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Abstract  32 

The use of land surface temperature (LST) for monitoring the consumption and water status 33 

of crops requires data at fine spatial and temporal resolutions. Unfortunately, the current 34 

spaceborne thermal sensors provide data at either high temporal (e.g. MODIS: Moderate 35 

Resolution Imaging Spectro-radiometer) or high spatial (e.g. Landsat) resolution separately. 36 

Disaggregating low spatial resolution (LR) LST data using ancillary data available at high 37 

spatio-temporal resolution could compensate for the lack of high spatial resolution (HR) LST 38 

observations. Existing LST downscaling approaches generally rely on the fractional green 39 

vegetation cover (fgv) derived from HR reflectances but they do not take into account the soil 40 

water availability to explain the spatial variability in LST at HR. In this context, a new 41 

method is developed to disaggregate kilometric MODIS LST at 100 m resolution by including 42 

the Sentinel-1 (S-1) backscatter, which is indirectly linked to surface soil moisture, in addition 43 

to the Landsat-7 and Landsat-8 (L-7 & L-8) reflectances. The approach is tested over two 44 

different sites -an 8 km by 8 km irrigated crop area named “R3” and a 12 km by 12 km 45 

rainfed area named “Sidi Rahal” in central Morocco (Marrakech)- on the seven dates when S-46 

1, and L-7 or L-8 acquisitions coincide with a one-day precision during the 2015-2016 47 

growing season. The downscaling methods are applied to the 1 km resolution MODIS-Terra 48 

LST data, and their performance is assessed by comparing the 100 m disaggregated LST to 49 

Landsat LST in three cases: no disaggregation, disaggregation using Landsat fgv only, 50 

disaggregation using both Landsat fgv and S-1 backscatter. When including fgv only in the 51 

disaggregation procedure, the mean root mean square error in LST decreases from 4.20 to 52 

3.60 °C and the mean correlation coefficient (R) increases from 0.45 to 0.69 compared to the 53 

non-disaggregated case within R3. The new methodology including the S-1 backscatter as 54 

input to the disaggregation is found to be systematically more accurate on the available dates 55 

with a disaggregation mean error decreasing to 3.35 °C and a mean R increasing to 0.75.  56 

Keywords: LST; disaggregation; soil moisture, Sentinel-1; MODIS/Terra; Landsat. 57 

1. Introduction  58 

Land surface temperature (LST) derived from thermal infrared remote sensing is an essential 59 

input variable for various environmental and hydro-meteorological applications. LST data are 60 

practically used for modeling the land surface processes and monitoring the functioning of 61 

agro-ecosystems (Anderson et al., 2008; Brunsell and Gillies, 2003; Karnieli et al., 2010; 62 
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Kustas and Anderson, 2009; Zhang et al., 2008). Therefore, LST data have been used in a 63 

variety of applications such as, among others, climate studies (Hansen et al., 2010; Kustas and 64 

Anderson, 2009), the monitoring of crop water consumption (Amazirh et al., 2017; 65 

Bastiaanssen et al., 1998; Boulet et al., 2007; Er-Raki et al., 2018; Olivera-Guerra et al., 2018; 66 

Price, 1982), vegetation monitoring (Kogan, 2001; Williamson, 1988), soil moisture 67 

estimation (Amazirh et al., 2018; Merlin et al., 2010; Sandholt et al., 2002), and hydrological 68 

studies (Crow and Wood, 2003). However, there is a limitation in the existing satellite thermal 69 

sensors, since those with high revisit cycles (e.g, MODerate resolution Imaging Spectro-70 

radiometer ‘MODIS’) do not offer high spatial resolution (HR), and those offering HR (e.g, 71 

Landsat-8) generally have low temporal resolution (Agam et al., 2007b). In contrast, the 72 

visible and near infrared (VNIR) reflectance data are available at a resolution finer than that 73 

of most thermal sensors (Ha et al., 2013). To bridge the gap, the finer-resolution VNIR data 74 

have hence been extensively used as ancillary data to disaggregate low-resolution (LR) LST 75 

at HR. 76 

Recently, various efforts have been devoted to disaggregate LST to a finer –typically 100 m- 77 

resolution. Techniques are generally based on a relationship between LST and ancillary 78 

(vegetation cover indexes, emissivity and/or albedo) data, the obtained relationship being 79 

assumed to be scale invariant (and thus applied at both HR and LR). The statistical 80 

downscaling methods in particular, developed by Kustas et al. (2003) over a homogenous 81 

vegetated area, has been widely used. This method is based on a linear regression relationship 82 

between LST and NDVI (Normalized Difference Vegetation Index) calibrated at LR. The 83 

relation between LST and NDVI is also used in Bindhu et al. (2013), with the aim of 84 

developing a nonlinear method to estimate LST at HR. Agam et al. (2007a) used the fraction 85 

of green vegetation cover instead of NDVI. This method showed its capability and good 86 

performance over areas with relatively uniform soil and vegetation hydric status, where the 87 

temperature of bare soil is set to the average between the dry and wet soil over the studied 88 

area. Other studies reported that NDVI (or fgv) shows some limitations and cannot explain all 89 

the variations in LST over agricultural areas (Agam et al., 2007b, 2007a; Inamdar and French, 90 

2009; Merlin et al., 2010; Olivera-Guerra et al., 2017). Especially, Agam et al. (2007b) and 91 

Merlin et al. (2010) observed a shortcoming when using the LST-NDVI or LST-fgv 92 

relationship over areas with high moisture content, or with various photosynthetic activity 93 

vegetation types. Merlin et al. (2010) adapted this method to heterogeneous vegetation status, 94 

by adding the fraction of senescent vegetation cover to include the photosynthesis activity of 95 
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vegetation, and to distinguish between areas of bare soil and dry vegetation cover. Dominguez 96 

et al. (2011) integrated the surface albedo to estimate HR LST by fitting the relationship 97 

between LST, NDVI and surface albedo. Following the same idea of adding other information 98 

that affect the spatial distribution of LST, Merlin et al. (2012) used the projection technique 99 

theoretically developed in Merlin et al. (2005) that aims to strengthen the correlation between 100 

two variables (LST and NDVI) by representing the dependence of these variables on other 101 

additional variables, based on a radiative transfer equation. Moreover, other studies were 102 

further presented involving additional factors that reflect the vegetation type (Merlin et al., 103 

