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This study provides a comparison between an Eulerian and a Lagrangian approach for

simulation of ice crystal trajectories and impact in a generic turbofan compressor. The

engine-like geometry consists of a one-and-a-half stage (stator-rotor-stator) compressor

in which the computed air flow is steady and inviscid. Both methods apply the same

models to evaluate ice crystal dynamics, mass and heat transfer, and phase change

along ice crystal trajectories. The impingement of the crystals on the blade surfaces is

modeled assuming full deposition for comparison and validation purposes. Moreover,

the effect of ice crystal diameter and sphericity variations on impinging mass flux and
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particle melting ratio is briefly assessed. Then, a more realistic wall interaction model

predicts rebound, shattering or deposition as a function of impact parameters that is

applied. When the full deposition model is activated, excellent agreement is observed

between Eulerian and Lagrangian approaches for the impinging mass flux profiles on

each blade while moderate differences appear for the melting curves. However, sig-

nificant differences appear between both approaches when using the more realistic

wall interaction model. The analysis of these results highlights classic limitations of

standard Eulerian and Lagrangian methods for this type of applications.

Nomenclature

Roman symbols

A = surface area [m2]

BM = Spalding mass number

BT = Spalding thermal number

CD = drag coefficient

c = chord [m]

cp,x = specific heat capacity of species x [J kg−1 K−1]

cp = pressure coefficient

Dv = vapor diffusivity in air [m2 s−1]

dp = particle equivalent diameter [m]

eσ = surface energy [J m−2]

~fD = drag force [N]

~fI = inertial force [N]

h = spacing [m]

IWC = Ice Water Content [g m−3]

K = experimentally fitted parameter

k = heat conductivity [W K−1]

L = latent heat [J kg−1]

L = dimensionless impact parameter

LWC = Liquid Water Content [g m−3]

ls = curvilinear length scale [m]

M = Mach number

m = particle mass [kg]

ṁ = mass rate [kg s−1]

N = number of (particles, bins,...)

n = number density [m−3]

~n = normal unit vector

Nu = Nusselt number

p = pressure [Pa]

Pr = Prandtl number

Q̇c = conductive heat transfer rate [J s−1]

Qs = activation energy [J mol−1]

R = universal gas constant [J K−1 mol−1]
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Rd = random number between 0 and 1

Rφ = random number between 0.7 and 0.9

Re = Reynolds number

RH = Relative Humidity [%]

r = radius [m]

Sc = Schmidt number

Sh = Sherwood number

s = curvilinear coordinate [m]

T = temperature [K]

t = time [s]

TWC = Total Water Content [g m−3]

~t = tangential unit vector

~v = velocity [m s−1]

w = weight factor

(x,y,z) = Cartesian coordinates [m]

y = mass fraction

Greek symbols

α = particle volume fraction

α̇ = particle volume fraction rate [s−1]

β = catching efficiency

ε = sticking efficiency

ε = characteristic length scale [m]

η = melting ratio

µ = dynamic viscosity [kg m−1 s−1]

ξ = restitution coefficient

ρ = density [kg m−3]

τ = characteristic time scale [s]

Φ = particle sphericity

Φ⊥ = particle crosswise sphericity

Subscripts/Superscripts

a = air

bin = particle bin

f = fusion

i = ice

ic = ice crystal

imp = impinging

low = lower value

m = melting

max = maximum value

n = normal

p = particle

s = secondary

sub = sublimation

t = tangential

tot = total

up = upper value

v = vapor/vaporization

w = water

0 = initial value

′ = re-emitted particle

∞ = free stream

I. Introduction

In the last decade a growing number of research efforts have been undertaken to understand jet

engine power loss and damage caused by icing due to ingestion of ice crystals. The first reported
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icing events date from 1990 and with on average seven incidents occurring each year [1], engine icing

remains a serious threat to aviation safety. The majority of these events occurred near convective

clouds with high concentrations of ice crystals at a median altitude of 10.7 kilometers. The presence

of small ice crystals is not registered by radar or ice detector and airframe icing is not observed by

the flight crew since ice crystals bounce off cold surfaces. However, near warmer engine parts and

heated probes, ice crystals will melt partially and stick to the impinged surface. This may result

in engine stall, flameout or even engine damage. Contrary to aircraft icing caused by supercooled

(large) droplets for which advanced prediction tools such as LEWICE [2], FENSAP-ICE [3, 4] and

ONICE [5, 6] are currently available, ice accretion due to ice crystals is not yet fully understood.

Therefore, further research efforts need to be undertaken, amongst others through the development

of dedicated numerical tools.

The research in this paper is carried out in the framework of European project HAIC [7],

acronym for High Altitude Ice Crystals. The focus of the present study is on the comparison of

Lagrangian and Eulerian approaches for the calculation of ice crystal trajectories in an engine-like

geometry. Other comparisons of results of Lagrangian and Eulerian approaches were published

for, amongst others, an aeronautical combustion chamber [8], a pitching airfoil [9] and a particle

separator [10]. However, to the authors’ knowledge, such a comparison was never performed to

analyse ice crystal dynamics in a generic turbofan compressor. The purpose of this comparison is

threefold. First, details on the implementation of the models related to the evolution of the ice

crystals are provided and compared for both approaches. Second, the comparison of the results

obtained with both approaches serves code validation purposes. Finally, advantages and limitations

of each approach with respect to the present application may be highlighted. The last point is

particularly relevant as Lagrangian and Eulerian approaches display complementary advantages

which make the choice of either not obvious.

The Lagrangian approach is based on a direct resolution of the Boltzmann-type equation de-

scribing the evolution of the spray density function [11]. The spray is described using a statistical

sample of particles. The spray density function is then approximated as a sum of Dirac delta func-

tions centered at each sampled particle. This approach allows for a straightforward implementation
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of physical models since properties are available at the particle scale. Furthermore, polydispersity is

naturally handled within the Lagrangian approach. However, its accuracy is directly dependent on

the number of sampled particles and convergence will be slow in the general case, i.e. of the order

N
−1/2
p according to the central limit theorem, with Np the number of sampled particles. When cou-

pling a Lagrangian approach for the dispersed phase to an Eulerian approach for the carrier phase,

interpolations from the mesh points to the particle positions and vice versa are necessary since both

do not necessarily coincide. Moreover, local perturbations of the carrier phase induced by the par-

ticles (“two-way coupling”) may lead to stiff source terms which cannot easily be handled through

implicit numerical techniques. Finally, achieving efficient parallelization is problematic in a La-

grangian framework. When the flow field induces spatial particle accumulations, the computational

load associated with each processor will be unevenly balanced if the same domain decomposition is

applied to both the Eulerian mesh used for the carrier phase and for the particles.

