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Abstract

The present chapter is devoted to the evaluation of damage with digital image

correlation (DIC). Applications will focus on composite materials. The latter

ones are designed to accommodate microcracks through suited microstructures.

As such, they constitute a natural class of materials for which damage (or rather

damages) is an essential feature of their mechanical behavior. As discussed in a

previous chapter (addressing detection of physical damage), DIC can reveal the

elementary mechanisms (e.g., dense distribution of microcracks, crack

branching along weak interfaces, progressive debonding of interfaces, and

subsequent pullout or delamination). It will also be shown that damage laws

can be identified with the help of DIC from mechanical tests imaged at different

stages of loading. The followed strategy will be seen as reminiscent of the one

that was used in the previous chapter dedicated to 1D (i.e., beam like) geometries

(from physical to mechanical damage). Here, it will be necessary to couple DIC
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with finite element models. The benefit will be that in addition to the identified

law, a full validation is naturally offered from the highly redundant piece of

information contained in the measured displacement fields.

Identification of Mechanical Damage

This chapter follows the same footsteps as illustrated in the previous chapter based

on beam geometry, but here it is dedicated to two- and three-dimensional systems.

In spite of the fact that the examples concern composite materials, the methods are

not limited to this class of materials.

When trying to identify damage from a mechanical test, the first step deals with

the measurement of displacement fields. One of the measurement techniques is

DIC, even though others can be used (e.g., grid methods, holography, and speckle

interferometry). The outputs are displacement and strain fields that need to be

post-processed. The damage variable(s) is(are) still hidden within these data.

Inversion and identification techniques need to be used to extract mechanical

damage fields. The problem thus consists of the evaluation of the local elastic

properties, expressed as a relative loss of stiffness, D(x) (where D can be a scalar

or a tensor). This is a second step in which different metrics can be used to measure

the distance between experimental measurements and numerical simulations

(Avril et al. 2008; Grédiac and Hild 2012). This is a first route for identifying

damage fields.

It is to be emphasized that the extraction of D(x) from necessarily noisy

kinematic fields is a difficult inverse problem (Tikhonov and Arsenin 1977).

One way to help this determination is to assume that the same damage growth

law applies everywhere within an analyzed material or structure. Thus, the

unknowns are no longer a damage field but the parameters of a growth law.

This represents a very drastic reduction in the number of unknowns, and hence

it opens the way to a large reduction in the uncertainty of local damage. The

assumption of a homogeneous constitutive law can be (or has to be) questioned.

The invaluable advantage of dealing with field measurements, namely, the con-

siderable amount of information, can be exploited to validate all assumptions

proposed along the analysis. The pixel-wise comparison of measured and identi-

fied displacement fields or even images (e.g., computing the residual ρ(x) fields

(see Eq. (A.1)) from these different displacements) brings to light either the

quality of the solution or its deficiencies. From the latter, it is generally clear to

draw directions of progress or sophistication of, say, the constitutive law to reach

a more satisfactory agreement.

A more elaborate strategy consists of coupling the measurement and identifi-

cation steps. The unknowns to be measured associated with the trial displacement

are no longer the standard degrees of freedom (e.g., nodal displacements in a

Galerkin approach to DIC) but the parameters of the damage growth law in

addition to boundary conditions to make the problem well posed. This type of

global approach is referred to as integrated since the measured displacement field
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is also mechanically admissible and yields mechanical parameters. An example of

such an approach dedicated to beams was shown in “▶Chap. 38, Evaluating

Damage with Digital Image Correlation: B. From Physical to Mechanical Dam

age” (see also Hild et al. 2011). The chosen displacement basis is either a closed-

form solution (e.g., in a Brazilian test to identify elastic parameters (Hild and Roux

2006) or stress intensity factors in elastic media (Roux and Hild 2006)). The results

of a numerical simulation can also be used to define the kinematic basis (e.g., in

elasticity (Leclerc et al. 2009; Réthoré et al. 2009) or when dealing with damage

(Réthoré 2010)).

Types of Damage and Constitutive Laws

When studying composite materials, one underlying difficulty is that the various

damage mechanisms are strongly related to the material architecture, namely,

particulate composites (Fig. 12 of “▶Chap. 37, Evaluating Damage with Digital

Image Correlation A. Introductory Remarks and Detection of Physical Damage”),

composites with short fibers, and composites with continuous fibers (e.g., layered

(Fig. 1 of “▶Chap. 37, Evaluating Damage with Digital Image Correlation A.

Introductory Remarks and Detection of Physical Damage”), woven, woven +

stitched, interlock configurations) do not experience the same type of degradations.