2010; Sandholt et al., 2009; Zhan et al., 2011). Sandholt et al. (2002) summarized the 104 

variables that affect LST variability, and they mentioned that, surface soil moisture (SM) 105 

mainly controls evapotranspiration and thermal properties of the surface, which affect LST. 106 

Therefore, optimal LST disaggregation approaches should include the variability of SM in 107 

addition to NDVI (or fgv), in order to represent the variability of the bare soil temperature 108 

bounded by its wet and dry endmembers. Advanced regression tools using spectral bands, 109 

have been successfully used in different studies produce better disaggregation results than 110 

simple polynomial functions (Ghosh and Joshi, 2014) 111 

Recently, some studies have attempted to represent the SM effect. Liu and Zhu (2012) used a 112 

normalized multi-band drought index (NMDI) for monitoring soil and vegetation moisture, 113 

based on the absorption properties of the vegetation water in the NIR and the sensitive 114 

characteristics of water absorption differences between soil and vegetation in the short-wave 115 

infrared (SWIR). However, NMDI has inconsistent relationships with vegetation and soil 116 

moisture changes (i.e. positive correlation with vegetation water content and negative 117 

correlation with SM changes). Therefore, it poorly performed over mixed pixels of vegetation 118 

and soil. Chen et al. (2010) took into account SM variations using a soil wetness index (SWI) 119 

estimated based on the interpretation of the triangular LST–NDVI space. However, the errors 120 

were found to be larger with low fractional vegetation cover. In the same manner, Yang et al. 121 

(2010) discussed the impact of SM variations using the LST-NDVI space and assumed 122 

uniform SM conditions in a coarse pixel. Therefore this technique is only appropriate in 123 

regions where SM varies at large scale and in pixels with high fgv. In general, the previously 124 

proposed proxies or indexes that aim to incorporate the SM effect on LST poorly performed 125 

over the areas with low vegetation cover. 126 

In this context, a new algorithm is proposed to improve the disaggregation of LR LST by 127 

explicitly taking into the variability of SM at HR. Incorporating SM information to 128 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spectral-band
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disaggregate LST has the advantage of distinguishing between the dry and the wet soil 129 

especially in areas with low vegetation cover, where the soil moisture status is the main factor 130 

controlling the LST variability. The novelty of this work is to integrate a spaceborne radar-131 

derived soil moisture proxy in the disaggregation of 1 km resolution LST.  This research 132 

relies on the Sentinel-1 (S-1) mission, which provides C-band radar data at both high-spatial 133 

and high-temporal resolutions. The approaches are tested over an 8 km by 8 km and 12 km by 134 

12 km semi-arid areas near Marrakech-Morocco. The chosen sites allows for testing the 135 

algorithm over a heterogonous landscape in terms of vegetation type and SM status where 136 

LST highly varies in both space and time. The methodologies are applied to aggregated 137 

Landsat LST and to MODIS LST data separately, and the HR ancillary data are derived from 138 

radar S-1 and VNIR Landsat data. Finally the disaggregated LST is evaluated at 100 m 139 

resolution against Landsat LST. 140 

2. Site description and data set  141 

2.1. Study area 142 

The study areas are located in the semi-arid Haouz plain, situated near Marrakech city, in 143 

central Morocco (Fig. 1). This region is characterized by irregular and low rainfall of about 144 

250 mm/year with a high evaporative demand that exceeds 1600 mm/year.  145 

In recent years, several field campaigns and experiments have been carried out and numerous 146 

studies have been conducted over this area with different objectives related to agricultural 147 

water management (Amazirh et al., 2018, 2017; Chehbouni et al., 2008; Er-Raki et al., 2010; 148 

Jarlan L et al., 2015; Khabba et al., 2013; Duchemin et al., 2008). 149 

The first site is an irrigated agricultural zone (called R3) known by its heterogeneity and 150 

occupied by different culture types (alfalfa, wheat, olive, orange and horticulture), where 151 

wheat crops is the dominating culture (50 %). Flood irrigation is the main irrigation mode 152 

used in this area. 153 

The second area is a rainfed agricultural area (called Sidi Rahal) mainly dominated by trees 154 

(about 80%) while the remaining surface is comprised of bare soil, small forest and 155 

impervious surfaces (e.g., buildings and roads). The dark area mainly represents parcels 156 

maintained in bare soil conditions (due to a lack of rainfall in late December) and building. 157 

Based on soil analysis (Er-Raki et al., 2007), soil texture is clayey and sandy in the majority 158 

of fields within the R3 and Sidi Rahal areas, respectively. 159 
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 160 

Fig. 1. Location of Marrakech in the Tensift Al Haouz region, Morocco (left) and the study areas 161 

(right) including the weather station installed (green circles) during the 2015-2016 agricultural 162 

season. The images are derived from Landsat data, the 07 February and the 24 July for Sidi Rahal 163 

and R3 sites, respectively. 164 

2.2. Ground data  165 

Two automatic meteorological stations have been installed, one over an alfalfa cover in the R3 166 

perimeter and another over a rainfed wheat crop at the Sidi Rahal site providing local data including 167 

air temperature (Tair), relative humidity (rha) wind speed (ua), wind direction and global solar 168 

radiation (rg) measured at 2 m above ground level. For the Sidi Rahal site, the weather station 169 

is located in a rainfed wheat crop (bare soil during the study) in the lower right plot (Fig.1). 170 

2.3. Satellite data 171 
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In this study, seven dates of quasi coincident VNIR/thermal and radar images were used 172 

(Table 1). The L-7 and L-8 images were downloaded from the USGS website, which freely 173 

provides surface reflectances and thermal radiances data in different spectral bands. The level-174 

1 products are calibrated radiometrically and orthorectified using digital elevation model. The 175 

revisit time of each sensor is 16 days. Combining both satellites potentially (in cloud free 176 

conditions) provides optical data every 8 days. S-1 mission is composed of a constellation of 177 

two twin satellites. Both S-1A and S-1B operate in C-band synthetic aperture radar (SAR), 178 

providing data in four operational modes (Strip Map, Interferometric Wide Swath, Extra wide 179 

swath and Wave) and different polarizations for all modes. The S-1 constellation offers data 180 

with high revisit frequency (every 3-6 days).  181 

2.3.1 High resolution reflectances 182 

In our feasibility study, Landsat VNIR data are used because the Landsat LST is, in any case, 183 

required for evaluating the disaggregated LST. In real-life, however, the disaggregation 184 

approaches should be implemented using high spatio-temporal resolution VNIR data collected 185 

from Sentinel-2. The VNIR Landsat reflectances are aggregated at 100 m resolution, 186 

consistent with Landsat LST spatial resolution. Surface reflectances are used to calculate the 187 

