the other processes. More generally, a Byzantine process has an unlimited computational power, and Byzantine processes can collude to "pollute" the computation. Let us notice that, as each pair of processes is connected by a channel, no Byzantine process can impersonate another process, but Byzantine processes are not prevented from influencing the delivery order of messages sent to correct processes.

Discarding messages from Byzantine processes If, according to its algorithm, a process p j is assumed to send a single message TAG() to a process p i , then p i processes only the first message TAG(v) it receives from p j . This means that, if p j is Byzantine and sends several messages TAG(v), TAG(v ′) where v ′ = v, etc., all of them except the first one are discarded by their receivers. (Let us observe that this does not prevent multiple copies of the first message TAG() to be received and processed by their receiver.) Notation This computation model is denoted BAMP n,t [∅] (BAMP stands for "Byzantine Asynchronous Message Passing"). In the following, this model is both restricted with a constraint on t and enriched with an object providing processes with additional computational power. More precisely, BAMP n,t [t < n/α] (where α is a positive integer) denotes the model BAMP n,t [∅] where the maximal number of faulty processes is smaller than n/α, and BAMP n,t [t < n/α, LRC] denotes the model BAMP n,t [t < n/α] where each process is enriched with a local random coin (LRC). Let us notice that, as LRC belongs to the model, it is given for free in BAMP n,t [t < n/α, LRC].

Time complexity

When computing the time complexity we ignore local computation time, and consider the longest sequence of causally relate messages m 1 , m 2 , . . ., m z (i.e., for any x ∈ [2..z], the reception of m x-1 is a requirement for the sending of m x). The size of such a longest sequence defines the time complexity.

No-duplicity broadcast

Definition of ND-broadcast The ND-broadcast communication abstraction was introduced by S. Toueg in [START_REF] Toueg | Randomized Byzantine agreement[END_REF]. It is defined by two operations denoted ND broadcast() and ND deliver(), which allow the processes to eliminate bad behaviors of Byzantine processes. More precisely, a Byzantine process is prevented from sending different messages to different correct processes, while it is assumed to send the very same message to all of them.

When a process invokes ND broadcast() we say that it "ND-broadcasts" a message, and when it invokes ND deliver() we say that it "ND-delivers" a message 1 . Considering an instance of ND-broadcast where the operation ND broadcast() is invoked by a process p i , this communication abstraction is defined by the following properties.

• ND-Validity. If a non-faulty process ND-delivers a message from p i , then, if it is non-faulty, p i ND-broadcast this message. • ND-No-duplicity. No two non-faulty processes ND-deliver distinct messages from p i .

• ND-Termination. If the sender p i is non-faulty, all the non-faulty processes eventually ND-deliver its message.

Let us observe that, if the sender p i is faulty, it is possible that some non-faulty processes NDdeliver a message from p i while others do not ND-deliver a message from p i . As already indicated, the no-duplicity property prevents non-faulty processes from ND-delivering different messages from a faulty sender.

An algorithm implementing ND-broadcast

It is shown in [START_REF] Toueg | Randomized Byzantine agreement[END_REF] that t < n/3 is a necessary requirement to implement ND-broadcast in a Byzantine asynchronous message-passing system. Algorithm 1 (from [START_REF] Toueg | Randomized Byzantine agreement[END_REF]) implements ND-broadcast in BAMP n,t n,t [t < n/3] as follows.

operation ND broadcast MSG(vi) is (1) broadcast ND INIT(i, vi). when ND INIT(j, v) is delivered do (2) if first reception of ND INIT(j, -) then UB broadcast ND ECHO(j, v) end if. when ND ECHO(j, v) is delivered do (3) if ND ECHO(j, v) received from (n -t) different processes and MSG(j, v) not yet ND delivered (4) then ND deliver MSG(j, v) (5) end if. Algorithm 1: Implementing ND-broadcast in BAMP n,t [t < n/3]
When a process p i wants to ND-broadcast a message whose content is v i , it broadcasts the message ND INIT(i, v i) (line 1). When a process receives a message ND INIT(j, -) for the first time, it broadcasts a message ND ECHO(j, v) where v is the data content of the ND INIT() message (line 2). If the message ND INIT(j, v) received is not the first message ND INIT(j, -), p j is Byzantine and the message is discarded. Finally, when p i has received the same message ND ECHO(j, v) from (nt) different processes, it locally ND-delivers MSG(j, v) (lines 3-4).