One of the consequences is that there are numerous models to describe their

behavior (Orifici et al. 2008). Furthermore, there are also different possible choices

for the smallest scale of modeling (i.e., microscopic (Burr et al. 1997), mesoscopic

(Ladevèze 1992), or macroscopic (Périé et al. 2009)) to determine the behavior at

the macroscopic scale, which is usually needed to run numerical simulations.

One modeling issue is to use either a discrete or continuum description of

damage (Hild 2002). This choice will have consequences on the way damage is

modeled and therefore experimentally characterized and identified. For example, in

section “▶Cracking in a Layered Composite” of “▶Chap. 37, Evaluating Damage

with Digital Image Correlation A. Introductory Remarks and Detection of Physical

Damage,” a continuum point of view was used to analyze the DIC results at the

macroscopic scale (Figs. 2 and 3 of that chapter) of a 3-layer carbon-epoxy

composite. However, mesoscopic observations are also possible, in particular to

analyze the damage mechanisms.

Figure 1 shows the longitudinal displacement field where the individual damage

mechanisms can be clearly read. It corresponds to an incremental approach where

the reference configuration is chosen for a stress level of 1,120 MPa and 1,190 MPa

in the deformed configuration. It becomes even clearer when analyzing the longi-

tudinal strain field in which the two transverse cracks are observed. The lower

crack, which initiated between these two stress levels, is more open than the upper

one that initiated at an earlier stage. When analyzing the shear strain field, it is

concluded that transverse cracking is accompanied by mesodelamination along the

0/90� interface for the lower crack. For the upper crack, mesodelamination has not

evolved significantly.
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At this scale, an appropriate mechanical description would imply modeling the

crack pattern in details, in particular, the combined effect of transverse cracking and

mesodelamination, and the fact that the stresses in the vicinity of existing cracks are

partially relaxed so that crack initiations are prevented very close to existing ones

(this is a nonlocal effect). This hypothesis (Curtin 1991) allows the cracking pattern

observed at the mesoscopic scale to be understood. It can be generalized to other

situations dealing with multiple cracking (Hild 2002; Malésys et al. 2009; Forquin

and Hild 2010; Guy et al. 2012).

When modeling the mechanical behavior of composite materials, the framework

of continuum thermodynamics (Germain et al. 1983) turns out to be particularly

powerful when applied to damage models. When cracks are described, it is more

natural to express the state potential in terms of Gibbs’ free enthalpy. However, in

Fig. 1 (Left) Vertical displacement expressed in pixels (1 pixel $ 3.5 μm), longitudinal strain

(center), and in-plane shear strain (right) showing a transverse crack and mesodelamination. Note

that another transverse crack (x � 380 pixels) that was created at a previous stage of loading

is also visible. These results were obtained with regularized T3-DIC (‘ ¼ 5 pixels, ‘m ¼ 20 pixels,

‘b ¼ 10 pixels). The region of interest has an area of � 3 � 2 mm2

Fig. 2 Image of the sample prior to loading (left) and after failure (right). The observed region has

an area of � 68 � 68 mm2
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numerical simulations, most of the formulations are displacement based, and it is

therefore more convenient to consider Helmholtz’ free energy density

Ψ ¼ 1

2
«
e

: C Dð Þ : «
e þ Ψs�r

«
i, «c,d,D

� �
with « ¼ «

e þ «
i þ «

c (1)

where « is the infinitesimal strain tensor, «e the elastic strain tensor, «c the creep strain

tensor (when needed (Begley et al. 1995; Du et al. 1997; Burr et al. 2001)), «i the

inelastic strain tensor modeling all damage mechanisms leading to frictional sliding

(e.g., fiber/matrix sliding, mesodelamination),C the macroscopic Hooke’s tensor that

contains various damage variablesD, andΨs�r the stored and relaxed energy densities

(Boudon-Cussac et al. 1998). In many models, inelasticity is described by resorting

to isotropic hardening (e.g., Ladevèze and Le Dantec 1992). However, by using

homogenization techniques, it is more natural to choose kinematic hardening

(Andrieux et al. 1986; Hild et al. 1996) because it is associated with frictional sliding.

It can also be noted that when frictional sliding occurs, damage variables d are

involved in the expression of the stored part of the state potential (Andrieux et al. 1986;

Burr et al. 1997). Conversely, the relaxed part is caused by damage variables D that

also lead to a stiffness loss (e.g., matrix-cracking in the presence of an initial residual

stress field induced, say, by coefficient of thermal expansion mismatches (Budiansky

et al. 1986; Boudon-Cussac et al. 1998) that is partially relaxed). Creep also involves a

change in the self-balancing stress field, and therefore Ψs�r varies accordingly.

Interfacial wear is a fatigue mechanism of many composite materials (Rouby and

Reynaud 1993). It leads to a variation of the interfacial properties that influence the

inelastic strain and the stored part of Ψs�r (Burr et al. 1998).

