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Abstract

Device-to-Device (D2D) direct discovery service is a key component for Proximity Services (ProSe) and D2D communications.
Depending on the type of the studied network (pedestrian, vehicular, residential, industrial), large spatio-temporal fluctuation
in mobile users’ density may occur inducing several patterns throughout the day. The current standards only account for fixed
configurations of this service, and currently, the research into adaptive algorithms is done using analytical models and synthetic
scenarios and configurations, which makes such solutions perform poorly on real systems. We propose an adaptive D2D discovery
algorithm that, building upon existing work on user density prediction analytical models of the discovery process, uses historic
network traces to update its operational parameters dynamically. We test the proposed algorithm and compare it to the discovery
mechanism, defined in the Third Generation Partnership Project (3GPP) standards, in order to analyze the feasibility of these types
of solutions. The simulation results show that the proposed algorithm strikes a balance between network utilization and time
required for discovery, which is a very promising starting point for further research on this type of solutions.

Keywords: Wireless Communications, Device-to-Device (D2D), Proximity Services (ProSe), Device Discovery, Prediction, User

Density.

1. Introduction

Device-to-Device (D2D) communications, as introduced by
the Third Generation Partnership Project (3GPP) in Release 12,
are based on geographical proximity. User Equipments (UEs)
are able to detect and communicate with other UEs in their
vicinity [1].

D2D communications are applied in different environments
for both commercial and public safety use. It is already ex-
pected to bring up some advantages like spectrum utilization
optimization and improvement in overall throughput and la-
tency. 3GPP has already defined public safety use cases. It
should maintain communications in environments where we
have little or no coverage like on trains or underground. It
would be also used for a partial or complete network shutdown
occurring due to large scale natural disaster or power cuts. Ex-
tra capacity must be provided when needed, especially in large
metropolitan areas [2].

D2D direct discovery is one of the defined proximity services
along with D2D communication and D2D synchronization. Di-
rect discovery allows UEs to identify users and applications
within reach. D2D discovery can be either used to broadcast
information (called announcement) or targeted at the detection
of a specific device/application in a request/response manner,
used for specific use cases (e.g. D2D relay discovery).

The evolved Node B (eNB) can be part of D2D direct dis-
covery either for resource pool broadcast or resource alloca-
tion [3]. This approach is called mode 1 or “Scheduled”” mode,
and it is used for “in-coverage” scenarios where D2D users are
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connected to the eNB. For “out-of-coverage” scenarios, the dis-
covery resource pool parameters are pre-configured in the D2D-
enabled devices and mode 2 (also referred to as “UE-Selected”
mode) is applied. The UEs autonomously and independently
select resources in order to perform D2D discovery in discrete
time intervals of a fixed duration (“discovery period”). Mode 2
can also be used for in-coverage cases where UEs use their con-
nectivity to the eNB only to get the resource pool configuration
and rely on themselves for resource selection [2].

For D2D discovery (and like any other communication ser-
vice), the number of users is important and its variation affects
the network performance, since mobile users tend to consume
resources in significantly different ways, depending on the time
at which they use network services and the location where they
do. This results in large variations of network usage profiles
or even different daily users’ density profiles according to each
location.

In this paper, we have two main contributions. First, we pro-
pose an online prediction framework, based on Support Vec-
tor Regression (SVR) [4] and trained with real network traces,
able to predict these instantaneous density. SVR is known to be
more efficient for large dataset processing since it uses only few
samples (support vectors) from the training dataset, which re-
duces notably the processing time. In addition, it only requires
minimal computational resources, unlike other regression tools,
such as artificial neural networks (ANN) which consumes more
processing time, needs more complex configuration, and suf-
fers from lack of generality causing probably under/over fitting
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issues. So, we look at base station load profiles extracted from
a real dataset of call detail records (CDRs), analyze and then
classify into three groups based on the users’ density fluctuation
pattern throughout the day. Each profile represent a specific re-
source usage. We integrate a set of these load patterns, in the
ns-3 simulator to implement a realistic network traffic generator
tool.

