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Abstract—Blind/no-reference image quality assessment (NR-IQA) aims to assess the quality of an 

image without any reference image. In this paper, we propose an effective and efficient general-

purpose NR-IQA model using natural scene statistics (NSS) of the luminance relative order, based on

the observation that the variation of the marginal distribution of the relative order coefficients 

effectively reflect the degree of warping caused by different types of image distortions. In the literature, 

gradient-relevant methods have had a big success in full-reference (FR) IQA and reduced-reference 

(RR) IQA. Inspired by these, we extend it to NR-IQA in this paper. Notice that the NSS-based models 

usually extract their features derived from the spatial, wavelet, DCT and spectral domain etc. Unlike 

these metrics, the proposed method firstly extracts 32 natural scene statistics features of the luminance

relative order, obtained from the log histograms of log horizontal, vertical, main-diagonal and

secondary-diagonal derivatives, along with kurtosis, variance, differential entropy and entropy at two

scales. Then a mapping is learned to predict the quality score using a support vector regression. The 

experimental results on several benchmark databases showed that the proposed method is comparable 

with the state-of-the-art methods and has a relatively low complexity.  

Keywords-Image quality assessment; relative order; natural scene statistics; no reference; generalized Laplace model; 

support vector machine regression; random forest 

 I

  Image quality assessment (IQA) is involved in numerous fields and applications since it is essential for

the comparison and the optimization of different image processing methods. In many image processing

tasks (e.g., image acquisition, compression, restoration, transmission, etc.), it is necessary to assess the 

quality of the output image. The end-user of images is human; thus the subjective assessment is always the 

ultimate and the most reliable test. However, the subjective assessment is time-consuming, expensive and

cannot be real-time. That is why objective methods mimicking human perception have been developed to

assess the perceived quality automatically.  

  Objective methods can be divided into three categories depending on the amount of accessible

information: full-reference (FR), reduced-reference (RR) and no-reference (NR). The FR IQA metric needs 

an ideal "reference" image, e.g. SSIM [1], ESSIM [2] and [24]. However, the reference image is not always 

available. Instead of utilizing the full information from the reference image, the RR metric [23] compares 

the distorted image and the reference one based on a short description (e.g. extracted features) of the 

reference image, which is transmitted along with the distorted image. The deployment of the RR metric is 

difficult since most operators refuse to pay this additional transmission cost for the non-visible information. 

The NR IQA metric blindly evaluates the distorted image quality, without any reference image. This could

be very useful for the applications without reference image or with limited bandwidth.  

The NR-IQA metrics can further be classified into two types: distortion-specific (DS) and general-

purpose. The DS metrics aim at some specific distortion(s) and must have some a priori information about

the distortion(s) [3-5]. The general-purpose metrics aim to tackle different types of distortion [6-21].  

This paper focuses on the general-purpose NR-IQA metrics, which may have a single-stage or two-

stage framework. For a two-stage framework metric, the number of distortion types should be known a



priori to the metric. The two-stage framework metric firstly classifies the test image into one of the known 

distortion types, based on the training database. Then it predicts the quality of the test image for each

different distortion type. On the contrary, the single-stage framework metric uses a regression method to

predict the quality score of the test image without determining its distortion type. Moorthy et al. [7] 

proposed a two-stage metric BIQI, in which features of natural scene statistics (NSS) in the wavelet domain

are first extracted; then a classifier is employed to determine the distortion type; and finally the same set of 

statistics are used to evaluate the distortion-specific quality. Following the same paradigm, the authors later

extended the BIQI to the DIIVINE [8]. In [5], Sadd et al. proposed the BLIINDS-I which extracts the

contrast, the sharpness and the orientation anisotropies in two scales in the DCT (discrete cosine transform) 

domain. Later, they extended the BLIINDS-I to the BLIINDS-II [12], which extracts features from NSS-

based local DCT coefficients and then employs a Bayesian approach to predict quality scores. The 

BLIINDS-I and the BLIINDS-II correlate highly with subjective scores. However, the nonlinear sorting

block-wise DCT coefficients computations are time-consuming. In [13], Mittal et al. proposed BRISQUE

in which the investigated features are luminance coefficients locally normalized in the spatial domain. All 

above-mentioned approaches are NSS-based metrics which assume that natural scenes possess certain

statistical properties and the presence of distortion will affect these properties.  