Furthermore, the state potential is generally postulated, and then the growth laws

of the internal variables are written in terms of their associated forces obtained as

partial derivatives of the state potential with respect to the former or combinations

thereof. One critical issue to properly compute the dissipated energy is to evaluate

Fig. 3 Vertical (left) and horizontal (right) component of the displacement field (expressed in

pixels) obtained from Q4-DIC (‘ ¼ 16 pixels). The physical size of one pixel is 68 μm, and the

region of interest has an area of � 68 � 68 mm2
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the part of the state potential Ψs�r that is stored or relaxed. The latter is the elastic

energy density associated with the residual stresses induced by all dissipative

mechanisms (Boudon-Cussac et al. 1998; Vivier et al. 2009, 2011).

Last, crack closure may occur, typically for mode I microcracks. This closure

induces modeling issues that are not easy to tackle (Ladevèze et al. 1983; Chaboche

et al. 1990; Desmorat 2000; Halm et al. 2002). Special care has to be exercised to

avoid numerical and theoretical difficulties. This point will not be addressed herein.

However, it can be noted that DIC (Hamam et al. 2007) and DVC (Limodin

et al. 2009) can be used to analyze this phenomenon at different scales.

Damage in Low-Cost Composite

Two approaches are followed to study a vinylester matrix reinforced by an isotropic

distribution of E-glass fibers. The first one consists of determining the contrast field

of elastic stiffness, which can be interpreted as a signature of damage in a CDM

context thanks to the coupling between elasticity and damage. The second one aims

at identifying the growth law of an isotropic damage variable. Since only one

internal (damage) variable is considered, any nonlinearity is attributed to damage.

Consequently, the identification procedure does not need unloadings.

A thin plate made of this composite is prepared as a cross with wide arms, and

subjected to biaxial loading (Fig. 2). The white surface of the test piece is sprayed

with black paint so as to produce a fine random texture, which is needed for DIC.

Digital images of the surface are shot for every 1-kN load increment in both

directions up to complete failure, which occurred for 11.1 kN. Thus, 11 images

are available for the analysis. The physical size of one pixel is 68 μm. In the sequel,

this experiment is used to illustrate the results that are achieved when first seeking a

stiffness field and second when identifying a damage law.

Inversion: Determination of Stiffness Field

In this first case, a field of elastic properties that account for the measured displace-

ment field is sought. In the present case, Q4-DIC is considered (Fig. 3). The number

of degrees of freedom in the inverse problem is of the same order of magnitude as

the data (here the measured displacement field). The solution consists of the

inversion of the mechanical problem.

It is assumed that the damage mechanism induces a heterogeneous contrast field

such that the local Young’s modulus is reduced to χ(x)E0 from its initial value E0

while the Poisson’s ratio, ν, remains unaltered. The equilibrium gap method (Claire

et al. 2004) consists of exploiting the equilibrium equation

div χ xð ÞC0« u xð Þð Þ½ � ¼ 0 (2)

written here in the absence of body forces. The strain tensor « is computed from the

measured displacement field, and C0 is Hooke’s tensor of the virgin material. Since
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the displacement field is decomposed over a finite element basis (made of Q4

elements), the corresponding discretization of the “equilibrium gap” fi is considered

f i ¼ χmKm
ij uj ¼ 0 (3)

where Kij
m is a component of the elementary rigidity matrix of the undamaged

element m relating the displacement component uj to the nodal force fi
m (whose

sum over all m elements should be equal to 0 for inner nodes). The rigidity matrix is

linearly dependent upon the contrast χ. As can be seen from Eq. (3), since no static

information is used (the right-hand side is vanishing at all inner nodes), the χ-field is

determined up to an arbitrary scale factor. This is the consequence of limiting the

analysis to the knowledge of kinematic data only. Only elastic contrasts can be

determined in the present case. The formulation is complemented by arbitrarily

prescribing that the average χ is equal to a constant. This is achieved by using a

Lagrange multiplier or by eliminating one contrast value.

The inversion problem is ill-posed and some regularization is called for. The

most straightforward approach is to search for the “best” solution for the χ-field in a

subspace of smoothly varying fields in space. Q4 finite elements are used in the

following, with however a mesh that is independent of (and coarser than) the

measurement mesh. Shape functions Ni
m are introduced to provide the weight of

the center of an element m for the i-th basis function

χm ¼ Nm
i bi (4)

where bi are the unknown contrasts collected in a vector {b}. This regularization

limits the number of degrees of freedom {b}, and hence the contrast field is

obtained through the minimization of the global equilibrium gap

W bf gð Þ ¼
X

j

X

i,m
Lmj N

m
i bi

!2

� λ
X

i,m
Nm

i bi (5)

where Lj
m ¼ Kjk

muk and λ is the Lagrange multiplier of the average contrast constraint.