The algorithm considers an instance of ND-broadcast, i.e., a correct process invokes at most once ND-broadcast. Adding a sequence number to each message allows each process to ND-broadcast a sequence of messages.

Theorem 1. Algorithm 1 implements ND-broadcast in the system model BAMP n,t [t < n/3].
Proof To prove the ND-termination property, let us consider a non-faulty process p i that ND-broadcasts the message MSG(v i). As p i is non-faulty, the message ND INIT(i, v i) is received by all the non-faulty processes, which are at least (nt), and every non-faulty process broadcasts ND ECHO(i, v i) (line 2). Hence, each non-faulty process receives the message ND ECHO(i, v i). from (nt) different processes. It follows that every non-faulty process eventually ND-delivers the message MSG(i, v i) (lines 3-4).

To prove the ND-no-duplicity property, let us assume by contradiction that two non-faulty processes p i and p j ND-deliver different messages m 1 and m 2 from some process p k (i.e., m 1 = MSG(k, v) and m 2 = MSG(k, w), with v = w). It follows from the predicate of line 3, that p i received ECHO(k, v) from a set of (nt) distinct processes, and p j received ECHO(k, w) from a set of (nt) distinct processes. As n > 3t, it follows that the intersection of these two sets contains a non-faulty process. But, as it is non-faulty, this sent the same message ND ECHO() to p i and p j (line 2). Hence, m 1 = m 2 , which contradicts the initial assumption.

To prove the ND-validity property, we show that, if Byzantine processes forge and broadcast a message ND ECHO(i, w) such that p i is correct and has never invoked ND broadcast MSG(w), then no correct process can ND-deliver MSG(i, w). Let us observe that at most t processes can broadcast the message ND ECHO(i, w). As t < nt, it follows that the predicate of line 3 can never be satisfied at a correct process. Hence, if p i is correct, no correct process can ND-deliver from p i a message that was not been ND-broadcast by p i .

✷ T heorem 1

It is easy to see that this implementation uses two consecutive communication steps and O(n 2) underlying messages (n -1 in the first communication step, and n(n -1) in the second one). Moreover, there are two types of protocol messages, and the size of the control information added to a message is log 2 n (sender identity).

Multivalued Validated Broadcast: MV-broadcast and SMV-broadcast

This section presents the all-to-all MV-broadcast and SMV-broadcast communication abstractions. "Allto-all" mean that it is assumed that all the non-faulty processes invoke the corresponding broadcast operation. As indicated in the introduction, these abstractions extend to the "multivalue" case the BVbroadcast and SBV-broadcast communication abstractions introduced in [START_REF] Mostéfaoui | Signature-free asynchronous binary Byzantine consensus with t < n/3, O(n 2) messages, and O(1) expected time[END_REF], which consider binary values only.

Multivalued validated all-to-all broadcast

Definition of MV-broadcast This communication abstraction provides the processes with a single operation denoted MV broadcast(). When a process invokes MV broadcast TAG(m), we say that it "MV-broadcasts the message typed TAG and carrying the value m". The invocation of MV broadcast TAG(m) does not block the invoking process. The aim of MV-broadcast is to eliminate the values (if any) that have been broadcast only by Byzantine processes.

In an MV-broadcast instance, each correct process p i MV-broadcasts a value and eventually obtains a set of values. To store these values, MV-broadcast provides each process p i with a read-only local variable denoted mv values i . This set variable, initialized to ∅, increases asynchronously when new values are received.

Definition Each instance of MV-broadcast is defined by the four following properties.

• MV-Termination. The invocation of MV broadcast() by a correct process terminates.

• MV-Justification. If p i is a correct process and v ∈ mv valid i , v has been MV-broadcast by a correct process.

• MV-Uniformity. If p i is a correct process and v ∈ mv valid i , eventually v ∈ mv valid j at every correct process p j . • MV-Obligation. Eventually the set mv valid i of each correct process p i is not empty.

The following properties are immediate consequences of the previous definition.

• MV-Equality. The sets mv valid i of the correct processes are eventually non-empty and equal.

• MV-Integrity. The set mv valid i of a correct process p i never contains a value MV-broadcast only by Byzantine processes.