NDVI, defined as the ratio of the difference between the spectral reflectance measurements 188 

acquired in NIR and red to their sum. The fractional green vegetation cover is estimated from 189 

an empirical relationship with NDVI (Gutman and Ignatov, 1998):  190 

                                               fgv =
NDVI−NDVIbs

NDVIgv−NDVIbs
         (1) 191 

Where NDVIgv and NDVIbs are the NDVI over full-cover green vegetation and bare soil, 192 

respectively. The NDVI end-members are derived from the time series of Landsat data as the 193 

minimum and maximum value of the 100 m resolution NDVI within the whole selected areas 194 

for the bare soil and full-cover green vegetation case, respectively.  195 

2.3.2 Thermal infrared (TIR) data 196 

2.3.2.1 MODIS data 197 

The daily 1 km resolution LST (version 6) MOD11A1 product is available through the U.S. 198 

Land Processes Distributed Active Archive Center (LP DAAC, https://lpdaac.usgs.gov/). The 199 

generalized split-window algorithm (Wan, 1996; Wan et al., 2002) has been used to retrieve 200 

MODIS LST products and a correction step was performed using the surface band emissivity 201 

https://lpdaac.usgs.gov/
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provided also by MODIS spectral data. The LST data were re-projected from sinusoidal to 202 

geographic latitude/longitude using the Universal Transverse Mercator (UTM), Zone 29N, 203 

World Geodetic System (WGS) 84 coordinate system.  204 

2.3.2.2 Landsat data 205 

L-7 and L-8 sensors provide TIR data with a spatial resolution of 60 m and 100 m, 206 

respectively. The TIR radiance is used to calculate LST. To this end, all the followed 207 

correction steps and the processing chain are described in Tardy et al. (2016). 208 

The L-7 LST is averaged (aggregated) at 100 m resolution, which is the lowest spatial 209 

resolution between S-1 and Landsat data. Note that the reliability of the Landsat-derived LST 210 

was checked in Amazirh et al. (2017) by comparing remotely sensed LST with local in situ 211 

measurements (not shown here) at two TIR stations located within the study area. A relatively 212 

good match between satellite and ground LST data was obtained for both sites with an error 213 

smaller than 1.0 and 2.4 °C. 214 

The Landsat LSTs are linearly aggregated at 1 km resolution to match the spatial resolution of 215 

MODIS observations. The linear averaging technique (without accounting for the nonlinear 216 

relationship between physical temperature and radiance) is chosen based on the work of (Liu 217 

et al., 2006), which found that the maximum difference between the temperature aggregated 218 

using different upscaling approaches is 0.2 °C. 219 

2.3.3 Sentinel-1 radar data 220 

Between January 01 and December 31 2016, among the 49 images collected over the study 221 

area, seven were approximately coincident (with a 1-day precision) with clear sky Landsat 222 

images (Table 1). The S-1 level 1 SAR scenes were collected in both ascending and 223 

descending pass directions over the study site. The S-1 satellite provides data in both VV and 224 

VH polarization modes at an incidence angle of 40° over the study area. The S-1 Ground 225 

Range Detected (GRD) images were acquired in interferometric wide swath mode (IW), with 226 

an original spatial resolution of 5 m by 20 m. Several processing steps are applied before 227 

using the original S-1 data, in order to convert the radar signal to a backscatter coefficient 228 

using the Sentinel Application Platform (SNAP). A detailed description of the retrieved 229 

processing steps is reported in Amazirh et al. (2018). Among the two available polarizations, 230 

the VV polarization is selected in this study for downscaling LST. The rationale behind using 231 

VV instead of VH, is that in Amazirh et al. (2018), the VV polarization was found to be more 232 

sensitive to SM variability over bare soil than VH over the same study area. S-1 VV 233 
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backscatter (σvv
0 ) is aggregated at 100 m resolution, consistent with Landsat LST spatial 234 

resolution. 235 

Table 1: The seven dates between January 01 and December 31, 2016 when S-1data are collected one 236 

day after Landsat data (in clear sky conditions) are selected. 237 

S-1 𝛔𝐯𝐯
𝟎  Landsat LST and NDVI 

07 January 2016 06 January 2016 * 

08 February 2016 07 February 2016 * 

19 March 18 March + 

07 June 06 June + 

01 July 30 June * 

25 July 24 July + 

18 August  17 August * 

     * Landsat-8. + Landsat-7 238 

Table 2 summarizes the characteristics of the satellite data products used as input to, and for 239 

validation of disaggregation approaches.  240 

Table 2: Technical characteristics of satellite products. 241 

Sensors/Mission Acquisition Time Bands 
Spatial 

resolution (m) 

Temporal resolution 

(Day) 

S-1 A/B 

06:30 AM (descending) 

and 06:30 PM 

(ascending) 

SAR/ C-band 20 3-6 

L-7/-8 ~11:30 AM 

- VNIR (L-7: B3 & B4 ; L-8:B4 

& B5) 

- TIR (B6 for L-7 and B10 & B11 

for L-8) 

60 and 100 for 

TIR 

30 for VNIR 

8 

MODIS/Terra ~11:30 AM - TIR ~1000 1 

Fig.2 shows an example of the spatial variability of LST, fgv and σvv
0  over the study site. Two 242 

growing stages (initial, and mid-season) are chosen for illustration purposes. For the initial 243 

stage most of the fields are under bare soil conditions with low fraction of green vegetation 244 

and the backscatter coefficient is mainly influenced by the SM and roughness, while LST 245 

mainly depends on atmospheric conditions and the soil water availability. During the mid-246 

season, fgv reaches its maximum value and the non-cultivated parcels generate higher value of 247 

LST (40 °C). The spatial variability of the backscatter is attributed to a combined effect of 248 

SM and vegetation (water content). Over cultivated areas, vegetation decreases the radar 249 

signal while SM increases it. 250 



Amazirh et al., 2019                  ISPRS Journal of Photogrammetry and Remote Sensing, Elsevier, 2019, 150, pp.11-26 