The Eulerian method solves balance equations for a given set of moments of the spray density

function [12]. The derivation of the Eulerian balance equations involves averages in phase space

and generally requires additional spatial or ensemble averages. The Eulerian approach is generally

more efficient in terms of computational expense. In particular, its cost does not depend on the

number of particles present in the target configuration. Furthermore, ensuring an even computa-

tional load balancing between processors in parallel computations is straightforward as the same

domain decomposition may be applied for the resolution of carrier and dispersed phase. On the

other hand, the accurate treatment of complex physical phenomena such as the crossing of two jets

laden with particles or the interaction between particles and walls is more tedious. Accounting for

such phenomena in an Eulerian framework requires the ability to locally, i.e. per control volume,

define more than one particle velocity [13]. Furthermore, modeling polydispersity is not as straight-

forward as for the Lagrangian approach. In order to account for different particle sizes locally, the

diameter space may either be discretized into bins or into sections. The Eulerian system of equations

for the dispersed phase then needs to be solved for each bin or section, somewhat mitigating the

computational advantage inherent to the Eulerian approach.

The Euler-Lagrange simulations performed in the present work rely on ONERA’s multiphysics
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solver CEDRE [14]. Further numerical details on CEDRE’s Lagrangian particle solver may be found

in [15]. The Eulerian ice crystal simulations are performed with University of Twente’s in-house code

MooseMBIce. Building on the experience with numerical simulation of supercooled large droplets

[16], the capabilities of MooseMBIce were recently extended for ice crystals and the method was

coupled to the in-house Navier-Stokes solver. Further numerical details on the present Euler-Euler

simulations may be found in [17].

The present article is organized as follows. First, the equations governing particle dynamics,

heat and mass transfer, as well as phase change along trajectories are provided. Then, the target

geometry and the numerical results obtained with both approaches are compared and discussed.

The main findings and outlooks are summarized in the conclusion.

II. Ice crystal trajectories

Icing due to ice crystals is different from icing due to supercooled droplets in that the effects of

phase change and particle shape on the trajectory have to be considered. Ice crystals are subject to

a warm environment. Therefore, phase change (melting/evaporation/sublimation) and mass/ heat

exchange phenomena with the surrounding air need to be taken into account. Furthermore, ice

crystals encountered in the vicinity of convective clouds display shapes that are far from spherical.

The expressions governing the motion, mass transfer, heat transfer and phase change need to be

modified such that the effect of their shape is explicitly taken into account. These extensions were

described previously for both Lagrangian [18, 19] and Eulerian methods [20–23]. In this section the

trajectory models are briefly described to underline the specifics of each approach.

A. Particle motion

The particle motion is influenced by several forces such as drag, gravity, buoyancy, virtual mass,

Basset history force and lift [24]. Due to the high ratio of particle density and air density and the

small particle sizes found in the present applications, only drag forces need to be considered, in a

fixed frame of reference, as the magnitude of the other forces is negligible in comparison. In order to

account for the presence of moving parts in the target geometry, the particle equations of motion are

solved in a rotating frame of reference while maintaining the geometry fixed. Such description yields
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additional volumetric forces, namely Coriolis and centrifugal forces. The conversion from fixed to

rotating frames of reference is then handled via mixing planes. The corresponding equations for

Lagrangian motion and Eulerian momentum are given in Table 2 and 3, respectively. In these tables

the terms ~fD and ~fI correspond to the drag forces and inertial forces, respectively. The inertial

forces ~fI are due to the motion of the reference frame.

A number of relations for the drag coefficient CD can be found in [25–27]. These relations

take the particle shape into account by means of a particle sphericity or aspect ratio. Benchmark

test cases performed within the HAIC project showed that these drag relations yielded very similar

results. In the present work, the drag coefficient proposed by Ganser [26] is chosen because of

its relative simplicity, while including two sphericity parameters: the particle sphericity Φ and the

crosswise particle sphericity Φ⊥. The particle sphericity Φ is the ratio of the surface area of a sphere

with the same volume as the particle and the true surface area A of that particle, i.e. Φ = πd2
p/A.

The crosswise sphericity φ⊥ is the ratio of the cross-sectional area of the volume-equivalent sphere

and the area of the projection of the considered particle on a plane perpendicular to the flow. Ganser

[26] proposed a drag relation that depends on a Stokes shape factor K1 and a Newton shape factor

K2, see Eq. (1). These shape factors are fitted to experimental data and are a function of the

particle sphericity and of the projected area in the direction of motion, see Table 1. The second

part of shape factor K1 is non-zero if the particle is settling in a tube with diameter dtube and is to

be omitted when the tube is absent.

CD = 24
ReK1

(
1 + 0.1118 (ReK1K2)0.6567

)
+ 0.4305K2

1 + 3305
ReK1K2

, for ReK1K2 ≤ 105. (1)

The particle Reynolds number is given by:

Re = ρadp |~va − ~vp|
µa

, (2)

where ρa is the density of air, dp is the particle volume-equivalent diameter, µa is the dynamic

viscosity of air, and ~va and ~vp are the air and particle velocity, respectively.

B. Particle heat transfer and phase change

In the present simulations, along the particle trajectory three phase change processes may occur:

sublimation, melting and evaporation. These three phase changes are driven by diffusive mass and
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Table 1: Stokes’ and Newton’s shape factors [26].

Shape K1 K2

Isometric K1 =
(

1
3 + 2

3 Φ−1/2)−1 − 2.25 dp

dtube
K2 = 101.8148(− log10 Φ)0.5743

Nonisometric K1 =
(

1
3 Φ−1/2
⊥ + 2

3 Φ−1/2
)−1
− 2.25 dp

dtube
K2 = 101.8148(− log10 Φ)0.5743

heat transfer phenomena between the particles and the surrounding gas.

The governing equations are described in the following, with a particular focus on differences

between the Euler-Lagrange method and the Euler-Euler method. The Lagrangian solver imple-

ments particle sublimation/evaporation using Spalding’s standard model [28]. The mass flux of

water vapor at the particle’s surface due to sublimation/evaporation reads

dmp

dt
= −πdpShρaDv ln (1 +BM ) , (3)

with dp the particle diameter. The expressions for the Sherwood number Sh and the diffusivity Dv

of the vapor species v are provided further in Eqs. (15) and (10), respectively. When considering

the evaporation of a single species, BM simplifies to:

BM = yv,s − yv,a
1− yv,a

, (4)

where yv,s and yv,a denote water vapor mass fractions at the particle surface and at the outside of

the water vapor layer surrounding the particle (infinity for a fluid at rest), respectively. In icing

applications, vapor mass fractions generally remain small (of the order of 10−3) due to the low

temperature of the carrier phase and low particle volume fractions (of the order of 10−6). Thus,

yv,s � 1 and yv,a � 1. It follows that BM � 1, 1− yv,a ≈ 1 and finally

ln (1 +BM ) ≈ BM ≈ (yv,s − yv,a) . (5)

Equation (3) may then be approximated as:

dmp

dt
= πdpShρaDv (yv,s − yv,a) . (6)

Because CEDRE is also used for aeronautic combustion and solid propulsion applications for which

the aforementioned simplifications are not applicable [29], the Lagrangian method uses Eq. (3),
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while the Eulerian method relies on the simplified formulation of Eq. (6). It is verified numerically

that both equations lead to nominally identical results for the occurring vapor mass fraction ranges.