We notice that gradient-relevant IQA methods have successfully predicted human perception in both 

FR and RR cases, mainly because the image gradient is an important information to the human visual 

system (HVS). For example, it was demonstrated by Huang et al. [22] that photographs of natural scenes

closely follow the distribution of log histograms of image gradients. Cheng et al. [23] proposed a RR-IQA

using natural image statistics in the gradient domain, and the resistor-average distance of distribution

between the distorted image and reference image was the measure of image quality. In [24], Liu et al. 

proposed a SSIM-like gradient similarity based FR-IQA metric with the consideration of the image

luminance, contrast and structure. Zhang et al. [2] proposed a distortion-specific FR-IQA (ESSIM) 

considering edge-strength of horizontal, vertical and two diagonal directions. Beside, Gong [51] et al. 

studied the relationship between image quality and image gradient distribution. Chen et al. in [25] proposed

the GSSIM which considered the HVS's sensitive to the edge and contour information. Xue et al. [46] 

proposed a gradient based model, based on the observation that the image gradient can effectively capture 

image local structures to which the HVS is highly sensitive.  

All these inspired us to propose a simple single-stage general-purpose NR-IQA metric only based on 

the log histograms of image gradients, hoping to increase the prediction performance while decreasing the 

complexity. The proposed metric is also NSS-based. Note that this kind of metrics (e.g. BRISQUE) usually 

extracted the features derived from the other different domains, and their parameters were estimated using a 

moment-matching based approach. In our previous work [49], NSS features in the gradient domain were 

studied. In [50], in a manner of fusing, we conducted a series of experiments where NSS features and

perceptual features were used. In this paper, we further extent the metric proposed in [49] and study the

performance of the NSS features calculated on the log of image gradients (i.e. relative order) and the 

importance of the contrast normalization step, where different benchmarking databases and learning 

methods are investigated. The robustness of these features is demonstrated; the choice of features and their 

impacts on performance are analyzed. The revealed results can serve as a guide to devise an effective IQA 

model. In particular, considering that the multi-scale and the orientation usually play a vital role in image 

quality model design, we extract 32 natural scene statistics features with some features modified according

to the experiments, which are the kurtosis, the variance, the differential entropy and the entropy obtained

from the log histograms of log horizontal, vertical, main-diagonal and secondary-diagonal derivatives, at 

two scale. We have also conducted a comparison study of different regression methods, which allowed us 

to select the support vector machine (SVM) regressor (SVR) as the regression method used in the proposed

IQA metric in order to achieve a better performance.  

  The paper is organized as follows. In Section 2, we introduce the proposed general-purpose NR-IQA

metric. Section 3 shows the detailed results. We conclude this work in Section 4. 

2. Framework of the method

  The framework of the proposed approach is shown in Fig. 1. It includes two steps: (1) Feature

extraction after a contrast normalization of the image: four features (the kurtosis, the entropy, the variance, 

and the differential entropy) along four directions (horizontal, vertical and the two diagonal) at two scales 



are computed to a feature vector for the test image. (2) Feature mapping: a pre-trained regression model is 

used to map the feature vector to a quality score. We detail the two steps in the following sub-sections. 
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Fig. 1. The architecture of the proposed NR-IQA metric 

 

2.1. Feature extraction 

 

A. Contrast Normalization 

Similar to the BRISQUE [13], we first apply a contrast normalization to the input image. The local 

contrast normalization has a decorrelation effect and the normalized luminance values tend towards a unit 

normal Gaussian characteristic for natural images. Specially, we compute locally normalized luminance by 

subtracting the mean and dividing the variance: 
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where I refers to the luminance; i∈1,2,...M, j ∈1,2,...N are spatial indices; M, N are the height and width 

of the image I, respectively. The parameter c is a positive constant to avoid instability. The local mean 

( , )u i j  and the local variance ( , )i j  are given by: 
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where w={w(k,q)|k=-K,...,K,q=-Q,...,Q} is a 2D circularly-symmetric Gaussian weighting function and 

then rescaled to unit volume. K and Q are the normalization window sizes. In our experiments, K and Q are 

set to be 5. The input image is preprocessed with this contrast normalization step before the feature 

extraction step. In the experiments, we find that the contrast normalization can help improve the 

performance and make an IQA model more robust. 

 

B. The generalized Laplace model (GLM) 

The Laplacian model has often been used to characterize the distribution of DCT image coefficients 

[26]. This distribution is usually changed when distortions present. The generalized Laplace model, 

previously studied in [22] and used by [23], fits very well the statistics of the derivatives of an image. The 

derivatives describe the detailed geometric features, to which the HVS is sensitive. Thus here we 

characterize image features using a generalized Laplace model (GLM). The probability density function of 

the GLM is defined as [22]: 
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where z is fixed since the integral of f(x) is 1, and μ is the mean (in our case, it equals to zero as illustrated 

by the following sections). The parameter t controls how large the tails are (larger tail for smaller t) and ρ is 

a scale parameter. Note that the parameters of the model of the log directional derivatives can be directly 

computed by variance and kurtosis as demonstrated by [22].  