10 
 

251 

 252 

Fig.2. LST, fgv  and 𝜎𝑣𝑣
0  100 m resolution maps over R3 area at dates corresponding to the initial and 253 

mid-season growing stages: January 06 (top) and March 18  (bottom). 254 

3. Disaggregation Methods 255 

Two disaggregation techniques are applied in this work using the same input data derived 256 

from microwave (radar) and optical (NDVI) data. The methodologies are tested over two 257 

different study areas, including a range of conditions (land use, soil hydric status,…). The two 258 

versions are named multi-linear regression (MLR) and radiative transfer model (RTM) 259 

techniques. Both methodologies are based on a scale invariant relationship between LST and 260 

other ancillary variables, which are statistically correlated to LST pixel by pixel. In this work 261 

the disaggregation methodologies were applied to aggregated Landsat derived-LST (as a first 262 

assessment by minimizing uncertainties in LR LST) and then applied to MODIS/Terra LST 263 

(as a real case application). The 100 m resolution was chosen as the target downscaling 264 

because it is the lowest spatial resolution at which all the input HR data are available. The 265 

diagram in Fig.3 summarizes briefly the different disaggregation algorithms used in this work. 266 
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 267 

Fig.3. Diagram showing the different disaggregation algorithms and their input/output data. 268 

D0 algorithm requires no ancillary data. By cons, D1 (MLR), D1’ (MLR) and D2’ (RTM) 269 

need additional data to disaggregate LST. D1 algorithm is based on fgv only, while D1’ and 270 

D2’ are based on both fgv and σvv
0 . A description of the MLR and RTM techniques is 271 

presented in the following subsections.  272 

3.1. Multi-linear regressions (MLR) technique  273 

The MLR technique is based on a linear regression at LR between LST and auxiliary data. 274 

This method was firstly developed by Kustas et al. (2003) using NDVI as a biophysical 275 

indicator of LST. In practice, a least-squares fit is performed between LST (T) and the fgv 276 

aggregated at 1 km. Formally, The D1 algorithm is expressed as:  277 

D1                 T1 = LSTkm + a × (fgv − fgv,km)                                           (2) 278 

with a being the regression coefficient of the least squares regression between LSTkm 279 

and fgv,km, and LSTkm and fgv,km the LR LST and the aggregated fgv, respectively.  280 

The D1
′  disaggregation algorithm is proposed to improve the D1 algorithm by inserting 281 

additional information about SM (information derived from the S-1 data). A MLR is 282 

performed between LST, fgv and σvv
0  at LR: 283 

D1
′               T1

′ = LSTkm + a′ × (fgv − fgv,km) +  b′ × (σvv
0 − σvv,km

0 )               (3) 284 

With a′ and b′ being the slopes of the MLR equation at kilometric resolution, and σvv,km
0  the 285 

aggregated σvv
0 . 286 
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3.2. RTM technique  287 

The RTM approach (Merlin et al. 2012) is based on the equation which is formally written as: 288 

D2
′                             T2

′ = LSTkm + ∆T2
′                               (4) 289 

With the corrective term ∆T2
′ estimated using a RTM forced by HR input data derived from  290 

fgv and  σvv
0 :  291 

∆T2
′ = Tsim(fgv,  Pσvv

0 ) − 〈Tsim(fgv,  Pσvv
0 )〉KM                         (5) 292 

With Tsim being the LST simulated by the RTM, 〈 〉KM the resampling function from 100 m to 293 

1 km resolution and  Pσvv
0  a SM proxy derived from S-1 data: 294 

                                                     Pσvv
0 =  

σvv
0 −σvv,min

0  

σvv,max
0 −σvv,min

0  
                                                        (6) 295 

where σvv,max
0   and σvv,min

0  are the maximum and minimum σvv
0  during the season and over 296 

the study area. σvv,min
0  and σvv,max

0  hence represent the driest and the wettest pixels observed 297 

at 100 m resolution over the study site, respectively.  298 

The  Tsim(fgv,  Pσvv
0 ) is calculated as: 299 

                         Tsim(fgv,  Pσvv
0 ) = fgv × Tfc,gv + (1 − fgv) × Tbs

sm                             (7) 300 

With Tfc,gv is the temperature of pixel with fully-covered vegetation and Tbs
sm the bare soil 301 

temperature estimated using a linearized RTM: 302 

           Tbs
sm = Tbs,w ×  Pσvv

0 +  Tbs,d × (1 −  Pσvv
0 )                   (8) 303 

Where Tbs,w and Tbs,d are the wet and dry bare soil temperatures, respectively. Note that the 304 

temperature end-members (Tfc,gv , Tbs,w and Tbs,d) are estimated based on a synergy between 305 

the LST-fgv space, the LST-σvv
0  space and a soil energy balance (EB) model. The sub-section 306 

below details the steps followed for estimating σvv
0  and temperature endmembers. 307 

3.2.1. End-members estimation 308 

Before applying the disaggregation methodologies, the endmembers required in the RTM 309 

method, namely the three temperatures (Tfc,gv,  Tbs,d and  Tbs,w) and the three backscatter 310 
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coefficients (green vegetation σvv,gv
0 , bare dry soil σvv,bs,d

0  and bare wet soil σvv,bs,w
0 ), are 311 

determined from available information. Temperature endmembers vary from date to date 312 

depending on the growing stage of vegetation and the soil hydric status over differences 313 

landscapes within the selected areas.   314 

3.2.1.1. Backscatter endmembers  315 

Fig. 4 presents the spatial variability of σvv
0  pixel by pixel compared to fgv. Based on the 316 

observed σvv
0 − fgv space, the vegetation backscatter coefficient σvv,gv

0  is estimated as the σvv
0  317 

corresponding to fgv=1, vertex C (1, σvv,gv
0 ) in the σvv

0 -fgv space. The backscatter of bare soil 318 

in dry (σvv,bs,d
0 ) and wet (σvv,bs,w

0 ) conditions is considered as the minimum and maximum 319 

backscatters observed at low fgv (<0.2), vertex A (0, σvv,bs,d
0 ) and B (0, σvv,bs,w

0 ), respectively.   320 

 321 
Fig.4. Identification of the 𝜎𝑣𝑣

0   end-members using the S-1 backscatter plotted against fractional of 322 

green vegetation cover 𝑓𝑔𝑣 space for data on February 07 (left) and March 18 (right) over R3 site.  323 