The model for the melting of the ice particles is based on work of Mason [30] on the melting of

hailstones. The energy equation governing the transfer of heat between the air and the particle

during melting can be written as:

Q̇c = ṁvLv + ṁfLf =⇒ πdpNuka
ln (1 +BT )

BT
(Ta − Tf ) = ṁvLv (Tf ) + ṁfLf (Tf ) , (7)

with BT defined as:

BT = (Ta − Tf )cp,v
Lv(Tf ) . (8)

Here, ṁf is the fusion mass flow rate, ṁv is the evaporating mass flow rate and Lf and Lv are the

latent heats of fusion and evaporation, respectively. In Eq. (7) the kinetic energy associated with

the velocity of the particle surface is neglected because it is typically very small compared to the

enthalpy Lf associated with the phase change of the particle. The heat conduction is governed by

the particle equivalent diameter dp, the heat conduction coefficient of air ka, the particle Nusselt

number Nu and the difference between the air temperature Ta and the fusion temperature Tf .

In Eq. (8) cp,v denotes the heat capacity of the gaseous vapor species at constant pressure. The

conductive heating term Q̇c may be simplified analogously to the mass transfer term, assuming

BT � 1, yielding:

Q̇c = ṁvLv + ṁfLf =⇒ πdpNuka (Ta − Tf ) = ṁvLv (Tf ) + ṁfLf (Tf ) . (9)

Consistently, the Euler-Lagrange simulations solve Eq. (7), while the Euler-Euler simulations rely

on the simplified description of Eq. (9).

As is apparent from Eq. (3) and Eq. (9), the evaluation of melting and evaporation rates requires

the knowledge of transport properties at the particle location, in particular the vapor diffusivity

Dv and heat conduction ka of the vapor-air mixture. In the Euler-Lagrange simulations, the vapor

diffusivity Dv is obtained via an imposed Schmidt number for the vapor species:

Dv = µv
ρaSc

, (10)
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where the vapor viscosity µv is obtained from Sutherland’s law for vapor. On the other hand, the

Euler-Euler simulations rely on Schirmer’s law [31]. Evidence suggests that the slight numerical

differences (of the order of a few percent) induced by the use of these different formulae explain the

differences observed for the melting ratios obtained by the two approaches. Deploying a unified set

of thermophysical models for the carrier phase of both approaches, however, was beyond the scope

of the present comparison.

Properties of the vapor-air mixture are based on a mass-weighted average in the Euler-Lagrange

simulations. In particular, the heat conductivity is evaluated as:

ka =
∑
i

yika,i, (11)

while the Euler-Euler simulations use just air properties. Given the very low vapor mass fractions

encountered in the present simulations, the resulting differences are again negligible.

During melting the particle will evolve towards a spherical shape as surface tension effects

come into play. This complex process is not sufficiently understood yet. Therefore, a simple model

[18, 19] is applied to approximate this evolution. In this approximation the sphericity is interpolated

between Φ0, its original value, and 1, the sphericity of a perfectly spherical particle.

Lagrangian: Φ =
(
mp,i

mp

)
Φ0 +

[
1−

(
mp,i

mp

)]
, (12)

Eulerian: Φ =
(
ρiαi
ρpαp

)
Φ0 +

[
1−

(
ρiαi
ρpαp

)]
, (13)

where

mp = πρp
d3
p

6 , mp,i = πρi
d3
p,i

6 , αp = αi + αw.

The corresponding equations for particle mass and energy for each of the three stages are given

in Table 2 for the Lagrangian approach and in Table 3 for the Eulerian approach.

For the Nusselt number a relation that was derived in [32] is applied, i.e.

Nu = 2
√

Φ + 0.55Pr1/3Φ1/4
√
Re. (14)

This equation can be seen as an extension to non-spherical particles of the Frössling relation [33] for

spherical particles. The Sherwood number Sh of the vapor species is linked to the Schmidt number
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Table 2: Lagrangian trajectory model

Motion mp
d~vp
dt

= ~fD + ~fI

Tp < Tf Mass dmp

dt
= −πdp

Sh
Φ ρaDv ln (1 +BM ) = −ṁsub

Temperature mpcp,i
dTp
dt

= πdp
Nu
Φ ka

ln(1+BT )
BT

(Ta − Tp)− ṁsub (Lf + Lv)

Tp = Tf Mass: particle dmp

dt
= −πdp

Sh
Φ ρaDv ln (1 +BM ) = −ṁv

Mass: ice core Lf
dmp,i

dt
= −ṁfLf = −πdp

Nu
Φ ka

ln(1+BT )
BT

(Ta − Tf ) + ṁvLv

Tp > Tf Mass dmp

dt
= −πdpShρaDv ln (1 +BM ) = −ṁv

Temperature mpcp,w
dTp
dt

= πdpNuka ln(1+BT )
BT

(Ta − Tp)− ṁvLv

Table 3: Eulerian trajectory model

Momentum ∂αp~vp
∂t

+∇ · (αp~vp~vp) = αp
~fD
mp

+ αp
~fI
mp

Number density ∂np
∂t

+∇ · (np~vp) = 0

Tp < Tf Mass ∂αi
∂t

+∇ · (αi~vp) = −αi
6

ρid2
p

Sh
Φ ρaDv (yv,s − yv,a) = −α̇sub

Energy ∂αiTp
∂t

+∇ · (αiTp~vp) = αi
6

ρicp,id2
p

Nu
Φ ka (Ta − Tp)− α̇sub

Lf + Lv
cp,i

Tp = Tf Mass: ice ∂αi
∂t

+∇ · (αi~vp) = − (αi + αw) 6
ρid2

pLf

[Nu
Φ ka (Ta − Tf )

−Sh
Φ ρaDvLv (yv,s − yv,a)

]
= α̇m

Mass: water ∂αw
∂t

+∇ · (αw~vp) = ρi
ρw
α̇m − (αi + αw) 6

ρwd2
p

Sh
Φ ρaDv (yv,s − yv,a)

Energy ∂αpTp
∂t

+∇ · (αpTp~vp) =
(
ρi
ρw
− 1
)
α̇mTf

− (αi + αw) 6
ρwd2

p

Sh
Φ ρaDv (yv,s − yv,a)Tf

Tp > Tf Mass ∂αw
∂t

+∇ · (αw~vp) = −αw
6

ρwd2
p
ShρaDv (yv,s − yv,a) = −α̇v

Energy ∂αwTp
∂t

+∇ · (αwTp~vp) = αw
6

ρwcp,wd2
p
Nuka (Ta − Tp)− α̇v

Lv
cp,w

Sc and Nusselt number Nu by the Chilton-Colburn analogy:

Sh = 2
√

Φ + 0.55Sc1/3Φ1/4
√
Re. (15)

The results from the model for the phase change described in this section are compared to the

results from experiments performed by Hauk [32, 34]. The agreement between the measured and
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computed melting times and final droplet diameter was very good [32].