For our second contribution, we take advantage of those pre-
dicted user density patterns that allow the anticipation of the
potential number users for different types of areas and traffic
classes, and based on that and a state-of-the-art analytical model
for D2D discovery in mode 2 [5], we propose an adaptive algo-
rithm that enhances the discovery process performance for dy-
namic environments. The main challenge for D2D discovery is
increasing messages sending during announcing and monitor-
ing procedures. In particular, announcing UEs would consume
a lot of energy for permanent periodic transmission of discovery
messages. This paper proposes an efficient direct D2D discov-
ery procedure enabling energy saving. We validate our model
with real traces of spatio-temporal UEs density patterns, which
allow us to see how feasible such an approach is.

The rest of the paper is organized as follows. In Section 2,
we discuss the related work in D2D discovery and existent user
density models. In Section 3, UEs density prediction using mo-
bile phone traces is introduced, and in Section refsec:discovery,
an optimization of the UE transmission probability for D2D di-
rect discovery is described. Based on the two previous sections,
we propose, in Section 5, a proactive transmission algorithm
for direct discovery that takes into account the user density pat-
terns. Then, Section 6 shows the evaluation performance of the
algorithm and results analysis for two scenarios with different
user traffic patterns. Finally, we conclude and discuss future
works direction in Section 7.

2. Related Work

Device discovery is not a new concept. WiFi and Bluetooth
already use discovery protocols. However, the communication
range and the frequencies occupied vary from one technology
to another and the choice of one over the other highly depends
on the use case and the need. Over the years, many research
studies had been conducted in order to improve both WiFi and
Bluetooth device discovery performances [6][7][8][9][10] and
[11].

In this paper, we focus on cellular-based discovery. D2D
discovery, as defined by 3GPP in their standards for Proxim-
ity Services (ProSe) [2][3][12], is a periodic unacknowledged
broadcast of announcements (i.e. discovery messages). Each
terminal transmits the discovery message based on a throttling
process using a pre-defined Transmission Probability (which
could be either 0.25, 0.5, 0.75, or 1). A UE sends a discovery
message to all nearby devices to announce its presence and/or
an application it supports. Out of reach UEs would not be able
to receive the discovery message.

Although literature work related to D2D communications
started a while ago, existing research on D2D has focused on
the direct communication and how to mitigate interference and

to control power[13, 14, 15]. In [16] and [17], radio resources
were simultaneously used by cellular as well as D2D links,
thereby saving bandwidth. In [18] and [19], new interference
management and interference cancellation strategies were pro-
posed to enhance the overall capacity of cellular networks and
D2D systems. In [20], the authors proposed a new network
model for a D2D underlaid cellular system. In this system, both
centralized and decentralized power control algorithms were
defined and trade-off between supporting reliable communica-
tion for the uplink cellular user and improving the cellular net-
work throughput.

Most papers on D2D discovery have mainly focused on eval-
uating and enhancing the performance of network-assisted dis-
covery. For example, throughput of network-assisted discovery
was evaluated in [21] and power control strategies were investi-
gated in [22]. In [23] and [24], the eNBs were used to improve
the discovery process in order to allocate resources and prevent
contention. Authors from [25] took advantage of the network
availability as well to speed up the discovery process. There-
fore, for scenarios with infrastructure failures, such work can
not be considered. Discovery needs to be independent of the
network core.

For D2D discovery in mode 2, few contributions were made.
Griffith and Lyons [5] developed an analytical model which cal-
culates the optimal value of the discovery message transmission
probability that minimizes the mean number of periods required
for a successful discovery message transmission. The compu-
tation of this value requires a prior knowledge of the topology
and the number of devices performing discovery, which is not
always the case in real life. Furthermore, this model is static,
and assumes there are no population changes in the network.

End-user communications devices (also known as “User
Equipment”, or UEs) are carried by subscribers that commute
between different places throughout the day (from home to
work, for example), which induce a specific time-dependent
patterns of daily UE density within each base station. Few
recent works investigate the impact of users’ density on the
process of D2D discovery. In [26], the authors propose a per-
formance analysis for D2D discovery for multiple periods and
show the impact of both high and small transmitting users den-
sity cases. The analysis showed that the discovery retrans-
mission scheme behaves better with low transmit UE density
while probability-based transmission scheme behaves better
with high density. In [27], Chour et al. exploit the Road Side
Units (RSUs) of the Vehicle Ad hoc Network (VANET) to pro-
pose a VANET-aided discovery protocol. The authors test dif-
ferent traffic volumes (vehicle per hour per lane), only in high-
ways. The results show a low discovery latency. In [28], an an-
alytical study of the number of UEs in a network-assisted D2D
discovery group was provided. The authors analyze the statis-
tical behavior of the distance between two D2D peers using the
core network knowledge, assuming that the base stations follow
a Poisson distribution. Based on that, they identify conditions
to maximize the D2D discovery probability.