The minimization of functional W results in a linear problem that provides {b}

amplitudes and, thus from Eq. (4), the contrast value in each element.

The final stage of loading is considered with a coarse mesh (10 � 10 elements)

and a finer one (20 � 20 elements) for the contrast field (Fig. 4), which is to be

compared with a 67� 66 element mesh for the kinematic measurements (Fig. 3). In

both cases, the stiffness reached a negative value at the top left corner (�0.02 and

�0.3, respectively, for the coarse and fine meshes). This value has been artificially

reset to 0.01. A satisfactory agreement between both results is obtained with a clear

detection of crack initiation and propagation.

To evaluate the quality of the obtained contrast map, it is possible to resort to a

standard elastic computation based on the determined stiffness contrast and using
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Dirichlet boundary conditions, i.e., prescribing the displacement field on the boundary

of the considered domain. The computed displacement field is then comparedwith the

measured field in Fig. 5. A good agreement between both fields is observed.

To quantify the agreement, the following dimensionless “residual” ρu is defined: it is

the standard deviation of the difference between identified andmeasured displacement

Fig. 4 Map of log10 χ obtained for a coarse (10 � 10 elements, left) and fine (20 � 20 elements,

right) mesh. The region of interest has an area of � 68 � 68 mm2

Fig. 5 Comparison between measured by Q4-DIC with ‘ ¼ 16 pixels (left) and recomputed

(right) displacements expressed in pixels from the identified contrast field (fine mesh: 20 �
20 elements). The physical size of one pixel is 68 μm, and the region of interest has an area of

� 68 � 68 mm2
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fields, normalized by the standard deviation of the measured displacement field. In the

present case, for a finemesh (i.e., 20� 20 elements), this residual amounts to 14%.The

latter level is fair, and part of the discrepancy is related to the localized nature of

damage, which cannot be fully captured with the chosen discretization.

Identification: Damage Growth Law

When a series of pictures is analyzed, there is no link between the contrast

fields that can be determined by following the previous procedure. In particular,

the choice of the additional condition to make the system invertible should

be adapted to translate the contrast fields into damage fields. A growth law can be

identified, but only by post-processing the previous results (Claire et al. 2007).

In the following, a regularized approach (Roux and Hild 2008) will be developed

to move from an inversion to an identification (of a few material parameters). The

spirit of the method is to require that elements with the same equivalent strain

should also have the same damage level. This is a very strong requirement that

allows the number of unknowns to be drastically reduced.

An isotropic description of damage is assumed to be valid. The behavior will be

modeled by a unique scalar,D(x), such that theYoung’smodulus is reduced to (1�D)

E0, from its initial valueE0, while the Poisson’s ratio, ν, remains unaltered. The growth

law of the damage variableD is described by a function of an equivalent strain eeq to be

defined later on. The fact thatD is related to eeqmakes the identification easier since, if

the damage parameter is assumed to be uniform over, say Q4 elements of the

measurement mesh, it suffices to compute the equivalent strain per element before

starting the identification procedure. The equilibrium gap norm is now written as

ℜ ¼
X

j

X

e

Lej 1� Deð Þ
!2

(6)

and a decomposition of the damage growth law is chosen

D ¼
X

i

ciφi eeeq
� �

with eeeq tð Þ ¼ max
0�τ�t

eeq τð Þ (7)

where φi are chosen functions (e.g., based on exponentials (Burr et al. 1997;

Baptiste 2002)) and ci the unknown parameters to identify (their number remains

limited to a few units). The minimization of the equilibrium gap leads to the

following linear system

X

p

X

e, f

X

j

Lej L
f
j

!
φp eeeq

� �
φq eeeq

� �
cp ¼

X

e, f

X

j

Lej L
f
j

!
φq eeeq

� �
(8)

The additional requirement prescribed to set the contrast scale can be dropped if

the condition φi(0) ¼ 0 is satisfied. It is worth noting that even though the initial

problem is strongly nonlinear, the final formulation leads to a linear system.
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As introduced above, the operator L is linear in terms of the measured displace-

ments and involves the (uniform) elastic properties of the virgin material. The sum

∑eLj
e ¼ fj can be interpreted as a nodal resultant force. The elastic problem with

prescribed Dirichlet boundary conditions and known body forces is well posed and

can be inverted to evaluate the nodal displacements

ui ¼ Sij f j (9)

with [S] ¼ [K0]
� 1, where [K0] is the stiffness matrix of the virgin material. By

noting that L is a second-order differential operator, the following form

ℜ
^

ckð Þ ¼
X

j

Sij
X

e

Lej 1�
X

k

ckφk

�
eeeq

�
" #�����

�����

2

(10)

allows the identification problem to be better conditioned when compared to Eq. (6).