Feasibility condition in the presence of up to t Byzantine processes Let m be the number of different values MV-broadcast by correct processes. It follows from the previous specification that, even when the (at most) t Byzantine processes propose the same value w, which is not proposed by correct processes, w cannot belong to the set mv valid i of a correct process p i . This can be ensured if and only if there is a value MV-broadcast by at least (t + 1) correct processes. This feasibility condition is captured by the predicate nt > mt (a proof of this feasibility condition can be found in [START_REF] Herlihy | Distributed computing through combinatorial topology[END_REF]). Hence n > (m + 1)t is a feasibility condition for MV-broadcast to cope with up to t Byzantine processes. Let us notice that, as m ≥ 2, n > (m + 1)t implies n > 3t.

An MV-broadcast algorithm Algorithm 2 describes a simple implementation of MV-broadcast, suited to the system model BAMP n,t [t < n/(m + 1)]. This algorithm is based on a simple "echo" mechanism. Differently from previous echo-based algorithms (e.g., [START_REF] Bracha | Asynchronous Byzantine agreement protocols[END_REF][START_REF] Srikanth | Simulating authenticated broadcasts to derive simple fault-tolerant algorithms[END_REF]), the echo is used here with respect to each value that has been received (whatever the number of processes that broadcast it), and not with respect to each pair composed of a value plus the identity of the process that broadcast this value. Hence, a value entails at most one echo per process, whatever the number of processes that MV-broadcast this value.

let witness(v) = number of different processes from which MV VAL(v) was received.

operation MV broadcast MSG(vi) is

(1) broadcast MV VAL(vi); return().

when MV VAL(v) is received (2) if (witness(v) ≥ t + 1) ∧ (MV VAL(v) not yet broadcast) (3)
then broadcast MV VAL(v) % a process echoes a value only once % (4) end if; [START_REF] Hillel | Multi-sided shared coins and randomized set agreement[END_REF]

if (witness(v) ≥ n -t) ∧ (v / ∈ mv validi) (6)
then mv validi ← mv validi ∪ {v} % local delivery of a value % (7) end if.

Algorithm 2: Implementing MV-broadcast in BAMP n,t [t < n/(m + 1)] When a process p i invokes MV broadcast MSG(v i), it broadcasts MV VAL(v i) to all the processes (line 1). Then, when a process p i receives (from any process) a message MV VAL(v), (if not yet done) it forwards this message to all the processes (line 3) if it has received the same message from at least (t+1) different processes (line 2). Moreover, if p i has received v from at least (2t + 1) different processes, the value v is added to mv valid i (lines 5-6). Let us notice that, except in the case where |mv valid i | = m, no correct process p i can know if its set mv valid i has obtained its final value.

Theorem 2. Algorithm 2 implements MV-broadcast in the system model BAMP

n,t [t < n/(m + 1)].
Proof The proof of the MV-Termination property is trivial. If a correct process invokes MV broadcast(), it eventually sends a message to each process, and terminates.

Proof of the MV-Justification property. To show this property, we prove that a value MV-broadcast only by faulty processes cannot be added to the set mv valid i of a correct process p i . Hence, let us assume that only faulty processes MV-broadcast v. It follows that a correct process can receive the message MV VAL(v) from at most t different processes. Consequently the predicate of line 2 cannot be satisfied at a correct process. Moreover, as nt > t, the predicate of line 5 cannot be satisfied either at a correct process, and the property follows.

Proof of the MV-Uniformity property. If a value v is added to the set mv valid i of a correct process p i (local delivery), this process received MV VAL(v) from at least (n-t) different processes (line 5), i.e., from at least (n -2t) different correct processes. As each of these correct processes sent this message to all the processes, it follows that the predicate of line 2 is eventually satisfied at each correct process, which consequently broadcasts MV VAL(v) to all. As there are at least (nt) correct processes, the predicate of line 5 is then eventually satisfied at each correct process, and the MV-Uniformity property follows.

Proof of the MV-Obligation property. It follows from he feasibility condition n > (m+1)t, that there is a value v MV-broadcast by at least (t + 1) correct processes. It then follows that these processes issue MV broadcast MSG(v), and consequently all correct processes first deliver the message MV VAL(v) and then broadcast at line 3 (if not previously done). Hence, each correct process p i eventually delivers this message from (n-t) processes and and adds v to its set mv valid i (line 5-6), which proves the property.

✷ T heorem 2

Cost of the algorithm As at most m values are MV-broadcast by the correct processes, it follows from the text of the algorithm that each correct process broadcasts each of these values at most once (at line 1 or line 3). Hence, if there are c ∈ [nt.