 

C. Features selection 

In our proposed metric, we selected four features: the variance, the kurtosis, the differential entropy and 

the entropy. The reasons will be explained in the following. 

Note that the parameters ρ and t in (4) are directly related to the kurtosis K and the variance 2  by 

[22] 
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    . Thus we can replace ρ and t by the kurtosis and the variance to capture 

the statistical characteristics for a given image. As demonstrated in [22], the kurtosis K can also be defined 

as:                          
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where μ and 2  represent the mean and the variance respectively, and x is assumed as a random variable 

on R. Thus the ( , t)GLM   can be transformed into
2( , )GLM K  . Note that in our case, the mean of the 

log histogram of the log directional derivative of the image is zero, as illustrated in Fig.3.  

 We also observe from Fig.3 that the differences of log histograms of log directional derivatives between 

different distortion types are the tail weight and the variance along the histograms. To capture the statistical 

characteristics, we resort to the kurtosis and the variance, which quantifies the tail weight and the degree of 

its peakedness, respectively. The kurtosis and the variance are thus two selected features. 

Then we choose the entropy as another feature, since it is classically used to indicate the amount of 

information in an image [27]. The quality and the entropy are somewhat related. For example, the entropy 

could reflect the decreased quality due to the quantization. The entropy H(X) of a discrete random variable 

X is defined by   

 ( ) ( ) log ( )
x R

H X p x p x


    (8) 

when assuming that x∈R and the probability mass function p(x) =Pr{X=x}. Note that Entropy H(X) ≥0, 

0≤p(x) ≤1 implies that log (1/p(x)) ≥0. Note that the content dependency is a strong factor for variation of 

entropy, but we observed that it performed well as a no reference feature to characterize quality on our 

tested databases (cf. Fig.4). Thus we still keep this feature in our metric. 



The differential entropy [27] is also a relative measure of the amount of information in the image. But 

unlike entropy for discrete random variables, it can be negative. Based on the observation that the variables 

in the log directional derivative map could be negative, we choose the differential entropy as another 

feature. The differential entropy [27] of a continuous random variable X with a density f (X) is defined as: 

 
2

sup
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where the subscript ―sup‖ is the support of X, the set where f (x) > 0 is called the support set of X, and f(x) 

is the probability density function. 

 

D. Natural scene statistics of log directional derivatives 

  In our approach, each image is represented by the features extracted from natural scene statistics of the 

luminance relative order. We do not focus on the raw probability but rather the log of the probability. The 

log one characterizes the non-Gaussian nature of these probability distributions more accurately, and 

illustrates the nature of the tails more clearly. In addition, photographs of natural scenes closely follow the 

distribution of log histograms of image gradients [22]. Thus we study the log histogram of the log 

directional derivative of the image in our experiments.  

Four log directional derivatives are defined as follows: 

1) Horizontal orientation 

  

        , , 1H log I i j log I i j     (10) 

                                                               

2) Vertical orientation 

        , 1,V log I i j log I i j     (11) 

3) Main-diagonal 

      1   , 1, 1D log I i j log I i j      (12) 

4) Secondary-diagonal 

      2   , 1, 1D log I i j log I i j      (13) 

where i ∈ {1, 2,...M}, j ∈ {1, 2,...N} are spatial indices; M and N are the image height and width, 

respectively. 

   It is well understood that images can be represented in multi-scale, thus distortions can affect the image 

structure at different scales. It was also demonstrated in [13] that IQA metrics containing multiscale 

information correlate better with human opinions. Thus, in this work the variance, the kurtosis, the entropy 

and the differential entropy are calculated on each orientation and at two scales: the original image scale 

and a reduced resolution (downsampled by a factor of 2). As demonstrated by our experiments, scales 

beyond 2 did not contribute to the performance a lot, but increased the metric complexity. The features for 

each scale are listed in Table 1. Note that we have 32 features (4×4×2) in total. 
Table 1 

Summary of features (at one scale) extracted in order 

 

Feature ID Feature Description 

f1-f4 Variance, kurtosis, differential entropy, entropy for H 

f5-f8 Variance, kurtosis, differential entropy, entropy for V 

f9-f12 Variance, kurtosis, differential entropy, entropy for D1 

f13-f16 Variance, kurtosis, differential entropy, entropy for D2 

 

 



 

   
Fig. 2. From left to right and top to bottom are the reference image of ‗buildings‘ and its distortion types-Gaussian additive white 

Gaussian noise (WN), JPEG and JPEG2000 (JP2K) compression, a Rayleigh fast-fading channel simulation (FF), and Gaussian blur 

(Gblur), respectively. All of them are from LIVE database [28]. 