By noting that [S][L] ¼ {umeas}, the reconditioned equilibrium gap becomes a

distance written in terms of displacements and not its second-order derivatives

ℜ
^

ckð Þ ¼ umeasi �
X

j

Sij
X

e

Lej

X

k

ckφk

�
eeeq

�
�����

�����

2

(11)

so that the identification will be less sensitive to measurement uncertainties.

The damage model tuned hereafter uses Helmholtz’ free energy density Ψ when

elasticity is coupled with damage (e ¼ e
e and Ψs�r ¼ 0), which is expressed as

(Marigo 1981)

Ψ ¼ 1

2
« : C0 1� Dð Þ : « (12)

so that the thermodynamic force Y associated with the damage variable D reads

Y ¼ � @Ψ

@D
¼ 1

2
« : C0 : « (13)

Consequently, the equivalent strain eeq becomes, under a plane stress hypothesis,

e
2
eq ¼

Y

E0

¼ e1h i2 þ 2ν e1h i e2h i þ e2h i2
2 1� ν2ð Þ (14)

where e1, e2 are the two in-plane eigen strains and ν Poisson’s ratio of the

undamaged material. The functions φ defining the damage growth law (Eq. (7))

are assumed to be described by exponentials

φi eeeq
� �

¼ 1� exp
�eeeq
eci

� �
(15)
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where eci are characteristic strains to be identified. Different characteristic strains in the

damage law test functions were considered eci ¼ 0.0067� (1, 2, 4, 8, 16) consistently

with the range of equivalent strains encountered in the experiment. The five amplitudes

were c ¼ (0.87, 0, 0, 0, 0.13). The quality of the analysis appears to be good, namely,

ρu ¼ 0.03, 0.03, 0.03, and 0.05 for the last four load levels. It is worth noting that it is

significantly lower than what was observed in the analysis of contrast fields.

Figure 6 shows a comparison between the measured and predicted displacement

fields for the last load level. The fact that the quality deteriorates in this last level is

due to a well-developed crack on the top left part of the sample. The crack is both

crudely accounted for by the scalar damage model, but also presumably badly

captured by the image correlation algorithm, which is designed for continuous

displacement fields.

The damage map is very informative (Fig. 7a). Crack initiation on the left hand

and top corner of the specimen is clearly captured, as also observed in the picture of

step 11 (Fig. 2a) when magnified. Damage concentrations at other corners are also

observed and correlate rather well with the final cracking pattern (Fig. 2b). The

damage growth law consists of two regimes (Fig. 7b), possibly one prior to and one

after damage localization. This problem will be addressed in section “Damage

Localization Versus Cracking.”

Anisotropic Damage Description for a Layered Composite

In the present section, the heterogeneity of the strain fields is enforced geometri-

cally to ease the identification of the growth law. Consequently, the classical �45�

tensile test on coupons was modified by adding a lateral notch to the specimen.

Fig. 6 Comparison between measured (left), identified (center) displacement fields at the final

step of loading. The difference between the two displacements is also shown (right). The

displacements are all expressed in pixels. The physical size of one pixel is 68 μm, and the region

of interest has an area of � 68 � 68 mm2
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Each layer of the composite is made of unidirectionally aligned carbon fibers in a

thermoset matrix. Contrary to the previous case, an anisotropic damage description

is considered to describe the damage mechanism relative to shearing of the matrix.

Gibbs’ free enthalpy Φ of the composite then reads

Φ ¼ 1

2

σ211
E1

� ν12

E1

σ11σ22 þ
σ222
E2

þ σ212
G12 1� Dð Þ

� �
(16)

where σ11, σ22, σ12 are the in-plane stress components expressed in the material

frame (1, 2). The elastic properties are E1 and E2 (Young’s moduli along the fiber

directions), ν12 (Poisson’s ratio), and G12 (in-plane shear modulus). The in-plane

strain tensor « is expressed as

« ¼ @Φ

@σ
(17)

where σ is Cauchy’s stress tensor and the thermodynamic force Y associated with

the damage variable D becomes

Y ¼ @Φ

@D
¼ σ212

2G12 1� Dð Þ2
¼ 2G12e

2
12 (18)

Consequently, the equivalent strain becomes

eeeq tð Þ ¼ max
0�τ�t

e12 τð Þj j (19)

The elementary stiffness matrix thus reads

K½ � ¼ K0½ � � D K1½ � (20)

Fig. 7 (a) Maps of D for the last step of loading. One clearly sees in the left-hand top corner the

initiation of a major crack that will lead to failure of the sample. Moreover secondary crack

formations are also distinguished close to the other corners (see Fig. 2b for a detailed comparison

with the final failure pattern). (b) Identified damage law
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where [K1] has only one nonzero (shear) term that is affected by damage. The

reconditioned equilibrium gap becomes (Périé et al. 2009)

ℜ
^

ckð Þ ¼ umeasi �
X

j

Sij
X

e

L
e

j

X

k

ckφk

�
eeeq

�
�����

�����

2

(21)

with L
e

i ¼ K1e
ij uj.