.n] correct processes, their broadcasts entail the sending of at most m c n messages MV VAL(). Finally, whatever the number of values that are MV-broadcast, the algorithm requires at most two communication steps.

Synchronized multivalued validated all-to-all broadcast

Definition of SMV-broadcast This all-to-all communication abstraction provides the processes with a single operation denoted SMV broadcast(). As indicated by its name, its aim is to synchronize processes so that, if a single value v is delivered to a correct process, then v is delivered to all the correct processes.

In an SMV-broadcast instance, each correct process invokes SMV broadcast TAG(m), where TAG is the type of the message and m value it wants to broadcast. Such an invocation returns to the invoking process p i a set denoted view i and called a local view. We say that a process contributes to a set view i if the value it SMV-broadcasts belongs to view i . SMV-broadcast is defined by the following properties.

• SMV-Termination. The invocation of SMV broadcast TAG() by a correct process terminates.

• SMV-Obligation. The set view i returned by a correct process p i is not empty.

• SMV-Justification. If p i is correct and v ∈ view i , then a correct process SMV-broadcast v.

• SMV-Inclusion. If p i and p j are correct processes and view i = {v}, then v ∈ view j .

• SMV-Contribution. If p i is correct, at least (nt) processes contribute to its set view i .

• SMV-No-duplicity. Let VIEW be the union of the sets view i of the correct processes. A process contributes to at most one value of VIEW .

The following property is an immediate consequence of the previous definition. property.

• SMV-Singleton. If p i and p j are correct,

[(view i = {v}) ∧ (view i = {w})] ⇒ (v = w).
Let v ∈ VIEW , p i a correct process, and p j a Byzantine process. It is possible that, while the value v was SMV-broadcast by p i (hence p i contributed to VIEW), p j also appears as contributing to VIEW with the same value v. The SMV-No-duplicity property states the following: no value w ∈ VIEW \ {v} appears as a contribution of p j .

An SMV-broadcast algorithm Algorithm 3 implements SMV-broadcast in BAMP n,t [t < n/(m + 1)]. A process p i first MV-broadcasts a message MSG (v i) and waits until the associated set mv values i is not empty (lines 1-2). Let us remind that, when p i stops waiting, mv values i has not necessarily obtained its final value. Then, p i extracts a value w from mv values i and ND-broadcasts it to all (line 3). Let us notice that, due to the ND-no-duplicity property, no two correct processes can NDdeliver different values from the same Byzantine process.

operation SMV broadcast MSG (vi) is (1)
MV broadcast MSG(esti); [START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF] wait (mv valuesi = ∅); % mv valuesi has not necessarily its final value when the wait statement terminates % (3)

ND broadcast ND AUX(w) where w ∈ mv valuesi; (4) wait (∃ a set viewi such that its values (i) belong to mv valuesi, and (ii) come from messages ND AUX() from (nt) distinct processes); [START_REF] Hillel | Multi-sided shared coins and randomized set agreement[END_REF] return (viewi).

Algorithm 3: Implementing SMV-broadcast in BAMP n,t [t < n/(m + 1)]

Finally, p i waits until the predicate of line 4 is satisfied. This predicate has two aims. The first is to discard from view i (the set returned by p i) a value broadcast only by Byzantine processes. Hence the predicate view i ⊆ mv values i . The second aim is to ensure that, if the view view i of a correct process p i contains a single value, then this value eventually belongs to the view view j of any correct process p j . To this end, (nt) different processes (hence, at least (n -2t) correct processes) must contribute to view i .

Multiset version of SMV-broadcast

While a value belongs or does not belong to a set, a multiset (also called a bag) is a set in which the same value can appear several times. As an example, while {a, b, c} and {a, b, b, c, c, c} are the same set, they are different multisets.

It is easy to see that the "set" version of the SMV-broadcast (where view i is a set) and Algorithm 3 can be easily converted into a "multiset" version where view i is a multiset. Both versions will be used in the randomized k-set agreement presented in Section 4. Proof Proof of the SMV-Termination property. Let us first observe that, due to the MV-Termination property and the MV-Obligation property of the underlying MV-broadcast, no correct process blocks forever at line 2. As there are at least (nt) correct processes, and none of them blocks forever a line 2, it follows from the ND-Termination property that each correct process return from the ND-broadcast at line 3, and eventually ND-delivers values from at least the (nt) correct processes. Moreover, due to the MV-Justification property, these values have been SMV-broadcast by correct processes, and, due to the MV-Uniformity property, the sets mv valid i of all correct processes are eventually equal. It then follows that the predicate of line 4 becomes eventually satisfied at any correct process p i , and consequently the invocations of SMV broadcast() of the correct processes terminate.