Even for D2D communication services, few works address
the issue of studying D2D adaptation for different users’ den-
sity patterns. In [29], an evaluation of the UEs density and traf-



fic load impact on a proposed transmission scheduling scheme
is made. The model is evaluated in a static network by using
different levels of users’ density, then it is evaluated in a dy-
namic networks use-case by introducing a realistic human mo-
bility model (SLAW). In the context of prediction-based D2D
discovery algorithms, the authors in [30] investigate the optimal
beacon probing and wakeup schedule under the condition that
D2D contact intervals among mobile nodes following a power-
law distribution discovered by network science. Simulations
show that the proposed approach reduces the energy consump-
tion while keeping the same performance. Although the au-
thors claim to use real mobile mobility trace, the corresponding
study is old (2006) and accounts only for traces of Bluetooth
sightings by groups of users carrying small devices in office en-
vironments, conference environments, and city environments.

The main shortcoming of the previous works evaluating D2D
discovery performance is that they use either simulated users’
density pattern or theoretical models which may deviate from
the real-world users’ density behavior and ignore the daily fluc-
tuation of UEs numbers. In our work, we validate our model
with several real load profiles and this allows us to evaluate
the reactivity of the model in different environments, and en-
hance an algorithm derived from analytical models with pre-
dictions based on actual traffic. The advantage of using real
traces is that it guarantees the model reliability and enhances
its efficiency. To the best of our knowledge, no previous con-
tributions propose an adaptive D2D direct discovery algorithm
based on realistic UEs’ density traces and take advantage from a
learning-based UEs’ density prediction model to anticipate and
optimize the discovery process.

3. Online User Density Prediction

3.1. SVR description

We propose a model based on Support Vector Regression
(SVR) algorithm [4] for cell users’ density prediction. Let
(x,;t,y,-,,)N be a time-series training sample , wherex;, stands
for the features vector that describes our data at timestamp ¢
(t € 1,...,N) and for base station i, y;, stands for the label of
each features vector or, in our case, the instant users’ density
at timestamp ¢ and N; stands for the number of timestamps of
data collected from the base station 7 used for training (These
parameters are more explained at section 3.2). The SVR model
aims to find a linear function (or hyperplane) f which maps x;,
with y;, in a feature space F (usually with higher dimension)
that provides a linear projection of the data. Hence, the linear
function f will be the solution of the optimization problem into
the F. The function is formulated as follows:

f(x) =< WIp(x) > +b. (1)

W is a weighting vector in F space, b is a bias and ¢ is the
mapping function corresponding to F. To find this function, the
following risk function should be minimized as stated in by this
primal problem formulation:

. 1 2 S sk
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where &; and & are slack variables introduced to deal with
prediction errors higher than the insensitive loss parameter €
and C is the penalty parameter.

To solve the quadratic programming of the primal formula-
tion, Lagrange multipliers,(e;), are introduced and problem for-
mulation become as follows:
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The optimal prediction function obtained after resolving the
previous optimization problem is as follows:

l
£ = ) (@i = @)K (xi, )+ b, @)
i=1

where K(x;, x;) is the Kernel function and its equation is as fol-
lows:

K(xi, x)) = ¢(x)" ¢(x;)

3.2. Online users’ density prediction model description

The SVR prediction constitutes a local load forecasting, i.e.
each base station load is trained apart. Thus, the SVR is trained
under in-cell normal load. Otherwise, the in-cell load includes
also the D2D load since, D2D communications are made for
nearby devices within the same cell. So that, the training pro-
cess take in consideration implicitly the D2D load. We are mak-
ing the hypothesis on this paper that the D2D load constitutes
almost 30% of the total normal load. Furthermore, our model is
general for D2D communications and is able to cover different
types of D2D applications.

In this section, we describe the details of our users’ density
prediction model. In our contribution, we use the radial basis
function (RBF), K(x;, x;) = exp(—yllx;—x j||)2 as kernel function
because it is more efficient with non-linear time-series (as our
case) due to its generalization ability and non-linear mapping
ability into a infinite feature space.