In the following, 12-pixel Q4 element sizes are considered. The displacement

maps are shown in Fig. 8 for the maximum load level (i.e., the last analyzed cycle).

They are measured when the reference picture is the unloaded step after the

maximum load level, which corresponds to the deformed configuration. The

corresponding equivalent strain field is estimated by computing the average value

in each finite element. The strain localization is clearly observed in the vicinity of

the highly damaged (V-shaped) zones. Only the last of 14 loading/unloading cycles

is shown herein. More results can be found in (Ben Azzouna et al. 2011).

By using the same expression as before for the damage law (15), the identifica-

tion results yield the unknowns ck for chosen characteristic strains eci. The best

solution is obtained when eci¼ 0.016� (1, 2, 4, 8) and c¼ (1.0, 0, 0, 0). The quality

of the identification is first assessed globally by computing ρu. For the last load

level, ρu ¼ 3.7 %. This is a very low value giving confidence in the identification

result. From the measurement of the equivalent strain map and the identified

parameters of the damage law, it is possible to construct the damage maps for

each analyzed cycle (Fig. 9 for the last five cycles).

For the last considered cycle (#14), a localized damage pattern is observed with a

value of D approaching 1. This is in good accordance with the experimental failure

Fig. 8 Displacement maps ux (left) and uy (center) expressed in pixels (1 pixel $ 36 μm) at

maximum load (along the x-direction) of the notched specimen with a 12-pixel discretization. The

rigid body motion was removed. Corresponding equivalent strain map eeq (right). Strain localiza-

tion (along the fiber directions) is clearly visible. The region of interest has an area of � 23.4 �
10 mm2
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pattern (Ben Azzouna et al. 2011). The best solution is obtained with only one

parameter ec1 for which c1 is therefore close to 1.

A first way of validating the identification results is to compare the computed

displacement field using the damage law that was identified with the measured

displacement field and then estimate the displacement residuals. Figure 10 shows

the three maps corresponding to the displacement components for cycle #14. A very

good agreement is observed.

Another way of validation is given by the damage law itself. The latter is

compared with that obtained by following the classical identification procedure

(Ladevèze and Le Dantec 1992). In the latter, only a single longitudinal strain level

is available per unloading/loading cycle; from 10 to 15 points are generally

accessible. For example, Fig. 11 shows the result from the analysis for which

only five points lie above the damage threshold. With the present approach, the

same results are shown in Fig. 11. Numerous identification points are available

thanks to full-field data. It is also to be noted that the present approach allows for the

identification of damage levels greater than 0.4, level at which the global method

stops because of failure that occurs suddenly. In the range over which the two

results can be compared, there is a good agreement, thereby validating the approach

followed herein. It is to be remembered that the damage functions (15) do not

incorporate a threshold parameter. This is the main difference between the two

results. However, it is believed that this value is difficult to capture with fine meshes

for which the measurement uncertainty is not sufficiently small.

Damage Localization Versus Cracking

The example of the cross-shaped composite sample discussed in section “Damage in

Low-Cost Composite” is considered again. On the measurement side, a continuous

displacement field was evaluated even at advanced stages of the experiment (Fig. 3).

By analyzing the correlation residuals, it could have been concluded that the displace-

ment continuity is questionable (Fig. 12), especially at the end of the experiment.

Fig. 9 Identified damage maps for the last five analyzed cycles
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Fig. 10 Comparison of the measured and computed displacement fields for the last cycle (#14)

for a 12-pixel discretization. The physical size of one pixel is 36 μm, and the region of interest has

an area of � 24.3 � 10 mm2

Fig. 11 Damage law

identified by following the

classical approach (few strain

data are available) and by

resorting to full-field

measurements and the

equilibrium gap method. Each

cross corresponds to a

measured strain
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To deal with displacement discontinuities in a global DIC context, two different

routes can be followed. First, extended DIC (Réthoré et al. 2008) can be considered

(e.g., XQ4-DIC). As in extended finite elements (Black and Belytschko 1999; Moës

et al. 1999), it consists of enriching the displacement basis with discontinuous

terms. Second, node splitting is also possible (Roux et al. 2012). Figure 13 shows

the result obtained with XQ4-DIC. In particular, the crack opening displacement

profile can be used to extract the stress intensity factor. In the plot of Fig. 13, the

slope of the linear interpolation is equal to 8K=E0

ffiffiffiffiffi
2π

p
, so that the value of the stress

intensity factor K is 16 MPa
ffiffiffiffi
m

p
.