 

 
Fig. 3. From left to right and top to bottom are log histograms of log horizontal, vertical, main-diagonal and secondary-diagonal 

derivatives, respectively, for the reference 'building' image and its distortion types-WN, JPEG, JP2K, FF and Gblur. 

 
  Fig. 2 shows the reference image of ‗buildings‘ and its distortion types. The corresponding log 

histograms of log directional derivatives of Fig. 2 are plotted in Fig. 3. Our hypothesis is that the log 

histograms of log directional derivatives have characteristic statistical properties that are altered in the 

presence of distortions. By quantifying these changes, we can predict the type of distortion and perform the 

NR IQA. It can be seen from Fig.3 that statistic of the log histograms of log derivatives are well described 

by the GLM and it intuitively visualizes how each distortion affects the statistics in its own way. To this 

end, we can assess quality of distorted images by measuring this statistical change. 

   

2.2. Regression  

Given a set of image representations and their associated subjective scores, a NR-IQA can be treated as a 

regression problem. Based on the extracted features, our aim is to represent the perceptual quality score as a 

function of the proposed feature vector x which is defined as follows: 



 ( )Q f x   (14) 

where f is a function relating the elements of x to the final quality scores. To estimate f, a support vector 

machine regressor (SVR) [29] was utilized, since our experiment results (cf. section 3.2) showed that the 

SVR attained a nearly equivalent prediction performance while demanding less computational effort, by 

comparing with other regression method. We used the LIBSVM package [30] to implement the SVR with a 

radial basis function (RBF) kernel. 

 

3. Experiments and results 

 

3.1. Evaluation of features choice 

To validate our choice of features, we measured the correlation between each feature and the human 

differential mean opinion score (DMOS), by plotting the Spearman‘s rank ordered correlation coefficient 

(SROCC) values over the entire sets on the LIVE database II [28], as shown in Fig.4.  

 
Fig. 4. SROCC for each of the features on the LIVE database   

 

Note that no training procedure was involved here. From Fig.4, we can see the degree to which each 

feature correlates with human judgments and to which an image is affected by each distortion. For example, 

all the features correlate fairly well with the white noise distortion. The reason might be that the white noise 

increases the high-frequency content in the image and causes consequently the local changes in the relative 

order, based on which all the features are calculated. The ―variance‖ features correlate well with the 

Gaussian-blur distortion, may be due to the fact that the variance is related to the edges and textures in an 

image. The Gaussian blur can cause hazy textures or unclear edges, and then changes the variance 

correspondingly. The ―entropy‖ features captures relatively better for blur and FF (FF is a combination of 

JP2K and packet-loss errors) distortions. The reason may be that the Gaussian blur yields changes in image 

intensities, textures and edges; and these changes will be captured by the entropy that describes how much 

randomness (or uncertainty) there is in an image. Though there are several types of distortion involved in 

the compression distortion (e.g. quantization error, blocking effect, etc.), the general quality reduction can 

still be captured to some extent by the entropy alternations. The ―differential entropy‖ is the extension of 



the entropy and could be negative (considering that the variables in the log directional derivative map could

be negative), thus it becomes a complementary feature to the ―entropy‖. It should be noted that the

performance of the single feature for different distortion types could not indicate if a feature is a good or 

bad indicator of an image. The complicate interactions between features also play an important role in the

estimation of the image quality, though we have not yet deeply understood these interactions. 

For clarity, we tabulated in Table 2 the performances of different features on LIVE database in terms of

the SROCC. To save space, only the SROCCs of different features for JP2K distortion are listed. The

results in Table 2 were obtained from 982 images on LIVE database without training. 
Table 2 

SROCC of different features for white noise 

Feature ID f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16 

SROCC 0.868 0.788 0.823 0.829 0.854 0.790 0.822 0.809 0.848 0.774 0.817 0.804 0.858 0.768 0.812 0.805 

Feature ID f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30 f31 f32 

SROCC 0.518 0.707 0.784 0.587 0.551 0.664 0.645 0.583 0.418 0.511 0.553 0.448 0.437 0.515 0.573 0.462 

3.2. Evaluation of different regression methods 

To select the regression method, we compared three regression methods: the SVR, the general regression

neural network (GRNN) and the random forest (RF).  