The prediction is performed in two steps: training, in which
we use the history of users’ density, and testing steps, in
which model parameters are optimized. We model the train-
ing data with a set of four pertinent features for each base sta-
tion. Each training vectors X;;, € R is described as follows,

iyl 2 3 4 .
X = {xi’t, xi’t,xi!t,xi,t}, where:

) xl.',t € {1,2... 144} stands for the chronological order of the
ten-minute time interval within a day.

. xzt € {1,2...24} indicates the hour of the corresponding
training sample. The choice of this feature is based on the
daily cycles inferred from the data.

. xit € {1,2...7} indicates the weekday standing for the
training data. We choose this feature because we noticed
that the data has weekly cycles.

. x;ft € {1,2...52} represents the chronological order of

training data week. We choose this feature because some
yearly behavior can occurred like holidays or seasonal pe-
riods, etc.

t stands for the timestamp into the whole time-series, i.e,
t € N as defined earlier.

i stands for the index of the base station concerned by the
prediction.

The choice of these features formulation is made based on
the periodicity analysis. To perform the periodicity analysis on
users’ density time-series, we adopt in our study the Welch’s
method [31] that consists on estimating the power spectral den-
sity (PSD) of the signal (In our case the signal is the training
time-series of users’ density). It is an improvement on the stan-
dard periodogram spectrum estimation method and it reduces
the noise in the estimated power spectrum density. The normal-
ized PSD Welch’s estimation is represented in Fig. 1. From this
figure, we observe some frequencies with high amplitude val-
ues, such as a peak at 10° (1 cycle/day) which describes a daily
periodicity, another peak at 10°3 (2 cycle/day) corresponding
to a 12h-periodicity and the peak near to 107! (0.14 cycles/day)
which corresponds to a weekly cycle.

Then, for the training step, each vector X;, must be trained
with its corresponding label y; , which stands for the base station
UEs’ density at the time interval x},t. We use here a training
dataset of eleven weeks, as history time-series.

To find the optimal value of the model parameters C, € and
v (the latter parameters belongs to the RBF kernel function),
we used the cross-validation technique and we fix the optimal
parameter which minimize the error as depicted in Fig. 2.
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Figure 1: Welch’s periodogram: Time-series periodicity analysis
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Figure 2: Performance measurement of the SVR-based load prediction

SVR prediction efficiency is validating by using testing data
extracted also from Dakar dataset, which corresponds to the
data of the week just after the data window used for the training
step. Fig. 3 shows a comparison between a predicted and real
base station data and we can see that the prediction is very close
to the real load.
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Figure 3: Predicted versus real traffic profiles



The accuracy of the load SVR-based prediction is evaluated
by two major indicators: The Mean Squared Error (MSE) mea-
surement and the squared correlation coefficient. MSE gives
an overall idea of the errors which occurred during forecasting
and measures the average squared deviation of predicted values
from the real data. Its mathematical expression is as follows:

MSE=1/n ) (k=i S

1<k<n

where y; corresponds to the real load value at time k, fj rep-
resents the predicted value and 7 is the total number of points
constituting the load (real and predicted) time series.

The model MSE average reaches a minimal value of 4.3 =
10~* with large testing history data and this value is very ac-
ceptable for long time-series forecasting. On the other hand, the
squared correlation coefficient (or the coefficient of determina-
tion R?) is a statistical measurement of how close the real data
are to the prediction. For our model, this performance measure-
ment reaches a value equal to 0.91. Thus, these metrics prove
that our prediction model has a good accuracy.

In this contribution, we integrate a set of users’ density time-
series profiles, extracted from a realistic dataset of mobile traces
provided by Orange Senegal,in ns-3 to implement a realistic
traffic generator. The trained dataset of the prediction model is
issued from this traffic generator. The code source of the ns-
3 traffic generator and the realistic traces are published ! to be
used as an open source mobile traces.

The users’ density profiles inferred and classified into three
profile classes of base stations UEs’ density in reference [32].

Each base station profile belongs to a specific pattern of net-
work usage and load fluctuation, which depend on the nature
of its location. Fig. 4 depicts a simple illustration of these load
profile shapes:
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Figure 4: Base station load profile illustration

The red curve belongs to the “Night peak profile” and rep-
resents residential areas, green curve corresponds to areas with
“Day peak profile” where most of business areas and activities

! https://github.com/SHM91/NS3-RealisticTrafficGen1

are located, and the blue curve with a “constant load profile”
corresponds to mixed areas. [32] presented a general approach
and demonstrated the ability and the potential of using machine
learning tools to optimize networks. The work was essentially
focused to propose classification algorithms for very wide net-
works and global prediction. Based on the aforementioned re-
sults, the following section will describe an adaptive and real
time UEs discovery to optimize the D2D resources network.