3.2.1.2. LST endmembers 324 

In this study, the LST at HR is assumed to be unknown and therefore, extreme temperatures 325 

should be derived from LR LST and possibly other ancillary (meteorological, fgv) data. Two 326 

different techniques are combined to estimate the LST endmembers: the contextual LST-fgv 327 

space and an EB model forced by available meteorological data (Amazirh et al., 2018). In 328 

order to estimate soil extreme temperatures independently of remote sensing data a soil EB 329 

model is run to estimate Tbs,w and Tbs,d. In practice, the wet and dry conditions are simulated 330 

by setting the evaporation resistance rss values equal to zero and infinity, respectively. The EB 331 

model is outlined in the appendix. 332 
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On some days, the maximum temperature estimated by EB modelling appears relatively low 333 

compared to the maximum (both HR and LR) observed LST especially on the hottest days 334 

(summer) as founded in Amazirh et al. (2018). This is explained by the fact that the 335 

meteorological data used as forcing to EB model are collected at a wet alfalfa site, thus 336 

underestimating the 2-m air temperature over very dry and hot surface conditions. To correct 337 

for such a slight underestimation, the Tbs,d is set to the maximum between the maximum 338 

value (Tmax) observed at LR and EB estimation: 339 

Tbs,d = max [𝑇𝑚𝑎𝑥 , 𝐸𝐵(𝑟𝑠𝑠 = ∞)]                  (9) 340 

The temperature of full cover vegetation (Tfc,gv) is set to the air temperature (Bastiaanssen et 341 

al., 1998; Gillies and Carlson, 1995; Merlin, 2013; Roerink et al., 2000; Stefan et al., 2015).  342 

A visual representation of the LST-fgv and LST-σvv
0   spaces at a LR and HR are plotted in 343 

Fig.5. The LST-fgv space identifies three extremes values for fgv (0, 1), while the LST-σvv
0   344 

space is surrounded by the three extremes backscatter values (σvv,gv
0 , σvv,bs,d

0  and σvv,bs,w
0 ) 345 

derived previously from the σvv
0 − fgv space. Note that the triangle formed in the sigma-fgv 346 

space is not as well defined as in the LST-fgv space. In fact, the spatial correlation between 347 

sigma and fgv is affected by variabilities of both SM and soil roughness. Therefore, σvv,bs,d
0  348 

more precisely corresponds to a smooth (low roughness) dry soil and larger sigma values are 349 

expected over dry bare soil pixels with larger surface roughness (the data points on the other 350 

side of the AB segment). 351 

The point A in Fig.5 in the low resolution (aggregated LST) case is estimated using the soil 352 

energy balance model, which estimates LST in dry soil condition using meteorological data 353 

only i.e. independently from Landsat observations. For that reason, the simulated dry soil 354 

temperature is hence not necessarily equal to the maximum value observed within the study 355 

area from Landsat LST. 356 
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 357 

Fig.5. Scatterplot of LST-fgv and LST-𝜎𝑣𝑣
0  spaces at 100 m (left) and 1 km (right) resolution. In the LR 358 

case, extreme temperatures are estimated using a soil EB model on February 07 over R3 site. 359 

4. Results  360 

The disaggregation approaches MLR (D1 and D1’) and RTM (D2’) are applied to the seven 361 

dates when all the satellite data are available. The disaggregated LST is evaluated against 362 

Landsat LST and in each case, disaggregation results are compared with those obtained in the 363 

no-disaggregation case (D0). A stepwise approach is presented by using  the (1 km resolution) 364 

aggregated Landsat LST as the LR LST input prior to the application to MODIS LST. 365 

 366 

4.1. Application to aggregated Landsat-7/-8 data  367 

As a first assessment, the disaggregation approaches are applied to aggregated Landsat LST. 368 

Moreover, in the case of RTM (D2’), the LST end-members are estimated from the spaces 369 

built from HR data in order to reduce possible uncertainties. The disaggregation results are 370 

evaluated visually and quantitatively using the 100 m Landsat LST image as reference. Fig. 6 371 

shows the LST images obtained from D0, D1, D1’ and D2’ for the six dates over Sidi Rahal 372 

rainfed site. The high spatial heterogeneity in soil properties and the land use over the selected 373 
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areas induces strong variations in LST at the HR. All three D1, D1’ and D2’ algorithms 374 

provide more variability of LST than D0 algorithm which does not take into account the 375 

spatial variability at HR. It is also observed that the boxy artifact, meaning the block effect 376 

that still remains in the disaggregated LST at the LR (Agam et al., 2007b; Merlin et al., 2010), 377 

is reduced for D2’.  378 

 379 

Fig.6. Maps of the LR (Landsat-aggregated) LST disaggregated by the four algorithms compared to 380 

the Landsat reference HR LST on six selected clear dates separately over Sidi Rahal area.  381 
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 382 

Fig. 7. Comparison between the LST disaggregated using each algorithm against the HR Landsat LST 383 

over Sidi Rahal area. 384 

Table 3: Summary statistics of the disaggregation algorithms. Temperature endmembers are estimated 385 

from HR Landsat data over the Sidi Rahal site.  386 

Date 
R (-) RMSE (°C) Slope (-) 

D0 D1 D1’ D2’ D0 D1 D1’ D2’ D0 D1 D1’ D2’ 

February 07 0.87 0.94 0.95 0.97 1.68 1.31 1.25 0.82 0.73 1.07 1.06 0.94 

March 18 0.83 0.95 0.95 0.96 2.94 1.79 1.69 1.39 0.68 1.04 1.03 0.96 

June 30 0.81 0.88 0.90 0.95 2.29 2.67 2.27 1.30 0.63 1.18 1.14 0.95 

July 24 0.75 0.91 0.91 0.93 3.34 2.80 2.72 1.88 0.56 1.14 1.13 0.90 

August 17 0.84 0.92 0.95 0.96 1.86 1.63 1.26 0.99 0.68 1.08 1.04 0.91 
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Results (Fig. 7) listed in Table 3, shows that the D2’ performs systematically better than the 387 

classical approach in all the cases, and provides more accurate results over the rainfed 388 

agriculture site. 1.27 °C is the minimum mean error it has been assessed using the D2’ 389 

algorithm compared to 2.04 °C by using the classical D1 approach.  390 

A significant underestimation is observed for the low LST values during the hottest days 391 