The SVR has been widely applied to image quality assessment problems [8], [13], since it could deal 

with high dimensional feature vectors [33]. Based on established statistical principles, the GRNN

converges asymptotically with an increasing number of samples to the optimal regression surface [36].

Thus it is a powerful regression tool with a dynamic network structure [34]-[35]. It was shown in [36]-[37] 

that the GRNN could yield better results than the back-propagation network in terms of prediction 

performance. The Random Forest (RF) [38] was noted for its robustness against overfitting. The RF 

predicts new data by aggregating the predictions generated by all trees, and then takes the majority votes 

for classification and the average for regression.  

The performances of these three regressors for the proposed features using 1000 train-test in LIVE 

database are tabulated in Table 3. Two correlation coefficients between the prediction results and the

subjective scores were used: 1) the SROCC, which measures the prediction monotonicity; 2) the Pearson's

(linear) correlation coefficient (LCC), which is related to the prediction linearity and can be considered as

the measure of prediction accuracy. The LCC is ordinarily computed after passing the algorithmic scores

through a logistic nonlinearity as described in [40]. A value of the SROCC/LCC closer to 1 indicates that 

the test metric predicts better the human opinions. 

Table 3 

Median SROCC and LCC across 1000 train-test in LIVE database using different regressors for proposed features 

SROCC (Ratio of samples for training: 80%) 

JP2K JPEG WN Gblur FF All 

SVR 0.9483 0.9411 0.9564 0.9448 0.9172 0.9496 

GRNN 0.9177 0.9354 0.9416 0.8909 0.9034 0.9278 

RF 0.9421 0.9402 0.9555 0.9247 0.9175 0.9445 

LCC (Ratio of samples for training: 80%) 

JP2K JPEG WN Gblur FF All 

SVR 0.9655 0.9674 0.9659 0.9426 0.9438 0.9560 

GRNN 0.9446 0.9628 0.9537 0.9182 0.9344 0.9424 

RF 0.9616 0.9679 0.9723 0.9539 0.9481 0.9592 

We can see from the above table that the SVR and the RF outperform the GRNN. The SVR has a better 

prediction monotonicity than the RF; but the RF has a better prediction accuracy than the SVR. It is known 

that the RF is an effective tool in prediction [39], also confirmed by our experiments. But it is relatively 

complex and needs a long execution time. Since a NR metric is often used in the real-time assessment, we 

choose the SVR as our regression method.  



 

3.3. Evaluation of the proposed IQA metric performance 

 

To fairly evaluate the proposed IQA metric, we compared its performance to the representative FR 

IQA metric-structural similarity (SSIM) index and six state-of-the-art NR approaches (DIIVINE, 

BLIINDS-II, BRISQUE, CORNIA, GMLOG (M3) and FRIQUEE), by using the following well-known 

databases:  

 LIVE database II [28]: It consists of 29 reference images and their degraded versions with five 

types of distortion, i.e., JPEG 2000 compression (JP2K), JPEG compression (JPEG), additive 

white Gaussian noise (WN), Gaussian blurring (Gblur), and fast fading (FF). DMOSs associated 

with distorted images are provided. 

 The TID2008 database [41]: It contains 1700 test images derived from 25 reference images. There 

are 17 types of distortions for each reference image and four different scales for each distortion 

type.  

 CSIQ IQA database [42]: It consists of 30 reference images and their degraded versions with six 

different types of distortion at four to five different levels. DMOSs associated with distorted 

images are provided and in the range [0, 1], where a lower DMOS value indicates a higher quality.  

 LIVE In the Wild Image Quality Challenge Database [48]: It consists of over 350000 opinion 

scores on 1162 images of diverse authentic image distortions evaluated by over 8100 unique 

human observers. 

 

For the TID 2008 database and the CSIQ database, we only tested images with four types of distortions 

that appear in LIVE database, i.e., JPEG, JP2K, WN, and Gblur.  

Like the BRISQUE [13], in each train-test procedure, we also chose randomly 80% from the database as 

the train set and 20% as the test set so that no overlap between train and test content occurs. We repeated 

this random train-test procedure 1000 times and take the median performance over 1000 trials as the final 

overall performance. 

 

A. Performance on LIVE database 

 

Correlation with human judgements: In Table 4, the FRIQUEE1 means that the FRIQUEE is 

directly used for testing, while FRIQUEE2 includes the train-test procedure. In Table 4, we not only 

show results on different distortion subsets in the LIVE database, but also the overall 

performance (by performing train-test runs) on images with all the five types of distortion 

in the database. The best one among the NR-IQA metrics is highlighted in boldface. To 

show the generalization capability of the proposed approach, we also considered the case 

when a smaller part of the data-set is used for the training purpose. 