4. Discovery Optimization

In the operational mode described in the paper, the discovery
message is broadcasted and no acknowledgement is expected.
There is no requirement in the 3GPP standards for how many
UEs need to discover which other UEs, as that will depend on
the requirements of the application being announced. In this pa-
per we took the conservative approach of using the worst case,
i.e. we consider the discovery process complete when all UEs
have discovered all other UEs in the same group. A discov-
ery message is considered successfully received between two
specific UEs if the first UE succeeds to transmit a discovery
message and the second UE succeeds to receive this message
(i.e. the receiver is not transmitting at the same time slot, and
other UEs are not creating interference by sending their discov-
ery message at the same time and frequency).

If a UE transmits a message and the message does not expe-
rience any collision, that UE will be discovered by all the other
UEs as long as they are within reception range, not transmit-
ting during that time slot, and authorized to receive discovery
messages.

In Table 1, we provide a list of symbols we use in this section.

Table 1: List of Symbols

Symbol | Definition
Ny Number of resource block pairs available for discovery
N, Number of subframes available for discovery
N, Total number of resources in discovery pool
N, Total number of UEs in the scenario
0 Transmission probability in the discovery pool
o Optimal transmission probability computed

4.1. Discovery Characteristics

For our work, we consider D2D discovery as performed by
the UEs without any network intervention. We assume having
out-of-coverage UEs operating in mode 2 and picking resources
from a discovery resource pool composed of pre-defined num-
bers of resource block pairs (RB), noted Ny, and subframes
(SF), noted N,. The total number of discovery resources is de-
fined by Eq. (6).

N, =N; X Ny. ©6)

In Fig. 5, we show a 3D representation of how these param-
eters operate with each other. Each tile corresponds to a pair of
RB and one subframe. Discovery resources are not necessarily
contiguous. This configuration follows a periodic repetition in
time (not shown in the figure).



An extensive study has been conducted in our team [33].
The study shows the benefits that D2D can take advantage of,
when Frequency Hopping (FH) is used. Yet, as explained in
the work many practical details about the distance between de-
vices may prohibit FH from achieving the targeted improve-
ment. Nonetheless, FH or other multiplexing techniques will
have an impact on the device discovery. The abstract result is
an increase in the number of subframes and hence is equiva-
lent to adding more resource blocks for the discovery in our
work. The Fig. 5 shows an abstraction of the benefits of addi-
tional multiplexing techniques such as FH. We can see that it
is equivalent to adding a new dimension that represents extra
subframes that are available during the hopping sequence.

Figure 5: 3D representation of the discovery resource pool when introducing
Frequency Hopping

D2D discovery transmissions happen using a uniform proba-
bility called “transmission probability”” which can be any of the
following four values: 0.25, 0.5, 0.75, 1. Each UE uses this
same pre-configured value to autonomously choose resources
from this grid, and the discovery message is sent in the corre-
sponding tile (i.e. resource blocks and subframe combination,
represented in blue).

By default, the channel used for D2D communications is
half-duplex. It means that UEs are unable of simultaneously
transmitting and receiving discovery messages [2]. So, a UE
which sends a discovery message at a specific subframe, auto-
matically misses all other discovery messages sent by all other
UEs at the same subframe (i.e. the times in the same column).

4.2. Optimized Transmission Probability

D2D direct discovery in mode 2 lacks adaptivity to the
changing communication environments, because it relies on
fixed pre-defined parameters, including the transmission prob-
ability. In our proposal, using the daily load predicted by the
SVR model makes the D2D discovery more dynamic, and aims
to adapt instantly the transmission probability according to the
predicted users density.

We assume that we have N, UEs in a discovery group. A dis-
covery message is successfully received between two specific
UEs when several conditions are satisfied:

o the transmitter is allowed to announce in the current period
after checking its threshold: 6.

e the receiver should not be announcing at the same time slot
(i.e. subframe): 1 — N%, otherwise it would miss the trans-
mitter’s discovery message, because the discovery mes-
sages are sent over a half-duplex channel, which prevents
the UEs from sending and receiving data in the same time

slot.