On the modeling side, two regimes appear in the damage growth law shown in

Fig. 7. The second one corresponds to strain levels that are greater than those

Fig. 12 Correlation residuals expressed in gray levels (the digitization of the analyzed pictures

is 8 bits; see Fig. 2) for the displacement field shown in Fig. 3. The region of interest has an area of

� 68 � 68 mm2. The crack is visible on the top left corner (see detail on the left)

Fig. 13 Vertical (left) component of the displacement field (expressed in pixels) obtained from

XQ4-DIC (‘ ¼ 32 pixels). The region of interest has an area of � 68 � 68 mm2. Norm squared of

displacement jump versus curvilinear abscissa (right). The physical size of one pixel is 68 μm

(Courtesy of J. Réthoré)
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observed in tensile tests on the same material. They are related to the existence of a

macrocrack whose description with CDM concepts may be questioned. To link

linear elastic fracture mechanics and CDM, the dissipated energy (Lemaitre and

Dufailly 1987)Δ is calculated by assuming a constant critical energy release rateGc

Δ ¼ Gcah (22)

where a denotes the crack length and h the sample thickness. For the damage model,

the dissipated energy density is first calculated for any broken element (D ¼ 1)

δ ¼
ð1

0

YdD (23)

With the chosen growth law, the dissipated energy density becomes

δ ¼ 2E0

X

i

cie
2
ci ¼ 2Yc (24)

so that the dissipated energy of n broken elements reads

Δ ¼ n‘2hδ (25)

where Yc is the characteristic energy release rate density. By noting that a � n‘, it
follows

Gc ¼ 2‘Yc (26)

This result shows that the element size ‘ explicitly appears in the relationship

between the critical energy release rate and the characteristic energy release rate

density.

With the identified parameters of the damage growth law (see

section “Identification: Damage Growth Law”), an estimate of the fracture tough-

ness Kc is obtained

Kc ¼ σc
ffiffiffiffiffi
2‘

p
with ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

cie
2
ci

r
and σc ¼ E0ec (27)

where σc denotes the characteristic strength and ec the characteristic strain. The fact

that ec5 	 ec1 leads to the following approximation

Kc � E0ec5

ffiffiffiffiffiffiffiffiffi
2‘c5

p
(28)

This result proves that the second regime (i.e., for strain levels greater than 1 %)

of the damage growth law (Fig. 7b) is associated with a localized mode (i.e., crack

propagation) and not with a diffuse mechanism. The element size plays the role of a
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nonlocal parameter. However, its physical meaning is lost since it was chosen at the

measurement stage and not for any physical reason.

In the present case, it is found that σc� 360 MPa and ec� 0.04, with ‘� 1.1 mm

and E0 ¼ 9.3 GPa. Consequently, the critical energy release rate becomes

Gc ¼ 31 kJ/m2, and the corresponding fracture toughness Kc ¼ 17 MPa√m. These

values are rather high for composites. One of the reasons is due to the fact that a

fiber mat allows cracks to be bridged, and therefore, brittle fracture is prevented

from occurring. It was shown that this type of material is notch insensitive

(Berthaud et al. 2000), which can be understood by the special architecture of the

material. The level of fracture toughness is close to the value of the stress intensity

factor estimated above. This constitutes a validation of the identification procedure.

Yet another way of modeling the presence of a crack and its process zone is to

resort to cohesive zone models (CZMs). They consist of condensing all the non-

linearities along lines (in 2D simulations) and surfaces (in 3D simulations). How-

ever, contrary to standard fracture mechanics that only accounts for crack

propagation (i.e., a crack is initially present in the considered structure), a CZM

may account for initiation, propagation, and even coalescence when needed. One of

the earlier models consists of writing the free energy density ψ of an elementary

surface of the interface (Allix and Corigliano 1996) as

ψ ¼ 1

2
kn 1� dð Þ u½ �2 (29)

where d denotes the interface damage variable, kn the normal stiffness so that the

normal traction t is related to the normal displacement jump [u] by

t ¼ @ψ

@ u½ � ¼ kn 1� dð Þ u½ � (30)

and the thermodynamic force y associated with the damage variable d reads

y ¼ � @ψ

@d
¼ 1

2
kn u½ �2 (31)

In the present case, only mode I is considered for the sake of simplicity. It can be

generalized to account for the three fracture modes (Allix and Corigliano 1996).

When comparing Eqs. (12) and (13) with Eqs. (29), (30), and (31), the only

difference is that the first ones are associated with energies per unit volume and the

second ones by energies per unit surface. Consequently, if the free energies satisfy

ψ ¼Ψ ‘, then the two damage variables are equal d¼D to achieve a total equivalence

in terms of dissipated energy. It follows that the normal stiffness is such that ‘ kn¼ E0,

provided ‘ ε ¼ [u], which is a good approximation in the present case.