 
Table 4 

 Median SROCC and LCC across 1000 train-test combinations of LIVE database 

 

SROCC 

 JP2K JPEG WN Gblur FF All 

SSIM 0.9764 0.9594 0.9794 0.9661 0.9700 0.9487 

DIIVINE 0.8465 0.8037 0.9768 0.9639 0.8392 0.8497 

BLIINDS-II 0.9361 0.9004 0.9545 0.9161 0.8910 0.9223 

BRISQUE 0.9349 0.9221 0.9560 0.9581 0.8891 0.9381 

CORNIA 0.9383 0.9489 0.9730 0.9701 0.8911 0.9406 

GMLOG 0.9196 0.9551 0.9800 0.9416 0.9113 0.9500 

FRIQUEE1 0.8231 0.5735 0.9583 0.9071 0.8410 0.7470 

FRIQUEE2 0.9373 0.9067 0.9783 0.9513 0.8754 0.9365 

PROPOSED 0.9483 0.9411 0.9564 0.9448 0.9172 0.9496 

LCC  



 JP2K JPEG WN Gblur FF All 

SSIM 0.9670 0.9573 0.9745 0.9040 0.9460 0.9383 

DIIVINE 0.8416 0.7759 0.9562 0.9553 0.8401 0.8388 

BLIINDS-II 0.9472       0.9286     0.9417 0.9101 0.9055 0.9226 

BRISQUE 0.9375 0.9259 0.9630 0.9579 0.9118 0.9286 

CORNIA 0.9483 0.9605 0.983 0.9677 0.9100 0.9417 

GMLOG 0.9560 0.9836 0.9901 0.9604 0.9386 0.9510 

FRIQUEE1 0.8297 0.6017 0.8961 0.9007 0.8491 0.7592 

FRIQUEE2 0.9474 0.9383 0.9701 0.9496 0.8990 0.9425 

PROPOSED 0.9655 0.9674 0.9659 0.9426 0.9438 0.9560 

 

From Table 4, we can see that the proposed metric works well on each of the five distortions, especially 

on JP2K and FF. The reason may be that JP2K-compressed images manifest blur distortions and JP2K 

causes ringing effects (degradations around edges), while edges are reflected by the relative order based on 

which we constructed our IQA metric. It‘s the same for the FF distortion, since the FF is a combination of 

JP2K and packet-loss errors. As for the overall performance, our approach performed better than all the 

representative top performing NR-IQA algorithms, and the representative FR metric SSIM.  
 

Statistical analyses: We performed the t-test [45] on the SROCC values obtained from the 1000 train-test 

trials in order to see if there is a statistically significant difference between each pair of tested metrics. The 

results in Table 5 were got by doing the one-side t-test where the confidence level is set to 95%. The 

standard deviation of them are around 0.02. In Table 5, ‗1‘ indicates that the row metric is statically 

superior to the column one; ‗−1‘ indicates that the row one is statistically worse than the column one; and 

‗0‘ indicates that the row and column ones are statistically indistinguishable (or equivalent). 

    
Table 5 

Results of the two sample t-test performed between SROCC values obtained by different measures. 1(-1) indicates the algorithm in the 

row is statistically superior (inferior) than the algorithm in the column. 0 indicates the algorithm in the row is statistically equivalent to 

the algorithm in the column 
 SSIM DIIVINE BLIINDS-II BRISQUE CORNIA GMLOG Proposed 

SSIM 0 1 1 -1 -1 -1 -1 

DIIVINE -1 0 -1 -1 -1 -1 -1 

BLIINDS-II -1 1 0 -1 -1 -1 -1 

BRISQUE 1 1 1 0 0 -1 -1 

CORNIA 1 1 1 0 0 -1 -1 

GMLOG 1 1 1 1 1 0 0 

Proposed 1 1 1 1 1 0 0 

 

  From Table 5, we conclude that the SROCC value of the proposed one is statically higher than all other 

tested algorithms.  

 

Linearity: The linearity of an IQA model makes it more convenient to benchmark an image processing 

algorithm such as image denoising. With a linear IQA model, the difference between the model‘s 

prediction scores is equivalent to the difference of human subjective scores. Therefore, a linear IQA model 

does not complicate the relationship between quality degradation and bit allocation [46].  

For a uniform comparison of our proposed metric and other metrics (BRISQUE, BLIINDS-II, DIIVINE, 

SSIM), the 4-parameter logistic fitting was used to illustrate their linearity performance, as shown in Fig.5. 