To summarize, the Lagrangian trajectory approach solves four trajectory equations for particle

massmp, ice core massmp,i, velocity ~vp and temperature Tp. In the Eulerian approach five equations

are solved: ice volume fraction αi, water volume fraction αw, particle number density np, particle

velocity ~vp and particle temperature Tp.

III. Ice crystal impingement

The interaction of a (partially melted) ice crystal with a wall is a complex process. The impact

event will result in different outcomes depending on the surface properties (dry or wet wall, surface

roughness, surface temperature) as well as the state of the ice crystal (degree of melting, velocity).

The model for ice crystal impact applied in the present work was described previously in [18, 19].

The impact process depends on two parameters, a dimensionless parameter related to the kinetic

energy that defines the different impact regimes, and a probability of particle deposition. The

impact model and the secondary particle characteristics are described in sections IIIA and III B,

respectively. Furthermore, in the Eulerian approach the treatment of the secondary particle re-

injection is not straightforward. The implementation of the secondary cloud in the Lagrangian and

Eulerian method is treated in sections III C and IIID, respectively.

A. Impact model

An ice crystal that impacts a surface can either stick to the surface, rebound from the surface

or shatter into a number of smaller fragments. Particle impact on a dry surface was investigated

experimentally for hailstones [35–37] and for ice crystals [34, 38, 39]. Vidaurre and Hallett [39]

experimentally investigated the breakup of 5-320 µm sized ice crystals and Guégan et al. [35]

investigated the breakup of hailstones with diameters between 12.9 and 42 mm. Both studies

showed that the particle kinetic energy based on the normal component of the particle velocity is a

good indicator for the impact behavior of the particle. As a result a dimensionless impact parameter

or modified Weber number L is introduced, which is the ratio of kinetic energy and surface energy:

L = ρpdpv
2
n

12eσ
. (16)
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The surface energy eσ is defined as

eσ (T ) = eσ0 exp
[
Qs
R

(
1
Tp
− 1
T0

)]
. (17)

Vidaurre and Hallett [39] assumed the initial surface energy eσ0 to be 0.12 J m−2 at T0 = 253

K. Higa et al. [36] investigated the impact of hailstones with radii between 1.4 and 36 mm and

according to the results of their research the activation energy Qs is equal to 48.2 kJ/mol. An impact

model is defined with three possible impact regimes, which depend on the value of parameter L:

L < L1 elastic particle bouncing, restitution coefficient ξ = 1,

L1 < L ≤ L2 inelastic particle bouncing, restitution coefficient ξ < 1,

L > L2 particle fragmentation, restitution coefficient ξ � 1.

In case of inelastic rebound the particle loses kinetic energy due to crack formation within the

particle, but the particle itself remains in one piece. The threshold values L1 and L2 are set to 0.5

and 90, respectively, in accordance with literature data [35, 36, 38, 39].

Upon an impact event the secondary particles can be partly re-emitted into the flow or partly

remain on the surface. The presence of liquid water in the air, in the particle, or as a thin film on the

wall, will strongly influence the sticking ability of the particles [40, 41]. Experimental observations

suggest [42, 43] that the particle sticking efficiency mainly depends on the ratio of liquid water

content (LWC) and total water content (TWC). The sticking efficiency ε is defined as the ratio of

particle mass that sticks to the surface and the total impinging particle mass. In addition, two

separate efficiencies for the mixed-phase regime (ice crystals and droplets) and for the glaciated

regime (partially melted ice crystals) [44] need to be considered because it was observed that for the

same ratio LWC/TWC the sticking efficiency was higher for melted particles than for mixed-phase

conditions. In the present study, only melting crystals are considered so that the evaluation of the

sticking efficiency εic reads [19]:

εic = (Kic − 2) η3 + (3− 2Kic) η2 +Kicη (18)

where the melting ratio η is defined as the ratio between liquid and total water content:

η = LWC
TWC (19)
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The value of the dimensionless parameter Kic = 2.5 in eq. 18 was adjusted to match experimental

data [19].

It should be noted that the present impact model is very basic in that it does not treat the heat

exchange at the surface nor any splashing or erosion effects. A heated surface enhances particle

melting which has an effect on the particle’s sticking ability. The accreted ice layer is influenced by

splashing and erosion effects as was shown by experiments [45]. Furthermore, the impact thresholds

L1 and L2 are expected to vary with the water amount that is present on the wall or on the particle.

B. Secondary particles

The secondary particles resulting from a bouncing or shattering event may have properties that

are different from those of the parent particle. It is assumed that the particle melting ratio and

density remain unchanged during an impact event. The secondary particle diameter, sphericity and

velocity, however, are different upon bouncing and shattering of the particles. In case of a bouncing

particle, when L ≤ L2, the secondary particle diameter and sphericity remain unchanged. The

secondary velocity depends on the normal and on the tangential restitutions coefficient as indicated

in the second column in Table 4. In case of a fragmenting particle, when L > L2, a new secondary

particle diameter and sphericity are introduced. The sphericity is chosen randomly between 0.7

and 0.9. The secondary diameter depends on an approximation of the diameter dmax of the largest

fragment observed in impact experiments [38, 46]:

dmax =
(
L2

L

)2/11
dp. (20)

The velocity of the fragments now depends on the tangential restitution coefficient ξt and normal

restitution coefficients ξnn and ξnt. The latter two are the fraction of the normal momentum

transferred into normal momentum and the fraction of the normal momentum transferred into

tangential momentum. The restitution coefficients are derived from results of experiments [34, 38,

46] and are given in Eq. (21). An overview of secondary particle characteristics in case of shattering

is provided in the third column of Table 4.
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Table 4: Characteristics secondary particles [18, 19].

Property Bounced particle Fragmented particle

Mass mp,s (1− ε)mp (Lagrangian) (1− ε)mp (Lagrangian)

Volume fraction αp,s (1− ε)αp vn
vn,s

(Eulerian) (1− ε)αp vn
vn,s

(Eulerian)

Diameter dp,s dp Rddmax ∗

Sphericity Φs Φ Rφ ∗∗

Velocity ~vp,s ξt [ ~vp − (~vp · ~n)~n]− ξnn (~vp · ~n)~n ξt [ ~vp − (~vp · ~n)~n]− (~vp · ~n)
(
ξnt~t+ ξnn~n

)
*Rd is a random number between 0 and 1, **Rφ is a random number between 0.7 and 0.9.

ξt = 1, ξnt = 0.4
(

1−
√
Lc2
L

)
, ξnn =


1 if L ≤ Lc1,

(Lc1
L
)1/3 if L > Lc1.