(June 30, July 24 and August 17) using D1 and D1’. In contrast, the RTM D2’ LST fits 392 

correctly the Landsat observation. The most significant difference in performance is found for 393 

the February 07 image, when the bare soil dominates and the soil moisture variation controls 394 

the LST distribution. This means that radar data provide useful and independent information 395 

about the LST variability that the fgv does not provide. The results indicate that the additional 396 

SM proxy used in the RTM algorithm allows more of the variability in LST to be captured 397 

over this scene. 398 

The used algorithms in this paper have been tested over the 8 km by 8 km R3 site, in order to 399 

test the stability of the new approaches. Here we test the capacity of the new algorithm to 400 

capture LST variability over the complex fields. Fig 8 show the spatial distribution and the 401 

temporal variation across the season of the disaggregated and Landsat LST over the R3 site 402 

for seven clear sky selected dates. We can observe a high variability of LST, which depends 403 

on the spatial heterogeneity of fgv and/or SM. 404 

All 0.82 0.92 0.93 0.95 2.42 2.04 1.83 1.27 0.65 1.10 1.08 0.93 
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 405 

Fig.8. Maps of the LR (Landsat-aggregated) LST disaggregated by the four algorithms compared to 406 

the Landsat reference HR LST on the seven selected dates separately over R3 area. The data gaps on 407 

February 07 and June 30 for D1’ and D2’ are attributed to S-1 raw data (no data value).  408 

To facilitate the comparison between the algorithms, they are plotted against the Landsat-409 

derived temperature over the R3 site in Fig.9. The statistical results for each algorithm are 410 

summarized in Table 4.  411 
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 412 

Fig. 9. Comparison between the LST disaggregated using each algorithm against the HR Landsat LST 413 

for the seven dates over R3 area. 414 

Table 4: Summary statistics of the disaggregation algorithms. For D2’, LST endmembers are derived 415 

from the contextual spaces defined by HR ancillary data. 416 

Date R (-) RMSE (°C) Slope (-) 
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Data points in the scatterplot of the new (D2’) algorithm fall closer to the 1:1 line. Based on 417 

Table 4, D1, D1’ and D2’ generate better results than D0. The improved disaggregation 418 

algorithms show a decrease in the root mean square error (RMSE) with 1.26, 1.15 and 0.91 °C 419 

using the D1, D1’ and D2’ algorithms, respectively compared to D0, which shows an error up 420 

to 2.2°C on 07 February as an example. 421 

The results change from date to date, but in general in our study case we found that, the MLR 422 

D1’ and RTM D2’ algorithms provide better results in term of correlation coefficient (R) and 423 

RMSE than the original approach D1. A better slope of the linear regression between 424 

disaggregated and Landsat LST is provided by D1 and D1’ whereas D2’ degrades slightly the 425 

slope on the same dates. The good results provided by the D1’ algorithm are attributed to an 426 

efficient calibration at LR of the coefficients of the regression fit between LST, fgv and the 427 

radar backscatter. Moreover, the RTM model is sensitive to uncertainties in extreme LST, 428 

which in this case, were derived using HR Landsat data. The Landsat-derived temperature 429 

endmembers may be significantly biased in the case where/when surface conditions are 430 

relatively homogeneous (in particular over rainfed sites like Sidi Rahal). 431 

The mean R between disaggregated and Landsat LST slightly increases from 0.90 to 0.91, and 432 

the mean RMSE decreases from 1.40 °C to 1.26 °C using the D1 and D2’ algorithms, 433 

respectively.  In contrast, the mean slope is decreased from 0.95 to 0.83 using D1 and D2’ 434 

algorithms, respectively.  435 

Since HR Landsat LST is assumed to be unavailable in our disaggregation exercise, the LST 436 

endmembers are now derived from LR LST data only (instead of using HR LST data as 437 

previously). Table 5 lists the RMSE, R, and slope of the linear regression between 438 

disaggregated and Landsat LST for D2’ algorithm, using the temperature endmembers 439 

derived from LR LST data combined with EB model estimates. 440 

Table 5: Statistics of the disaggregation algorithms using temperature endmembers estimated by EB 441 
modelling (estimated by LST-fgv spaces defined using HR data in parenthesis). 442 

D0 D1 D1’ D2’ D0 D1 D1’ D2’ D0 D1 D1’ D2’ 

January 06 0.76 0.93 0.93 0.94 0.71 0.45 0.47 0.36 0.55 1.06 1.06 0.95 

February 07 0.78 0.95 0.96 0.97 2.26 1.26 1.15 0.91 0.59 1.06 1.06 0.89 

March 18 0.66 0.97 0.97 0.97 4.42 1.48 1.44 1.46 0.45 0.96 0.97 0.96 

June 06 0.63 0.80 0.82 0.83 3.31 2.78 2.61 2.37 0.40 0.82 0.82 0.68 

June 30 0.61 0.86 0.86 0.88 2.25 1.47 1.54 1.39 0.33 0.84 0.84 0.76 

July 24 0.61 0.91 0.92 0.90 2.54 1.37 1.27 1.40 0.37 0.96 0.95 0.80 

August 17 0.67 0.92 0.94 0.92 1.81 1.01 0.87 0.97 0.41 0.96 0.96 0.78 

All 0.67 0.90 0.91 0.91 2.47 1.40 1.33 1.26 0.44 0.95 0.95 0.83 
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A valuable discussion is presented in this paragraph that helps to see the impact of the LST 443 

endmembers estimation on the disaggregation results. Looking at the Table 5, the statistical 444 

results clearly show that the disaggregated LST is more accurate when using the LST 445 

endmembers derived from Landsat HR data than those derived from EB modelling (combined 446 

with LR data). In contrast, using EB-derived extreme LST provides a slightly better mean 447 

slope (0.86) than when using HR data (0.83). In order to assess the main causes behind that, 448 

the Tbs,d estimated by the EB model is compared to the maximum value observed at HR. On 449 

January 06, an overestimation of about 8 °C of Tbs,d  is observed when using the EB model 450 

(data not shown here), which leads to slightly poorer results compared to when using 451 

temperature endmembers derived from HR spaces. It is suggested that the temperature 452 

endmembers derived from EB modeling are more uncertain than those derived from HR 453 

spaces, especially over a highly heterogeneous area like R3. 454 

4.2. Application to MODIS data  455 

In this section, the disaggregation methodologies D0, D1, D1’ and D2’ are applied to 456 