Clearly, our method shows much better linearity than other ones.  



   
(a) Proposed                               (b) BRISQUE                     (c) BLIINDS-II 

  
 
       (d) DIIVINE                              (f) SSIM                    

 

Fig.5. The scatter plots of the prediction results of proposed, BRISQUE, BLIINDS-II, DIIVINE, PSNR, SSIM versus the subjective 

score in LIVE database  

 

To show the linearity more clearly, we also give the scatter plots of the proposed metric for each of the 

distortion types in LIVE database in Fig. 6. 

 
(1)  JP2K                           (2)   JPEG                                (3) WN 

                         
    (4) Gblur                                  (5) FF 

 
Fig.6. Scatter plots of the proposed metric. Predicted scores versus subjective DMOS on the distortion type: JP2K, JPEG, WN, Gblur 

and FF. 

 

The objective of the distortion-specific experiment is to see how the algorithm will perform if we only 

have images with one particular type of distortion. Fig. 6 shows that our metric‘s performance has a nearly 

linear relationship with the DMOS and an almost uniform density along each axis. 

 



B. Database Independence Experiment 

 

Since a NR-IQA metric is based on learning, it is necessary to verify whether the parameters are over-

fitted and the learned model is sensitive to different databases. To validate the independence of the 

proposed metric, following experiments are done: (1) training on LIVE and testing on CSIQ database; (2) 

training on CSIQ and testing on LIVE database; (3) training on LIVE and testing on TID2008 database ; (4) 

training on TID2008 and testing on LIVE database and (5) training on LIVE and testing on 

CSIQ+TID2008.  

We trained and tested images with four types of distortions, including JPEG, JP2K, WN, and BLUR, 

presented in the TID2008 database, CSIQ database, and the LIVE database. We also report the 

performance of the model trained on LIVE and tested on CSIQ + TID2008 together in a common set. Note 

that the subjective scores provided in CSIQ and TID2008 databases are different: the former one is the 

DMOS (Difference Mean Opinion Score) within the range of [0, 1] and the latter is the MOS within the 

range of [0, 9]. To test CSIQ+TID2008 together in a common set, these two different scores should be 

mapped onto the same scale. Thus, in our experiments, we make the DMOS values in CSIQ unchanged and 

the MOS values in TID2008 be transformed into the 2008TIDscore  defined as follow: 

 2008 1
9

TIDscor
S

e
MO

    (15) 

The results are listed in Table 6. 
 

Table 6  

Results of training and test in crossing databases 
 

 

 

As is shown in Table 6, the proposed method performs well in terms of correlation with human 

opinions and its performance does not depend on the database. 

Following the common practice, e.g. the BRISQUE, the results in Table 6 are got by testing the 

proposed model only on the distortions that it is trained for (including JP2K, JPEG, WN, Gblur). It remains 

then 384 images in TID2008 and 600 images in CSIQ, respectively. To investigate the performance of the 

proposed model on the discarded distortions, we also did the experiments as follows: 

1) Trained on JP2K, JPEG, WN and Gblur in LIVE and tested on the different distortions in CSIQ 

(fnoise and contrast distortions): The SROCC is 0.295 and the LCC is 0.2861. 

2)  Trained on JP2K, JPEG, WN and Gblur in LIVE and tested on the different distortions in 

TID2008(the other 13 distortions):  

The SROCC is 0.2636 and the LCC is 0.2529. 

 

C. Performance on LIVE In the Wild Image Quality Challenge Database 

The LIVE In the Wild Image Quality Challenge Database is the database that contains diverse authentic 

image distortions of a large number of images through a variety of modern mobile devices. In consideration 

  JP2K JPEG WN Gblur ALL 

LIVE for training and CSIQ for test 
SROCC 0.8777 0.9140 0.9113 0.9250 0.9136 

LCC 0.9056 0.9511 0.9121 0.9406 0.9320 

CSIQ for training and LIVE for test 
SROCC 0.9179 0.9624 0.9783 0.8742 0.9364 

LCC 0.9140 0.9647 0.9321 0.8526 0.9232 

LIVE for training and TID2008 for test 
SROCC 0.9233 0.9398 0.8479 0.8807 0.9173 

LCC 0.9094 0.9521 0.8412 0.8720 0.9029 

TID2008 for training and LIVE for test 
SROCC 0.9331 0.9596 0.9763 0.9029 0.9302 

LCC 0.8900 0.9622 0.9723 0.8827 0.8924 

LIVE for training and CSIQ+TID2008 

for test 

SROCC 0.8673        0.9010 0.8651 0.8690 0.8911 

LCC 0.8731 0.9153 0.8613 0.8590 0.8841 



of its huge difference with the prior traditional databases and for a fair comparison to some extent, Table 7 

shows the representative NR IQA models‘ performances obtained by being trained on the LIVE In the Wild 