(21)

C. Implementation of Eulerian (post-)impact method

A standard Eulerian method can handle one particle size, volume fraction, velocity and tem-

perature per grid cell. Therefore, singularities may arise in an Eulerian framework in the event

of droplet trajectory crossing [47–49]. The treatment of secondary particles then needs a specific

strategy because intersecting flows with different particle properties are introduced by bouncing or

shattering. At the surface of impact both an incoming and an outgoing particle may be present. In

the present study the incoming (parent) particles and the outgoing (secondary) particles are treated

separately. The predefined distribution of parent particles and secondary particles, which can be

Gaussian, Rosin-Rammler or bimodal, consists of a discrete set of N points (bins) which do not

mutually exchange mass nor momentum. The particles in each individual bin have the same shape,

velocity and temperature. A more detailed explanation of approaches using a poly-disperse size

distribution is given in [12].

The calculation for the parent particles is carried out first. The trajectories and catching

efficiency are determined for either a mono- or poly-disperse particle distribution which is such that

the sum of the volume fractions is equal to one. The catching efficiency computed for the solid
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surface of each bin βbin is corrected for the fraction of particles εbin that sticks to the surface to

obtain the catching efficiency of sticking particles:

βbin,stick = εbinβbin = εbin

[
αbinρp~u · ~n
TWC|~v∞|

]
, (22)

where ~n is the unit surface normal vector pointing in the direction out of the computational domain

and TWC is the total water content. The value of εbin depends on the impact model described in

[19]. The computation for the parent bins starts with the bin containing the largest parent particles

and the secondary particle mass of each bin is stored in a separate data array. The size of this

separate array depends on the number of secondary particle bins, which can be equal to the number

of parent bins or equal to a newly defined number of bins. If a parent particle rebounds or shatters

the corresponding mass, momentum and energy terms are re-injected in the secondary bin with a

secondary particle diameter closest to the one computed with the impact model. This is done such

that particle mass flux is conserved.

The calculation for the secondary bin is started from the secondary data array that is imposed

as inlet condition on the impingement surface. The far-field values, which were non-zero for the

parent bins, are set to zero when computing the secondary cloud. Then the calculation of the

Eulerian trajectory of the secondary particles can start. If secondary particles re-impinge further

downstream on the surface of the solid geometry, a tertiary particle calculation has to be performed,

etc. This post-impact computation was demonstrated numerically for a NACA-0012 airfoil in [21]

and for a generic turbofan compressor in [22].

D. Implementation of Lagrangian (post-)impact method

In the Lagrangian framework, an impact is detected when the trajectory of a particle intersects

a boundary of the computational domain representing a wall. All necessary particle properties are

then evaluated at the instant and point of impact defined by this intersection. First, the calculated

sticking efficiency at the impact location is compared to a uniformly sampled random number

between 0 and 1 in order to decide whether the current particle sticks to the wall or is re-emitted

into the flow field.

In case of sticking, the particle is simply removed from the computational domain while its
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properties such as mass, momentum, enthalpy, etc., are stored at the location corresponding to the

impinged computational face.

In case of rebound, the velocity vector of the impinging particle is decomposed into a normal and

a tangential component whose magnitudes are then modified according to the relations of Table 4.

In case of shattering, the sum of the masses over the Np re-emitted/secondary particles are set

equal to the mass of the impinging particle:

mp =
Np∑
i

m′p,i =
Np∑
i

w′p,i
π

6 ρ
′
p,id
′3
p,i (23)

where the superscript ′ denotes properties of the re-emitted particles. The physical properties of

the re-emitted droplets in Eq. (23), namely ρ′p,i and d′p,i are given by the wall interaction model.

However, determining the respective particle weights w′p,i is a matter of statistical sampling. In

effect, using a “deterministic” sampling procedure, in which unitary weights are applied to all

particles (wp,i = w′p,i = 1 for all i), is not always feasible as it may induce the generation of a

huge number of particles and a corresponding excessive computational cost. In order to obtain

these fields at a reasonable expense, homogeneously seeding the entire computational domain with

numerical particles appears as important as ensuring similar weights for all particles, as is discussed

in section IVA. Since Eq. (23) provides only a single relation to determine the mass of the secondary

particles, it may either be assumed that each of these numerical secondary particles carries the same

mass (different from the parent particle) or that each secondary particle represents the same (not

necessarily integral) “number” of physical particles. In the present case the first option was chosen

in order to obtain a faster convergence for the impinging and outgoing mass flux profiles. The size

and the sphericity of the secondary particles are then uniformy sampled according to an assumed

size distribution while the density is assumed unchanged. Finally, the azimuthal orientation of the

tangential velocity vector, allowing to specify the velocity vector of the secondary particles in case

of shattering, is chosen via a uniform random procedure.

IV. Results

A test case has been designed to analyse the behavior of ice particles entering in a engine-like

configuration. The geometry consists of a 1.5-stage stator-rotor-stator linear cascade, see Fig. 1,
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Table 5: Geometrical properties.

Blade ratio Rotor Rotor height Rotor Annular hub
stator1 : rotor : stator2 chord [m] (hub-tip) [m] velocity [m/s] radius [m]

16 : 20 : 25 0.04 0.04 140 10.146

[m]

[m
]

Fig. 1: Schematic generic stator-rotor-stator configuration with imposed boundary conditions.

originally designed at Duke University [50]. A similar configuration was used in the research of,

amongst others, Gopinath et al. [51] and Giangaspero [52].

A. Benchmark test case

For this cascade the ratios of the number of blades equal 16:20:25 (first stator : rotor : second

stator) and the chord of the rotor blade is set to 4 cm, see Table 5. The chords of the first and

second stator equal 5 cm and 3.2 cm, respectively. The annular radius of the cascade is set very

large (r/crotor ≈ 254) such that the configuration can be considered as a two-dimensional cascade.

This accommodates computational methods that cannot handle periodic boundary conditions in

the circumferential direction. The rotor moves in positive y-direction at a velocity of 140 m/s. The

grid is linearly cascaded using periodic boundary conditions and in z-direction the hub and casing

are solid walls. The sliding interfaces between the first stator and the rotor and that between the

rotor and the second stator are represented as mixing planes, which allows a steady-state analysis

of the flow through the configuration, see Fig. 1.
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Table 6: Aerodynamic conditions.

Mach Incidence Total pressure Total temperature Relative Exhaust static
M∞ angle [◦] ptot [Pa] Ttot [K] humidity [%] pressure p [Pa]

0.25 53.5 37850 296 25 40472

The grid applied in the numerical simulations is a multi-block structured grid consisting of

8,320, 6,592 and 8,320 cells for stator 1, rotor and stator 2, respectively. The inlet block contains

1,344 control volumes and the outlet block contains 3,840 control volumes. The obtained solution

(e.g. catching efficiency) on this grid resolution is checked to be grid-independent in the majority

of the domain. Only in regions with sharp gradients some grid dependency is still observed, see

section IVE.