Proof of the SMV-Obligation property. Any correct process p i eventually ND-delivers (nt) messages ND AUX() sent by correct processes. As (a) these messages carry values taken from the set mv values x of correct processes, and (b) these sets (b.1) are eventually equal at all correct processes, and (b.2) contain all values ND-broadcast at line 3 by the correct processes, it follows (from the predicate of line 4) that the set view i returned by a correct process is not empty.

Proof of the SMV-Justification property. This property follows directly from the fact that the predicate of line 4 discards the values ND-broadcast only by Byzantine processes, and from the MV-Justification property, namely, the set mv values i of a correct process contains only values MV-broadcast by correct processes.

Proof of the SMV-Inclusion property. Let us consider a correct process p i and assume view i = {v}. It follows from the predicate of line 4 that p i has ND-delivered the same message ND AUX(v) from at least (nt) different processes. As at most t of them are Byzantine, it follows that p i ND-delivered this message from at least (n -2t) different correct processes, i.e., as n -2t ≥ t + 1, from at least (t + 1) correct processes.

Let us consider any correct process p j . This process ND-delivered messages ND AUX() from at least (nt) different processes. As (nt) + (t + 1) > n, it follows that there is a correct process p x that ND-broadcast the same message ND AUX(v) to p i and p j . It follows that v ∈ view j , which concludes the proof of the lemma.

Proof of the SMV-Contribution property. This property follows trivially from the part (ii) of the waiting predicate of line 4.

Proof of the SMV-No-duplicity property. This property is an immediate consequence of the ND-Noduplicity property of the ND-broadcast issued at line 3.

✷ T heorem 3

Randomized Byzantine k-Set Agreement

This section presents and proves correct a Byzantine k-set agreement algorithm, which is modularly built on top of the SMV-broadcast communication abstraction and the additional computational power supplied to each process by a local random coin (LRC).

Intrusion-tolerant Byzantine k-set agreement

The intrusion-tolerant Byzantine (ITB) k-set agreement was informally presented in the introduction.

It is assumed that each non-faulty process invokes an operation called propose k (). This operation has an input parameter v, which is the value proposed by the invoking process. It returns a value, which is called the "value decided" by the invoking process. ITB k-set agreement is formally defined in terms of properties that any solution must to satisfy. When considering deterministic k-set agreement algorithms, these properties are the following ones.

• KS-D-Termination. If a correct process invokes propose k (), it decides a value.

• KS-Validity. If a correct process decides v, then v was proposed by a correct process.

• KS-Agreement. The set of values decided by the correct processes contains at most k values.

As we are interested in a randomized algorithm to solve k-set agreement, the termination property has to be weakened as follows: any correct process decides with probability 1. In the context of roundbased randomized algorithms, this property can restated as follows.

• KS-RR-Termination. lim r→+∞ Probability [p i decides by round r] = 1.

Enriching the basic Byzantine asynchronous model with a random coin

As announced, the additional computational power used to solve ITB k-set agreement despite Byzantine processes is supplied by a multi-sided random coin denoted LRC. The random abstraction LRC provides each process with a local coin that provides it with a single operation denoted random(). Each invocation takes a finite set X as input parameter, and returns a value of X such that each value of X as the probability 1/|X| to be returned. As seen in the introduction, we assume k ≤ t. Moreover, we have also seen that, in order a correct process decides neither a value proposed only by Byzantine processes, nor a predefined default value, it is assumed that, whatever the domain of the values that can be proposed by the correct processes, in any). This random value is obtained from the set (denoted mv valid i [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF] in the algorithm) locally output by the first MV-broadcast instance invoked by p i . The use of these sets allows the algorithm to benefit from the fact that these sets are eventually equal at all correct processes (MV-Equality property). The KS-Termination relies on this property.

As shown in the proof, an important behavioral property of the algorithm lies in the fact that, at any round r, it is impossible for two correct processes p i and p j to be such that (⊥ / ∈ view i [r, 2]) ∧ (view i [r, 2] = {⊥}). These two predicates are mutually exclusive.