MODIS/Terra (MOD11-A1) LST product over only the R3 site. It is reminded that only the 457 

MODIS images acquired on the same dates as Landsat data are used for the evaluation. For 458 

the rainfed Sidi Rahal site, the MODIS LST data are affected by clouds where the 459 

contaminated pixel are masked with the MODIS cloud mask data product. Therefore no 460 

MODIS image is clear, which limits the application to MODIS data over this site. Fig.10 461 

compares the disaggregation images with the 100 m resolution Landsat LST for six selected 462 

dates. Note that the MODIS image on August 17 is affected by clouds and was thus removed. 463 

In the implementation of D2’, the temperature endmembers are estimated using EB 464 

modelling. 465 

Date R (-) RMSE (°C) Slope 

January 06 0.87 (0.94) 0.85 (0.36) 1.27 (0.95) 

February 07 0.97 (0.97) 0.89 (0.91) 0.92 (0.89) 

March 18 0.96 (0.97) 1.60 (1.46) 0.88 (0.96) 

June 06 0.83 (0.83) 2.40 (2.37) 0.66 (0.68) 

June 30 0.87 (0.88) 1.43 (1.39) 0.73 (0.76) 

July 24 0.86 (0.90) 1.65 (1.40) 0.79 (0.80) 

August 17 0.87 (0.92) 1.21 (0.97) 0.80 (0.78) 

All 0.89 (0.91) 1.43 (1.26) 0.86 (0.83) 
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 466 

Fig.10. Maps of the MODIS LST disaggregated at HR by the four algorithms compared to the Landsat 467 

reference LST map on the six clear sky dates over R3 area.  468 
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 469 

Fig.11. Comparison between the disaggregated LST using each algorithm against the HR Landsat 470 

LST for the seven dates over R3 area. 471 

Table 6: Summary statistics of the disaggregation algorithms. Temperature endmembers are estimated 472 

from EB modelling.  473 

Date 
R (-) RMSE (°C) Slope 

D0 D1 D1’ D2’ D0 D1 D1’ D2’ D0 D1 D1’ D2’ 

January 06 0.56 0.80 0.80 0.75 1.03 0.83 0.83 1.09 0.28 0.50 0.50 1.01 

February 07 0.65 0.87 0.76 0.86 3.34 2.73 2.94 2.57 0.24 0.44 0.43 0.59 

March 18 0.51 0.83 0.80 0.86 5.16 3.57 3.71 2.20 0.24 0.53 0.53 0.65 

June 06 0.47 0.70 0.71 0.71 3.84 3.16 3.14 3.09 0.21 0.43 0.42 0.44 
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Looking at the spatial patterns of disaggregated LST maps, the values in all maps range from 474 

14 °C to 60 °C. The boxy effect anomalies are less apparent for D2’ algorithm compared to 475 

the original algorithms. Generally, the disaggregation algorithms of MODIS LST show a 476 

lower maximum and higher minimum than Landsat LST.  477 

The downscaling results and statistics are shown in Fig. 11 and reported in Table 6. The D2’ 478 

algorithm provides better results than the MLR approaches (D1 and D1’). Results in Table 6 479 

shows that the minimum mean RMSE is 3.35 °C and the highest mean R is 0.75, which are 480 

both obtained with D2’ algorithm. A systematic negative bias is apparent in the disaggregated 481 

temperature using MODIS LST, quite consistent with the mean bias between MODIS and 482 

Landsat LST estimated as 4 °C in this work. As expected the disaggregation method does not 483 

yield similar results when applied to MODIS/Terra LST instead of aggregated Landsat data. 484 

This is due to the discrepancy between MODIS and Landsat data, and to different sensitivities 485 

of MLR and RTM algorithms to uncertainties (including bias) in LR input data. However, in 486 

our study case over the selected irrigated perimeter, the new algorithm D2' clearly improves 487 

the disaggregated LST against the classical approaches. When comparing the new algorithm 488 

D2’ to the classical one D1, D2’ generally shows the best results with an increase of R from 489 

0.83 to 0.86 and a decrease in the RMSE from 3.57 to 2.20 °C, respectively (18 March as an 490 

example). By comparing the performance of the disaggregation algorithms using aggregated 491 

Landsat and real MODIS LST, the aggregated Landsat LST provides better results than 492 

MODIS LST. The reason is due to the fact that real images have an additional noise in the 493 

LST data which may be related to sensor registration (Essa et al., 2013). In addition, part of 494 

the error could be attributed to differences in the algorithms used to retrieve LST, which are 495 

not the same (split-window for MODIS and single-channel for Landsat). A relatively poor 496 

performance is observed for D1 and D1’ on 30 June compared to the new D2’ methodology. 497 

On that date MODIS LST largely underestimates Landsat LST. However, D2’ provides a 498 

much better R (0.55 instead of 0.1 for all the other approaches). We argue that the RTM 499 

method (D2’), is more accurate and more robust than MLR method (D1’) especially when 500 

applying it to real data (MODIS LST). In particular, it is much less sensitive to uncertainties 501 

in LR LST than MLR method. Based on the acquired results, RTM algorithm performed 502 

June 30 0.07 0.12 0.13 0.55 6.71 6.68 6.71 6.44 0.03 0.05 0.05 0.38 

July 24 0.47 0.84 0.84 0.78 5.14 4.64 4.64 4.71 0.23 0.64 0.64 0.58 

All 0.45 0.69 0.67 0.75 4.20 3.60 3.66 3.35 0.20 0.43 0.43 0.61 
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better than the classical algorithm and in most cases than the RTM method where it stabilizes 503 

the errors and systematically increases the R between disaggregated and Landsat LST.   504 

Conclusion  505 

The objective of this paper is to disaggregate MODIS/Terra LST data to 100 m resolution 506 

over an irrigated semi-arid area. The idea is to include the high spatial resolution soil moisture 507 

variability in the disaggregation algorithm, in addition to the classical fraction of green 508 

vegetation cover. The approaches are tested over two heterogonous sites: 8 km by 8 km 509 

irrigated perimeter and a 12 km by 12 km rainfed area south of Marrakech during the 2015-510 

2016 growing season. The algorithms are firstly tested using the 1 km aggregated Landsat-7/-511 