B. Aerodynamic conditions

The air flow field is obtained employing the Euler equations for steady inviscid flow. At the

inlet the stagnation pressure, stagnation temperature and the velocity vector are prescribed and at

the outlet the static pressure is prescribed, see Table 6. The direction of the inlet velocity is set at

an incidence angle of 53.5◦, which represents, for instance, a fan upstream of the first stator. The

aerodynamic field is computed for a pressure level of ptot = 37,850 Pa. The relative humidity RH

is set to 25%. In the Eulerian framework this parameter will only affect the mass transfer along

the particle trajectories, since the air flow field is computed for dry conditions. For the Lagrangian

simulations a separate mass conservation equation is solved for the vapor species.

The aerodynamic conditions are set such that at least some ice particle melting is to be expected.

The pressure coefficient cp and the air temperature Ta obtained with the in-house flow solvers

CEDRE and MooseMBFlow used for the Lagrangian and Eulerian ice crystal trajectory simulations,

respectively, are compared in Fig. 2. From this plot it can be seen that the agreement for the

surface distribution of cp is very good. The surface distributions for the air temperature Ta are,

however, slightly different, i.e. with a maximum difference of less than 0.5K on the suction side, with

CEDRE’s values above those of MooseMBFlow. This difference increases with increasing distance

from the compressor inlet. In order to eliminate these slight discrepancies, the same aerodynamic
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Fig. 2: Distributions surface pressure coefficient cp (top) and air temperature Ta (bottom).

flow field could have been used for the Eulerian as well as for the Lagrangian simulations of the

dispersed phase. However, this would have required an identical input/ output format for the

aerodynamic solution fields, which turned out to be unavailable. Moreover, the agreement between

the aerodynamic flow fields was found sufficiently close to warrant meaningful comparisons between

the results from the dispersed phase solvers, as is demonstrated below.

C. Conditions for dispersed phase

The particles are represented as isometric spheroids with a sphericity of either Φ = 0.7 (run

a and b) or Φ = 1 (run c), see Table 7. The particles enter the compressor stage at an initial
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Table 7: Particle properties.

Run Volume-equivalent Sphericity Crosswise Temperature IWC Density
# diameter dp [µm] Φ sphericity Φ⊥ Tp [K] [kg/m3] ρi [kg/m3]

a 50 0.7 0.7 268 0.002 917

b 20 0.7 0.7 268 0.002 917

c 50 1.0 1.0 268 0.002 917

temperature of -5◦C and the initial velocity of the particles equals the inlet air velocity. The results

for two different volume-equivalent particle sizes will be shown: dp = 50 µm (run a) and dp = 20

µm (run b). For validation and comparison purposes, one set of computations is performed with a

deactivated impact model, i.e. all particles are assumed to stick to the surface. The other set of

computations is performed by assuming partial deposition according to the impact model described

in section III. Imposing the boundary conditions for the Eulerian solver is very straightforward and

very similar to that for the carrier phase. At the mixing plane interface the conservative variables

for the dispersed phase are again averaged in circumferential direction. This is not the case for the

Lagrangian solver, for which particular care needs to be taken when injecting the particles into the

next stage.

In the Lagrangian simulations, 5 · 105 particles are injected at the inflow boundary condition

and this target number is kept constant when they are re-injected into the rotor and second stator

stages according to the averaged properties of the dispersed phase calculated at the mixing plane.

At the inlet the particles are positioned such that the distance h between the particles is identical.

This point is crucial insofar as a homogeneous seeding was found to drastically improve convergence.

This behavior may be understood through an analogy with numerical integration. Assume that the

particles are positioned on a segment [a, b] in such a way that they are separated by a constant

spacing h = (b − a)/N , with N the number of particles. Furthermore, assume that their weights

wp (see Eq. 23) are imposed such that they match a mass flux distribution given by a function

wp,i = f(xi). Then, applying the trapezoidal rule at the particle positions to approximate the
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resulting mass flux yields:

∫ b

a

f(x)dx ≈ h

2 [f(a) + 2f(a+ h) + 2f(a+ 2h)...+ f(b)] =
N∑
i=1

kiwp,i, (24)

with ki = h/2 for i = 1, i = N and ki = h otherwise. This approximation yields a quadratic

convergence rate with respect to the spacing h ∼ 1/N . In contrast, if the position of the n particles

on the segment [a, b] is randomly sampled as in standard Monte-Carlo approaches, the convergence

rate of the numerical integration given by Eq. (24) will drop to 1/
√
N according to the central limit

theorem. Although simplified, the above reasoning helps to understand how homogeneous particle

seeding may significantly improve convergence in Lagrangian simulations. Also, this reasoning nat-

urally applies to all other phase space variables of the spray density function, such as size, velocity,

temperature, etc. Clearly, enforcing uniform spatial seeding is straightforward when injecting par-

ticles on planes. However, it is much more complicated on curved surfaces, such as airfoils, where

the impinging particles need to be re-emitted when using a realistic particle wall interaction model.

Such procedure is not available in the Lagrangian solver yet and it remains to be shown how much

it could alleviate convergence issues.

A complementary strategy to limit convergence issues could consist in the use of a mollification

procedure when projecting Lagrangian data on the Eulerian grid. With this type of approach, the

influence of a particle on the Eulerian averages is not only accounted for in the cell where the

particle is located, but also in a set of neighboring cells [53]. From a theoretical point of view, this

mollification step may be seen as a regularization of the Dirac delta functions used to approximate

the spray density function. The implementation of such mollification procedure is currently being

investigated. In the meantime, in a post-processing step remaining oscillations are damped by

simply applying a diffusion equation to the resulting mass flux profiles:

∂ṁ

∂t
−∇. ε

2

τ
∇ṁ = 0 (25)

here ε and τ are characteristic length and time scales, respectively, of the diffusion process. ε is

set to a local characteristic curvilinear length scale ls. Eq. (25) is then solved with an explicit

first-order time advancement with the time scale τ = ω∆t linked to the CFL stability condition

for its numerical resolution. It is well-known that this stability condition is very restrictive for an
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Fig. 3: Diffusion procedure applied to raw Eulerian fields obtained for run a from Lagrangian

simulations for full deposition (left) and for partial deposition mode (right).

explicit time advancement. However, the cost remains acceptable since only high wave number

oscillations are to be damped. Finally, the diffusion equation is deactivated according to minimum

and maximum threshold values ṁlow and ṁup with respect to the peak mass flux. This ensures

that both the peak values and the impingement boundaries do not become overly smeared. These

values were set to ṁlow = 0.1 ṁmax and ṁup = 0.9 ṁmax, respectively, in the present case. Figure

3 illustrates raw and smoothed profiles for impinging mass fluxes (full deposition simulation) and

outgoing mass fluxes (partial deposition model). The discussion and analysis of these results are

provided in sections IVD and IVE. For the moment, the sole focus is on the illustration of the

post-processing procedure for the Lagrangian results. It appears that the impinging mass flux profile

displays only very slight oscillations on the left of Fig. 3 so that the diffusion procedure has hardly

any effect. On the contrary, very significant oscillations occur for the outgoing mass flux profiles, as

illustrated on the right side of Fig. 3. Here, five iterations of the diffusion equation are necessary to

obtain a smooth curve. Clearly, the amount of diffusion applied is somewhat arbitrary since a scale

separation between physically meaningful variations and oscillations due to a lack of convergence

cannot easily be established a posteriori. Therefore, it must be emphasized for later analysis that

the Lagrangian results for the outgoing mass flux profiles possess important uncertainties on a large

portion of the pressure sides of the first stator and the rotor.
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Fig. 4: Full deposition, run a (dp = 50 µm, Φ = 0.7, Φ⊥ = 0.7): Distribution of impinging mass

flux ṁimp (left) and melting ratio η (right) on blade surfaces.