¢ none of the other UEs pick the same resource in the same
time slot as the transmitter: (1 — Nﬁ)N”‘Z, in order to avoid
any collisions.

Accounting for those requirements, the final expression of suc-
cess probability is determined by Eq. (7).

N2
Pyuccess = 0(1 - %)(1 - Ni) . (7)
t r

The value of 6 that maximizes the success probability is de-
termined by differentiating Eq. (7). Therefore, taking into ac-
count the half-duplex nature of UE transmissions and assuming
that the number of users interested in discovery is equal to N,,
the optimal value of the transmission probability 6 is defined by
Eq. 8 and Eq. 9 below [5].

Knowing that the SVR algorithm provides the user density
in a network. The maximum number of users is pre-determined
(an input) and that allows the computation of the fluctuation of
the number of users throughout the day. The prediction pro-
vides information about the user density for every hour of the
day. Thats why the discovery session is set to one hour and the
optimal transmission probability varies every hour.

Additionally, the proposed solution would work similarly
with more frequent inputs (e.g. every 30, 10, or 5 minutes),
as the optimal transmission probability value would be calcu-
lated accordingly. The algorithm is adaptable and dynamic. So,
finer granularity allows more accuracy of the number of users
in the network, which means better algorithm precision.

First step is to check the number of subframes N, defined
in the discovery resource pool. If N, = 1, UEs will never get
to discover each others because of the half duplex constraint.
That’s why that case is specifically checked for, and if met, we
know that discovery would not happen. Then, we examine if
the number of devices performing discovery are way smaller
than the numbers of subframes and resources (N; and N, respec-
tively). For this case (represented by Eq. 8), the UEs choose to
announce all the time because of the low probability of colli-
sions.

N, X (N; —=2)+ N;
N, -1
If the previous checks fail, we compute the optimal value of
the transmission probability 6 based on Eq. 9.

=1, if N,< and N,>1. (8)

2N, +NX(Ny~1)— \/4N, X (N, = N;) + N> x (N,, — 1)

o 2N,
©




The authors from [5] show that there is a small impact to per-
formance when quantizing 6 to multiples of 1/4 (0 < 6 < 1), as
allowed by the 3GPP standard. The model presented in [5] as-
sumes an ideal environment with minimalistic propagation er-
rors. It also considers a pessimistic approach of discovery mes-
sages handling: all colliding discovery messages are dropped
and their respective applications and UEs are not discovered.
However, in [34], Ben Mosbah et al. use simulations to prove
that adding interference and retrieving discovery message with
the strongest signal don’t affect the quantized value of the trans-
mission probability (i.e. the discovery performance is better us-
ing that specific value).

5. Proposed Algorithm

Our proposed algorithm makes use of the predicted user den-
sity patterns (section 3) and the discovery analytical model (sec-
tion 4) in order to determine the transmission probability value
providing the best discovery performance. We make the hy-
pothesis here that the D2D users amount represents 30% of
the global predicted users amount within the cell [35]. The
algorithm is executed every hour, matching the fluctuation of
the number of users determined by the user density prediction.
It takes into consideration the number of predicted users for
that area during that time of the day and computes the optimal
value of the discovery transmission probability accordingly (i.e.
based on the number of resources and the number of users as
shown by Eq. 8 and Eq. 9). Therefore, at the beginning of each
hour, the algorithm takes into account the geographical area to
determine the traffic type. It checks its saved real database of
similar traffic, calculates the average and gets the number of
predicted users in the area for that hour and for that specific
traffic. The user density patterns utilized during this process are
extracted from real network traces. Therefore, it gives a close
idea of the actual number of UEs present in the network. Based
on this information, the optimal transmission probability 6 is
calculated in order to get the best discovery performance. This
value will be used throughout the whole hour, until the next
period of time where the predicted number of UEs may change.

Data: Total number of discovery resources (N,) and
number of subframes dedicated to discovery (NV;)
Result: Probability of transmission to be used (6)

for each hour of the day do
get the total number of predicted users in the area for

that hour based on the predicted user density pattern
(N
for any given UE performing D2D discovery do
compute 6 (using Eq. (8) and Eq. 9);
round 6 to the nearest multiple of 0.25;
use the resulting value of 8 for the rest of the hour;
end

end
Algorithm 1: Hourly Adjusted Transmission Probability

6. Performance Evaluation

In this section, we present the test and evaluation of our al-
gorithm based on ns-3 simulations [36]. We use a scenario ex-
tracted from Orange Senegal traces study [32] and integrate it
in ns-3 as realistic UEs’ density patterns, to study the efficiency
of the proposed algorithm.