On the value of W The value W is used at line 5 for a safety reason, namely, no more than k non-⊥ values can belong to the set AUX [r]. As we have seen, this is captured by the constraint W (k + 1) > n. It appears that W has also to be constrained for a liveness reason, namely, when the correct processes start a new round r with at most k different estimates values, none of them must adopt the value ⊥ at line 5 (otherwise, instead of deciding at line 7, they could loop forever).

This liveness constraint is as follows. Let us consider the size of the multiset view i [r, 1] obtained at line 4. In the worst case, when the correct processes start a new round r with at most k different estimates, view i [r, 1] may contain (k -1) different values, each appearing (W -1) times, and only one value that appears W times. Hence, view i [r, 1] must contain at least (W -1)(k-1)+W = (W -1)k+1 elements. As it follows from Algorithm 3 that |view i [r, 1] ≥ nt, we obtain the liveness constraint nt ≥ (W -1)k + 1.

On message identities

The messages PHASE() SVM-broadcast at line 4 and line 6 are identified by a pair [r, x] where r is a round number and x ∈ {1, 2} a phase number. Each of these messages gives rise to underlying messages ND AUX() (Algorithm 2), MV VAL() (Algorithm 1), and underlying sets witness() (Algorithm 1). Each of them inherits the pair identifying the message PHASE() it originates from.

On the messages DECIDE() Before a correct process decides a value v, it sends a message DECIDE(v) to each other process (line 8). Then, it stops its execution. This halting has not to prevent correct processes from terminating, which could occur if they wait forever underlying messages ND AUX() or MV VAL() from p i .

To this end, a message DECIDE(v) has to be considered as representing an infinite set of messages. More precisely if, while executing a round r, a process p i receives a message DECIDE(v) from a process p j , it considers that it has received from p j the following set of messages:

{ND AUX[r ′ , 1](v), ND AUX[r ′ , 2](v), MV VAL[r ′ , 1](v), MV VAL[r ′ , 2](v)} r ′ ≥r .
It is easy to see that the messages DECIDE() simulate a correct message exchange that could be produced, after it has decided, by a deciding but nonterminating process.

Another solution would consist in using a Reliable Broadcast abstraction that copes with Byzantine processes. In this case, a process could decide a value v as soon as it has RB-delivered (t + 1) messages DECIDE(v). An algorithm implementing such a reliable broadcast is presented in [START_REF] Bracha | Asynchronous Byzantine agreement protocols[END_REF]. This algorithm requires O(n 3) messages and assumes n < t/3, which is a necessary requirement to implement reliable broadcast in the presence of Byzantine processes. Proof let us assume by contradiction that p i is a correct process such that the predicate ⊥ / ∈ view i [r, 2] is satisfied (line 7), and p j a correct process such that the predicate view j [r, 2] = {⊥} is satisfied (line 10).

It follows from the SMV-Contribution property of the SMV-broadcast issued by i and j at line 6 that view i [r, 2] contains values contributed by at least (nt) processes, and similarly for the set view j [r, 2] of p j . As n > 3t, the intersection of any two sets of (nt) processes contains at least (t + 1) processes, i.e., one correct process. It then follows that there is a correct process that contributed to both view i [r, 2] and view j [r, 2], from which we conclude that either view i Let us now consider a correct process p j that proceeds to round (r + 1). Let p i be a process that decides at round r. It follows from Lemma 4 that the predicates ⊥ / ∈ view i [r, 2] and view j [r, 2] = {⊥} are mutually exclusive. Consequently, p j executes line 9 before progressing to the next round. Hence, p j updated est j to a non-⊥ value of view j [r, 2] ⊆ AUX Proof The proof is by contradiction. Let r be the first round at which a correct process p i blocks forever. It can block at line 4 or line 6. Let us first consider line 4. As no correct process blocked forever at a round r ′ < r, all correct processes start round r and invoke SMV broadcast PHASE[r, 1](-). It then follows from the MV-termination property that p i returns from its invocation. The same reasoning applies to line 6, which concludes the proof of the lemma. ✷ Lemma 6

Lemma 7. If a correct process decides during a round r, any other correct process that does not decide by round r, decides during the round (r + 1).