D. Lagrangian vs. Eulerian: Full deposition mode

Figures 4, 5 and 6 present the surface distributions of the impinging mass flux ṁimp (left) and

the melting ratio η (right) along the blade surfaces. For the results obtained here it is assumed that

the (partially melted) ice crystals fully deposit on the surface. From the surface distributions of

ṁimp it is seen that, in general, particles impact:
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Fig. 5: Full deposition, run b (dp = 20 µm, Φ = 0.7, Φ⊥ = 0.7): Distribution of impinging mass

flux ṁimp (left) and melting ratio η (right) on blade surfaces.

• on the pressure side of the first stator,

• on the pressure side of the rotor,

• on the suction side of the second stator.

In case of run b, a fraction of the small particles are able to follow the curvature of the blades of the

second stator and impinge on the pressure side close to the trailing edge. The majority of the large
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Fig. 6: Full deposition, run c (dp = 50 µm, Φ = 1.0, Φ⊥ = 1.0): Distribution of impinging mass

flux ṁimp (left) and melting ratio η (right) on blade surfaces.

particles (dp = 50 µm) impinge on the first stator and only a small portion impacts the second stator

or leaves the cascade without impact. For the small particles with dp = 20 µm the results for the

catching efficiency on the first stator and on the rotor are almost equal. Similarly, the comparison

of the results of run a and those for run c indicate that for all these stages particle sphericity Φ has a

negligible effect on the distribution of the impinging mass flux distribution. Furthermore, the peak
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catching efficiency in the region near the leading edge decreases from approximately 0.18 kg/m2s

for the first stator to approximately 0.073 kg/m2s for the second stator. The agreement between

the results for ṁimp obtained from the Lagrangian and the results from the Eulerian method is very

good.

The melting ratio η of small particles (run b) is much higher than the melting ratio of the larger

particles (runs a and c). On the contrary, the effect of particle sphericity variations on melting

appears relatively moderate. It should be noted that the melting ratio range plotted in Fig. 5 is

ten times larger than the range plotted in Fig. 4 and Fig. 6 in order to increase visibility. The 50

µm-diameter particles have an average melting ratio of 0, 0.01 and 0.02 for stator 1, the rotor and

stator 2, respectively. For the particles with dp = 20 µm these values are 0.08, 0.14 and 0.2 for

stator 1, the rotor and stator 2, respectively. The differences in melting ratio of the results from

the Eulerian method and of those from the Lagrangian method are more significant. In general, η

obtained from the Eulerian method is higher than η obtained from the Lagrangian method and this

difference increases with the particle diameter. For the 50-µm ice crystals, however, the gradient of

the distribution of the melting ratio along the blade surface is almost equal for both methods, while

this is not quite so for the 20-µm ice crystals. It is assumed that the differences are a consequence

of the slight temperature differences between the aerodynamic flow fields and discrepancies in the

evaluation of thermophysical properties of the carrier phase for particle heat and mass transfer, see

section II B.

E. Lagrangian vs. Eulerian: Partial deposition mode

In the second set of simulations the full impact model described in Section III is applied. In

the Eulerian simulation the secondary cloud of rebounded or shattered particles is distributed over

five bins consisting of different particle sizes: 50 µm, 40 µm, 30 µm, 20 µm, and 10 µm. How-

ever, the periodic boundaries in the linear cascade introduce the possibility of crossing trajectories,

which causes the computation to diverge. This trajectory crossing is purely numerical as particle

trajectories are almost never expected to cross in icing applications due to the very low particle

volumetric concentrations encountered. In the numerical method crossing of particle trajectories

is prevented by introducing additional bins that handle the pressure and suction surface of each
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blade separately. So, instead of N secondary bins, now 6N secondary bins are to be solved for.

Re-impingement of rebounding or secondary particles caused by shattering from an upstream blade

row is taken into account in a new iteration of the secondary cloud. Another problem arises by the

impact model itself. At the leading edge of a blade it may happen that the secondary particles get

a large negative velocity in x-direction and/or a large velocity in y-direction. When this occurs the

secondary particles can either cross trajectories in front of the blade or they can move even further

upstream back into the mixing plane. To avoid this the secondary particle velocity in x-direction

is set to a minimum value of 0 m/s, the same velocity correction being applied in the Lagrangian

method for consistency. Although adapting the physical model is not a preferred solution, it only

affects a small fraction of secondary particles that rebounds from the leading edge of the blades.

The impinging mass flux ṁimp and the outgoing mass flux ṁout are presented in Fig. 7 on

the left and right side, respectively, for run a. When the results for the impinging mass flux for

partial deposition are compared to the ones for full deposition, see Fig. 4, it is seen that particles or

particle fragments re-impinge close to the trailing edge on the pressure side of the first stator and

on the blades further downstream in the cascade. Furthermore, it can be seen that a fraction of the

particles sticks to the surface, since the impinging mass flux is larger than the outgoing mass flux.

This sticking effect is most clearly seen for the second stator. In the case of partial deposition the

difference between the results from the Lagrangian method and the ones from the Eulerian method

is significant. For the Eulerian method a large fraction of the ice crystals rebounds near the trailing

edge at the pressure side of the first stator and of the rotor. This leads to much higher mass fluxes

further downstream in the cascade compared to the situation for the Lagrangian method, which

suffers from large uncertainties due to lack of convergence in the same area, as detailed in section

IVC.