Image Quality Challenge Database and tested on the same database. The listed models are all learnt using 

the SVR. Furthermore, the FRIQUEE that is especially designed for this database is also listed. The median 

of 100 train-test procedures are reported as the result. Not surprisingly, the FRIQUEE performs the best on 

this database among all the representative models. It is noted that the BRSIQUE, the GMLOG and the 

proposed one perform similarly. This further demonstrates the robustness of the proposed model. 

 

Table 7 

Results on LIVE In the Wild Image Quality Challenge Database by training and testing on the same database 

 

IQA model SROCC  LCC 

BRISQUE 0.6131 0.6456 

GMLOG 0.5945 0.6173 

FRIQUEE 0.7238 0.7146 

Proposed 0.5995 0.6259 

 

 

3.4. Evaluation of the implementation complexity 

 

   In this subsection, we compare the complexity of the proposed metric with that of other algorithms. To 

ensure a fair comparison, we use un-optimized MATLAB codes for all of these algorithms. In Table 8 we 

list the amount of time (in seconds) to compute each quality measure on a gray scale image with the 

resolution 768×512 on a 2.66 GHz Intel Core2 Quad CPU with 4 GB of RAM.  
 

Table 8  

Average execution time for different metrics (seconds) 

 

Algorithm DIIVINE BLIINDS-II  BRISQUE FRIQUEE GMLOG CORNIA Proposed 

Time 52.94 136.05  0.44 119.93 0.310 8.211 0.69 

 

   As shown in Table 8, the DIIVINE, the BLIINDS-II, the CORNIA and the FRIQUEE require much 

more time than the proposed method, the BRISQUE and the GMLOG. That is mainly because that the 

DIIVINE needs to extract too many features (88 features) in the wavelet domain and the BLIINDS-II is 

based on block-wise DCT coefficients computations and pooling. The FRIQUEE, however, extracted a 

huge number of features (560 features) for an image. From Table 8, we can see that the proposed model is 

almost 173 times faster than the FRIQUEE and just a little slower than the BRISQUE and the GMLOG. 

 

3.5. Discussion 

     

Our experimental results showed that the proposed method is effective and efficient. The success of the 

proposed metric can be related to its following aspects: (1) the degree of warping caused by different types 

of image distortions manifests itself multifariously, which is effectively illustrated by the variation of the 

marginal distribution of the relative order coefficients; (2) the generalized Laplace model fits better the 

empirical statistics of the log histogram of log directional derivatives. 

 

4. Conclusions and perspectives 



 

   We have presented a simple but effective general-purpose NR-IQA metric that evaluates image quality 

without any reference image or any assumption on the distortion type. The proposed method uses 32 

features, obtained from the log histograms of log horizontal, vertical, main-diagonal and secondary-

diagonal derivatives, along with kurtosis, variance, differential entropy and entropy. To capture the 

multiscale behavior of images, all those features are then computed at two scales. The metric uses the SVR 

to map the feature vector to a quality score. Our experimental results showed that the proposed metric has a 

better performance than the representative NR IQA metrics on the tested databases. It is also consistent and 

stable across four benchmark databases. In addition, its simplicity makes it a good candidate of real-time 

blind assessment of visual quality.  

   A big limitation of the proposed method is ―opinion-aware‖ (OA). It needs to be trained on a database 

of human rated distorted images with their associated subjective opinion scores. The performance of the 

metric depends on the comprehensiveness of the database. If the metric is applied on a new distortion non-

existent in the database, we have no idea about its possible performance. Considering that it is too 

expensive and time-consuming to establish a database that cover all existing distortions, not to speak of 

new types of distortion brought by new technologies in the future, we would like to extent our method to an 

―opinion-unware‖ (OU) or even an OU and ―distortion-unware‖ (DU) NR-IQA metric in the future. For 

example, the OU-DU IQA model called Natural Image Quality Evaluator (NIQE) [47] used similar NSS 

features to those used in the BRISQUE. Our experiment results showed that our metric outperformed the 

BRISQUE. This suggests that our relative order-based features may have the potential to be better 

―perceptual quality aware‖ features that could be used in a new OU-DU NR-IQA metric. In addition, a 

relevant research [52] also shows how to use the NSS features for biomedical images. 
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