Proof

The proof is by contradiction. Let us suppose that a correct process p i decides v at round r (line 8) and a correct process p j , which does not decide by round r. Due to Lemma 6, p j proceeds to round (r + 1). Due to to Lemma 4 and the fact that p i decides at round r, it follows that view j [r, 2] = {⊥}. Hence, p j executes line 9, an assigns a non-⊥ of AUX Its design is based on a modular construction which rests on (i) a broadcast abstraction which guarantees that two non-faulty processes cannot receive distinct messages from the same (possibly Byzantine) sender, and (ii) the stacking of two all-to-all communication abstractions which generalize the "binary" communication abstractions introduced in [START_REF] Mostéfaoui | Signature-free asynchronous binary Byzantine consensus with t < n/3, O(n 2) messages, and O(1) expected time[END_REF] to the multivalue domain. An interesting feature of the propsed algorithm lies in the validity condition it ensures, namely, no value proposed only by Byzantine processes can be decided by non-faulty processes.

Theorem 3 .

 3 Algorithm 3 implements SMV-broadcast in the system model BAMP n,t [t < n/(m + 1)].

4 Lemma 5 .

 45 [r, 2] contains ⊥, or view j [r, 2] contains a non-⊥ estimate value. ✷ Lemma No more than k different values are decided by the correct processes. Proof Let r be the first round during which correct processes decide. They decide at line 8. Due to Lemma 2, the set AUX [r] contains at most k non-⊥ values. Moreover, due to the SMV-broadcast issued by the correct processes at line 6 that we have view i [r, 2] ⊆ AUX [r] at each correct process p i . Hence, due to line 7, a process that decides during round r can only decide a value of AUX [r].

5 Lemma 6 .

 56 [r] before progressing to the next round. It follows that the estimates of the correct processes progressing to the next round are non-⊥ values of AUX [r]. Hence, EST [r + 1] ⊆ AUX [r] \ {⊥}. It then follows from Lemma 3 that at most k values are decided.✷ Lemma No correct process blocks forever in a round.

 [r] to est j . As AUX [r] contains at most k non-⊥ values (Lemma 2), we have EST [r + 1] ⊆ AUX [r], i.e., the round (r + 1) starts with at most k non-⊥ values. Due to to the Lemma 3, p j decides in the round r + 1. A contradiction. ✷ Lemma 7

 execution, at most m different values are proposed by correct processes, where m depends on n and t, view i [r, 2] is a local approximation of AUX [r], namely, view i [r, 2] ⊆ AUX [r]. Then, the behavior of p i depends on the content of the set view i [r, 2]. • If ⊥ / ∈ view i [r, 2], p i decides any value in view i [r, 2] (lines 7-8). • If view i [r, 2] contains ⊥ and non-⊥ values, p i updates its current estimate est i to any non-⊥ value of view i [r, 2] and starts new round (line 9). • If view i [r, 2] contains only ⊥, p i starts a new round, but updates previously its current estimate est i to a random value (line 10

 value of EST [r]. Hence, aux i ∈ EST [r] at each correct process. Consequently AUX [r] ⊆ EST [r]. it then follows that the predicate of line 7 is satisfied at any correct process p i , which decides accordingly a value of view i [r, 2] ⊆ AUX [r] ⊆ EST [r], which concludes the proof of the lemma. ✷ Lemma 3 Lemma 4. Let p i and p j be two correct processes. At any round r, the predicates ⊥ / ∈ view i [r, 2] and view j [r, 2] = {⊥} are mutually exclusive.

A similar vocabulary will be used for the abstractions MV-broadcast and SMV-broadcast introduced in Section 3.

While the value of this set could be known by an external global observer, its value can never be explicitly known by a correct process. However, a process can locally build an approximation of it during the second phase, see below.

Let us remind that, due to the ND-broadcast used in the algorithm implementing SMV-broadcast, two correct processes cannot ND-deliver different values from the same Byzantine process.

Acknowledgments

This work has been partially supported by the French ANR project DISPLEXITY devoted to computability and complexity in distributed computing, and the Franco-German project DISCMAT devoted to the mathematics of distributed computing.

namely, n > m(t + 1). Finally, to rule out the trivial algorithm in which a correct process decides the value it proposes, we assume k < m.

Hence, assuming the non-triviality conditions k < m and k ≤ t, and the fact that, in any execution, at most m different values are proposed by the correct processes, the system model considered here to solve the ITB k-set agreement problem is BAMP n,t [t < n/(m + 1), LRC].