Under these hypotheses, the parameters of the CZM are the normal stiffness

kn ¼ 4.3 kN/mm3, the characteristic strength σc � 364 MPa, and the characteristic

crack opening displacement δc ¼ ‘ ec � 43 μm (i.e., of the order of 0.6 pixel). In

evaluating these parameters, the element size ‘ still appears.
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It is of interest to draw an analogy with the lumped damage mechanics case that

was discussed in “▶Chap. 38, Evaluating Damage with Digital Image Correlation:

B. From Physical toMechanical Damage.” The cantilever steel beamwas shown to

lead to a localized damage case. However, because the physical origin of this

damage was a buckling of the beam walls, localization was distributed over a

length scaling in proportion to the section. Yet, there is no obstacle to condense the

nonlinear damage effect into a zone smaller than the actual one, provided the

“damage” law is adjusted to the chosen size. To account for the same rotation, a

curvature will have to scale as the inverse of the damaged zone. In the limit of a

vanishing size, i.e., the “lumped” limit, the curvature diverges, but in such a

way that the rotation undergoes a discontinuity. A quasi-perfect analogy exists

with the crack versus localized damage discussion. Understanding what is a

conventional choice and how physical quantities are to be scaled to comply with

the chosen description shows the power of CDM and the sometimes heated debate

around the notion of internal length scales, which used to be very active a few

years back.

Conclusions and Perspectives

Among the various damage measurement methods discussed in the introduction

(Part A), two of them were used. First, a detection technique was illustrated to

analyze the development of physical microdamage (i.e., microcracks and

microvoids) by resorting to 2D and 3D images, which are subsequently processed.

Second, elasticity coupled with damage was utilized to invert damage fields and

identify the parameters of a damage growth law. The choice of either approach is

dictated by modeling strategies that mostly rely on the scale of observation and the

taste of the scientist.

The identification of the (mechanical) damage law was first illustrated in the

simple case of beam geometries (Part B) and then further applied herein to

composite materials. The formulation of the damage law as one of the ingredients

(together with equilibrium and compatibility) controlling the measured displace-

ment field allows moving progressively to the analysis of a field of stiffness contrast

and to robust determination of the damage growth law. Last, the question of the

proper handling of a localized regime so that the chosen discretization remains

compatible with the energy balance has been discussed both for lumped damage

mechanics (for beams) and mesoscopic cracks (for composites). This very same

path was followed both in the previous and present chapters.

To perform most of the analyses reported in this chapter, only one measurement

technique (i.e., DIC) was used. Further, the identification procedures used the

concept of equilibrium gap. It is worth noting that there are other full-field mea-

surement and identification procedures (Grédiac and Hild 2012). The choice was

made to link as strongly as possible both steps (i.e., measurement and identifica-

tion). Global approaches to DIC are one way to achieve this goal and to seamlessly

bridge the gap between experiments and numerical simulations.
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In terms of damage models, only simple ones were used herein for illustration

purposes and also because complexity has to be dealt with care. Inversion and

identification belong to the class of inverse problems. Consequently, the more

numerous the unknown parameters, the more measured data need to be collected

to make the results trustworthy and robust. Further, only 2D displacement fields

were used in this chapter. However, the identification procedures are generic and

are currently being generalized to 3D surface and volume measurements.

As discussed in the introduction of Part A, various scales of measurement and

modeling are possible when describing damage. For damage detection, different

scales were considered. Smaller and larger ones can also be taken into consider-

ation. For damage models, they were essentially written at the level of the volume

element of continuum mechanics. Other choices could have been made.

All these developments are geared toward the emergence of simulation-based

engineering sciences. Among the various challenges (Blue Ribbon Panel 2006),

there are open problems associated with multiscale and multi-physics modeling.

Continuum damage mechanics is one area of mechanics that needs further devel-

opment to reach a level of confidence sufficiently high for engineers to use its

models to design (damage-tolerant) structures. Real-time integration of simulation

methods with measurement systems is another issue to be addressed. To achieve

this goal, robust model identification and validation procedures need to be

improved and made robust.
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P. Ladevèze, E. Le Dantec, Damage modelling of the elementary ply for laminated composites.

Comp. Sci. Tech. 43(3), 257–267 (1992)

H. Leclerc, J.-N. Périé, S. Roux, F. Hild, Integrated digital image correlation for the identification

of mechanical properties, in Mirage, ed. by A. Gagalowicz, W. Philips. LNCS, vol. 5496

(Springer, Berlin, 2009), pp. 161–171

J. Lemaitre, J. Dufailly, Damage measurements. Eng. Fract. Mech. 28(5–6), 643–661 (1987)
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