8 surface temperature as input to avoid the errors and random uncertainty produced by the 512 

registration of LR sensors like MODIS. Then, the performance of the used algorithms is 513 

assessed using MODIS/Terra daytime LST as input. The Landsat LST at 100 m resolution is 514 

mainly used for validation purposes. 515 

Best results are obtained with the new algorithm denoted D2’ when using MODIS LST data 516 

based on the RTM equation, compared to the procedure based on a linear regression between 517 

fgv and LST, and also compared to the multi-linear regression between fgv, σvv
0  and LST. Since 518 

the selected area showed a heterogeneity in terms of vegetation type and soil water status, we 519 

conclude that the new algorithm produces more stable and robust results during the selected 520 

year. 0.83 °C and 0.86 were the lowest RMSE and the highest correlation coefficient assessed 521 

using the new algorithm. These results are encouraging and can be used to reinforce and to 522 

improve the application of downscaling procedure to low resolution thermal sensors. Sentinel-523 

2 (S-2) is a continuity of Landsat reflectances with an improvement in the spatio-temporal 524 

resolution. Therefore, the application of the disaggregation algorithm to MODIS LST using S-525 

2 ancillary data will improve the temporal resolution to 5 days. This work also can be 526 

considered as a basis for new missions dedicated to provide TIR data at high spatio-temporal 527 

resolution (India-France joint satellite mission, Trishna). Further research must be undertaken 528 

to incorporate the vegetation water stress into the disaggregation methods, possibly by 529 

integrating the S-1 VH polarization data, which are more sensitive to vegetation water content 530 

effects than VV polarization. 531 

Appendix 532 
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To run EB model, the soil temperature is set to air temperature (Tair) and an iterative loop on 533 

the soil temperature is made until the thermal equilibrium is reached by minimizing the cost 534 

function (F(LST)) by finding the LST value corresponding to the EB closure:   535 

                                                     F(LST) = (Rn − G − H − LE)2                                      (A.1)      536 

Starting from the EB model equation, where the available energy is set equal to the turbulent 537 

fluxes: 538 

                                                                Rn − G = LE + H                                                   (A.2) 539 

with Rn is the surface net radiation is expressed as: 540 

                                                                  Rn = (1 − α) rg + ε(Ratm − σTs
4)                                  (A.3) 541 

with σ=5.67×10-8 the Stephan-Boltzmann constant (W m-2 K-4). α (-) being the surface albedo 542 

(set to 0.15), rg (W m-2) is the global radiation, ε (-) is the surface emissivity (set to 0.95), Ratm 543 

is the atmospheric longwave radiation (W m-2) and. The downward atmospheric radiation at 544 

surface level is expressed as: 545 

                                                               Ratm = εa × σTair
4                                                   (A.4) 546 

where ɛa is the atmospheric emissivity (Brutsaert, 1975): 547 

                                                                                             εa = 1.24 × (
ea

Tair
)

1

7
                                                (A.5) 548 

with                                                      ea = es(Tair) ×
rha

100
                                                  (A.6) 549 

rha (%) being the air relative humidity and es the saturated water vapour pressure (kPa) given 550 

by: 551 

                                                       es = 0.611 × e
(

17.27×Tair
Tair+273.3

)
                                            (A.7) 552 

The ground flux G is estimated as a fraction of net radiation at the surface Rn: 553 

                                                                    G = cg. Rn                                                         (A.8) 554 

with cg being a fractional empirical coefficient set to 0.2. 555 

The sensible heat flux is given by: 556 

                                                                 H = ρcp
Ts−Tair

ra,h
                                                   (A.9) 557 

The latent heat flux is estimated as: 558 
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                                                                 LE =
ρcp

γ
 

es−ea

ra,h+rss
                                            (A.10) 559 
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Glossary  571 

Symbols signification and unit 

 𝐏𝛔𝐯𝐯
𝟎  Soil moisture proxy 

𝛔𝐯𝐯,𝐦𝐚𝐱
𝟎  Backscatter coefficient correspond to the wettest pixel during the season  

𝛔𝐯𝐯,𝐦𝐢𝐧
𝟎  Backscatter coefficient  correspond to the driest pixel during the season 

𝛔𝐯𝐯,𝐠𝐯
𝟎  Green vegetation backscatter coefficient 

𝛔𝐯𝐯,𝐛𝐬,𝐝
𝟎  Bare dry soil backscatter coefficient 

𝛔𝐯𝐯,𝐛𝐬,𝐰
𝟎  Bare wet soil backscatter coefficient 

𝐓𝐟𝐜,𝐠𝐯 The temperature of pixel with fully-covered vegetation 

𝐓𝐛𝐬
𝐬𝐦 Ttemperature estimated using a linearized RTM 

𝐓𝐛𝐬,𝐰 Wet bare soil temperature 

𝐓𝐛𝐬,𝐝 Dry bare soil temperature 

𝛔𝐯𝐯
𝟎  VV polarized backscatter coefficient  

𝛔𝐯𝐯,𝐤𝐦
𝟎  Aggregated VV polarized backscatter coefficient 

∆𝐓𝟐
′  Corrective term  

rss Evaporation surface resistance,  s m-1 

Rn Net radiation, W m-2 

G Soil heat flux, W m-2  

H Sensible heat flux, W m-2 

LE Latent heat flux, W m-2 

ua Wind speed, m s-1 

rg Solar radiation, W m-2       

rha Relative humidity, % 

Tair Air temperature, °C  

𝛆 Surface emissivity   

http://trema.ucam.ac.ma/
http://www.cesbio.ups-tlse.fr/
https://www.cnrst.ma/
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γ Psychrometric constant, kPa C-1 

ρ Mean air density at constant pressure, kg m-3 

cp
 Stands for the specific heat of air, MJ kg-1 °C-1 

ea Actual vapour pressure, kPa 

es Saturation  vapour pressure, kPa 

ra,h
 Aerodynamic resistance, s m-1 

α Surface albedo 

Ratm
 Atmospheric longwave radiation, W m-2 

σ Stephan-Boltzmann constant equal to 5.67 × 10-8, W m-2 K-4 

ɛa Atmospheric emissivity 

cg Fractional empirical coefficient set to 0.2 

fgv Fraction of green vegetation cover 

𝐟𝐠𝐯,𝐤𝐦 Aggregated fraction of green vegetation cover  

NDVIgv Full-cover green vegetation index 

NDVIbs Bare soil vegetation index 

F (LST) Cost function 
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