A randomized Byzantine k-set agreement algorithm

Local variables To solve the ITB k-set agreement problem, Algorithm 4, which is round-based, relies on a very modular construction. Each process p i manages two local variables whose scope is the whole execution: a local round number r i , and a local estimate of a decision value, denoted est i . It also manages three local variables whose scope is the current round r: a multiset view i [r, 1], an auxiliary variable aux, and a set view i [r, 2].

Description of the algorithm

When p i invokes propose k (v i) it assigns v i to est i and initializes r i to 0 (line 1). Then p i enters a loop that it will exit at line 8 by executing return(v), which returns the decided value v and stops its participation in the algorithm.

(viewi[ri, 2] = {⊥}) then esti ← random(mv validi[1, 1]) (11) end case [START_REF] Lamport | The Byzantine generals problem[END_REF] end repeat.

Algorithm 4: Byzantine k-set agreement based on SMV-broadcast, and local random coins Each round r executed by a process p i is made up of two phases. During the first phase of round r, each correct process p i invokes SMV broadcast(est i) (multiset version) and stores the multiset returned by this invocation in view i [r, 1]. Let us remind that this multiset contains only values SMV-broadcast by at least one correct process. The aim of this phase is to build a global set 2 , denoted AUX [r], which contains at most (k + 1) values, such that at most k of them are contributed by correct processes, and the other one is the default value ⊥. To this end, each correct process p i checks if there is a value v that appears "enough" (say W) times in the multiset view i [r, 1]. If there is such a value v, p i adopts it (assignment aux ← v), otherwise it adopts the default value ⊥ (line 5).

The set AUX [r] is made up of the aux variables of all the correct processes. For AUX [r] to contain at most k non-⊥ values, W has to be such that (k +1)W > n (there are not enough processes for (k +1) different values such that each of them was contributed by W processes) 3 . Hence, W > n/(k + 1).

When it starts the second phase of round r, each correct process p i invokes SMV broadcast(aux) (set version) and stores the set it obtains in view i [r, 2]. Due to the properties of SMV-broadcast,

Proof of the algorithm

The proof considers the system model BAMP n,t [t < n/(m + 1), LRC], the algorithmic safety and liveness constraints on W , namely, W (k + 1) > n and nt ≥ (W -1)k + 1, and the non-triviality condition (k < m) ∧ (k ≤ t).

Preliminary remark 1

The proof considers the semantic of the messages DECIDE() described previously. This is equivalent to consider that, after it has decided, a correct process continues executing while skipping line 8.

Notation

Lemma 1. If a correct process decides a value, this value was proposed by a correct process.

Proof Let us consider the first round r = 1. It follows from the MV-Justification property of the SMVbroadcast invocation at line 4 that the multiset view i [1, 1] of any correct process p i contains only values SMV-broadcast by correct processes. The same is true for the set view i [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Borowsky | Generalized FLP Impossibility Results for t-Resilient Asynchronous Computations[END_REF] which, in addition, can also contain the default value ⊥. It follows that, if a correct process decides at lines 7-8, it decides a value proposed by a correct process. If a correct process progresses to the next round, it executes line 9 or line 10 (for line 10, this follows from the MV-Justification property of the of the MV-broadcast generated by the invocation SMV broadcast PHASE[1, 1](est i)). In both cases, its new estimate value is a value proposed by a correct process. Hence the estimate values of the processes that start the second round are values proposed by correct processes. Applying this reasoning to the sequence of rounds, it follows that no correct process can decide a value not proposed by a correct process.

✷ Lemma 9. All correct processes decide with probability 1.

Proof Due Lemma 7 if a correct process decides, all correct processes decides. Hence, let us assume by contradiction that no correct process decides. Due to the MV-Equality property of the MV-broadcast generated by the invocations of SMV broadcast PHASE[1, 1]() issued by the correct processes, there is a finite time τ after which the sets mv valid i [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF] of the correct processes remain forever non-empty and equal.

As no correct process blocks forever in a round (Lemma 6), all correct processes progress from round to round forever. Moreover, as the decision predicate of line 7 is never satisfied at a correct process, it follows that, after τ , any correct process executes line 9 or line 10. Let us consider a round r entered by all correct processes after time τ . There are three cases.

•

Conclusion

This paper presented a signature-free randomized distributed algorithm that solves k-set agreement in asynchronous message-passing systems where up to t ≥ k processes may commit Byzantine failures.