The distribution of the melting ratio along the blade surfaces is given in Fig. 8. Note that the

range for the melting ratio increases from left to right by a factor 10 (rotor) and 100 (stator 2). From

the comparison of the results from the Lagrangian method and the ones from the Eulerian method it

is seen that different outcomes are also obtained for the particle melting ratio, which can be ascribed

to a number of factors. First, it is obvious that the multiple re-impingements at the trailing edge
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Fig. 7: Partial deposition, run a (dp = 50 µm, Φ = 0.7, Φ⊥ = 0.7): Distribution of impinging mass

flux ṁimp (left) and outgoing mass flux ṁout (right) on blade surfaces.

of the blades in case of the Eulerian method results in different melting ratios compared to the

Lagrangian method as a consequence of the different trajectories that the secondary particles follow

in that region. Secondly, the difference can be explained partly by the discretization used for the bins

in the Eulerian approach. For instance, particles that are supposed to rebound with a diameter of 48

µm are re-injected as part of the bin containing 50 µm particles, while in the Lagrangian approach
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the prescribed distribution of particle diameters is preserved. Since a fraction of the ice crystals

are fully rebounding, and sublimate or evaporate along their trajectory, the Eulerian discretization

should result in a lower melting ratio compared to the result of the Lagrangian approach. This is

true at least for the melting ratio along the surface of the first stator and along the surface of the

rotor. However, the melting ratios are enhanced due to fragmentation, compare Fig. 8 to Fig. 4

(right). This results in the melting ratio for the Eulerian method becoming larger than that for the

Lagrangian method further downstream in the cascade, as was the case for full deposition. Finally,

the Eulerian approach displays significant numerical dissipation at sharp gradients in the particle

density field due to the used flux scheme and reconstruction limiter. For this test case ice crystal

impingement results in a number of closely packed particle trajectories that dissipate considerably.

It is expected that this feature is most visible for the melting ratio at the pressure surface of the

second stator, for which the melting ratio obtained with the Eulerian method is much higher than

the one obtained with the Lagrangian method.

F. Lagrangian vs. Eulerian: Problems encountered

Despite the application of a special post-impact method for the Eulerian approach, that handles

crossing trajectories as a consequence of periodic boundary conditions, numerically the crossing of

trajectories that originate from concave surfaces could not be avoided. The slightly concave surface

30



at the pressure side of the blades results in converging particle trajectories. In the Eulerian method

the resulting averaged trajectory is forced back towards the airfoil surface. This leads to multiple

rebound or shattering events, which are not seen in the results from the Lagrangian method. In

order to show the effect of the concave surface, the Eulerian method is repeated for run a in which

the first stator has been adapted to have a non-concave, straight surface near the trailing edge of the

pressure side. In the left graph of Fig. 9 the distribution of the surface pressure coefficient cp of the

aerodynamic flow field around the stator vane with a concave surface (black line) and the one with a

straight surface (grey line) are presented. The difference in aerodynamic conditions near the pressure

surface leads to a slightly different impinging mass flux over most of the surface, see the right side

of Fig. 9. However, the largest difference is the absence of the peak in the distribution of ṁimp on

the pressure surface near the trailing edge, which demonstrates that particle re-impingement does

not happen in case of a straight (or convex) surface.

As far as the Lagrangian approach is concerned, specific pre- and post-processing steps, namely

the equidistant distribution of particle injection points at the inlet plane as well as on the mixing

planes on the one hand and a diffusion procedure applied to the resulting fields on the other (see

sec. IVC) appeared necessary to obtain satisfactory quantitative results for the impinging and

outgoing mass fluxes. Despite these efforts, important uncertainties remained for the outgoing mass

fluxes on a significant portion of the pressure side for the first stator and for the rotor. Moreover,

these procedures were tailored to the present simplified test case and extensions applicable to more

realistic configurations need to be developed. Finally, these procedures may prove insufficient to

alleviate the convergence issues inherent to the Lagrangian approach to such configurations.

V. Conclusion

This study presented a detailed comparison between an Eulerian and a Lagrangian approach

for the numerical simulation of melting ice crystal trajectories and impacts in an engine-like con-

figuration. When particles were assumed to fully deposit on the blade surfaces, impinging mass

flux profiles obtained with both approaches were in excellent agreement. Some disagreement was

observed for the melting ratio, which could be ascribed to the different modeling of the air flow and

slightly different transport properties for the vapor species used by the two methods. On the basis

31



-1

-0.5

0

0.5

1

1.5

0.06 0.08 0.1

P
re
ss
ur
e
co
effi

ci
en
t
c p

[-]

x-coordinate [m]

Stator 1

0

0.05

0.1

0.15

0.2

0.25

-1 -0.5 0 0.5 1

Im
pi
ng

in
g
m
as
s
flu

x
ṁ
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Fig. 9: Distribution of pressure coefficient cp (left) and impinging mass flux ṁimp (partial

deposition, right) obtained for run a with the Eulerian method for stator 1.

of this agreement, it could be interesting to compare the present results with those of other numer-

ical solvers dedicated to ice crystal trajectory simulations in engine-like configurations. In addition,

variations of parameters such as particle sphericity and diameter were performed to evaluate their

effect on melting and evaporation for the full deposition case. The impinging mass flux distributions

appeared to change slightly with varying particle size while they were almost insensitive to varia-

tions in sphericity, at least for the range of values explored here. As far as melting is concerned,

the effect of variations of particle size was very significant and appeared largely predominant over

shape variations.

When a realistic model predicting rebound, shattering or sticking as possible outcomes of particle

impacts on the blades was used, differences between both approaches became more pronounced. On

the one hand, the Eulerian method displayed some difficulties in handling concave surfaces due to

emanating crossing trajectories, which lead to a disagreement in the results. Further downstream in

the cascade the averaging over the mixing planes enhanced the differences. On the other hand, the

Lagrangian approach struggled to produce converged fields. The convergence behavior was partly

improved through an injection approach ensuring homogeneous spatial seeding and the application

of a diffusion procedure as a post-processing step. However, important uncertainties remained on

portions of the pressure side of the first stator and rotor for the outgoing mass flux, precisely at
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locations where the disagreement between both approaches was the most significant. In addition,

the specific pre- and post-processing steps applied to the Lagrangian results took advantage of the

present simplified configuration and further developments are necessary to generalize them.

In summary, it appears that standard Eulerian and Lagrangian approaches encounter some of

their known limitations when handling a linear cascade, i.e. the description of crossing trajectories

in the Eulerian approach versus convergence issues for the Lagrangian approach. These limitations

need to be addressed through additional research efforts to render numerical simulations of realistic

engine configurations feasible. In addition, the aforementioned trajectory/ impingement models

need to be coupled to an accretion module to perform numerical simulations of icing phenomena.

Thus, extensions of the impingement models to account for the interaction between the melting

ice crystals and the freezing liquid films are necessary. Furthermore, particle/ ice reemision due

to liquid film atomization via aerodynamic or centrifugal forces needs to be taken into account.

Once these phenomena are appropriately modeled and coupled within a 3D icing simulation suite,

the capacity of the latter to qualitatively predict the occurence of accretion depending on flight

regimes and exterior conditions may be assessed. These different aspects are the subject of ongoing

work. Obtaining reliable experimental data on ice crystal melting ratios and ice layer thicknesses in

engine like configurations seems very challenging and additional efforts are necessary if quantitative

validations of numerical tools are to be performed on realistic engine configurations in the future.
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