It will be shown that combining machine learning approach
with a D2D algorithm optimizes and speeds up the time discov-
ery by predicting in advance the D2D users density. Moreover,
realistic trace data-sets of mobile networks, which adds dynam-
icity to the model. Compared to [29], the D2D algorithm has
been tested on different traces including the city of Milan.

6.1. General Assumptions

Table 2 summarizes the list of network parameters and their
values used for our simulations.

Table 2: Simulation Parameters and Values

Parameters Values
UE transmission power 23 dBm
Propagation model Cost231 ([37])
Available bandwidth 50 RBs
Carrier frequency 700 MHz
Discovery period 0.32s
Number of retransmission 0
Number of repetition 1
Number of resource block pairs | 4
Number of subframes 5

Total number of resources 20

Total number of eNBs 3
Discovery start 2s

Total simulations per scenario 100

We don’t include a measure of interference as a parameter be-
cause in [34] it was already shown that the results obtained with
simpler air propagation models still hold, and this simplifies the
analysis, allowing us to focus on the elements that actually have
a significant impact on the discovery performance.

Sets of UEs density patterns are extracted from Dakar data
to be integrated in ns-3 to implement a realistic traffic generator
tool. The tool is then used to generate realistic pattern to train
SVR model in order to make a prediction of the UEs density
evolution within each area and then use the predicted values for
the D2D Direct discovery algorithm.

In our scenarios, we are interested in comparing the perfor-
mance (in terms of time required to complete discovery, and
messages sent) of our discovery algorithm with that of the dis-
covery mechanism defined in the 3GPP standard (with different
operational parameters). The number of messages sent will let
us know how much spectrum is being used for the discovery
operations, and the time to discovery will provide an indication
of the impact on the user experience. In order to provide an up-
per boundary to the time metric, the discovery process can only
run for 60 seconds, giving up on discovering more UEs after
that amount of time.



The results shown are the outcome of running the scenario
100 times in the simulator. For each metric we show the av-
erage value and 95 % confidence interval. In each simulation,
every UE is able to send announcements using a randomly cho-
sen discovery resource. A UE uses discovery resources to send
discovery but there is no guarantee that its discovery message
would make it to the receivers because of potential collisions
with other UEs choosing the same resources, or the fact that the
receiver is transmitting too (i.e. the half-duplex constrain of the
D2D channel prevents the UE from receiving the message).

6.2. Morning Traffic with Low User Density

6.2.1. Scenario Description

We consider a morning users’ density profile scenario in an
area characterized by user fluctuation due to the presence of
high education institutions. As a consequence, a morning traffic
profile is considered. Under normal conditions the area would
be served by 3 eNBs, but in this scenario they have been ren-
dered unusable (e.g., due to backhaul connectivity losses). The
UEs are randomly deployed, as represented in Fig. 6. The max-
imum number of users at peak hours are 50, 75, and 100.
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Figure 6: Example of nodes position for the morning traffic scenario with low
user density

6.2.2. Results

Simulation results are illustrated in Fig. 8,9 and 10. Each one
of them shows the number of messages and time (measured in
periods) until all the UEs in the area were discovered (or until
the 60 second discovery period expired).

For the 3GPP algorithm, the transmission probability is in-
variable throughout the simulation and can be either 0.25, 0.5,
0.75 or 1. However, our algorithm uses the information about
the predicted number of users to adjust the correspondent trans-
mission probability dynamically. UEs are able to compute their
own transmission probability over time. A significant energy
savings and packets loss avoidance can be ensured using the
considered discovery mechanism, which is the immediate con-
sequence of reduced number of transmitted messages as shown
in Fig. 8a, 9a and 10a.

The discovery performance is very similar among all ar-
eas. We can observe an increase in the network activity which

reaches a peak around noon. The curves validate the fact that
we are simulating a morning-based traffic. We can also notice
that during the hours with low number of UEs, there is a direct
trade-off between the time required to complete discovery and
the number of messages sent. We can see how our proposed al-
gorithm strikes a balance between both metrics. For the number
of messages, only the configuration with a transmission proba-
bility of 0.25 provides better performance at certain times, and
at those points the time metric shows better results for our al-
gorithm. What may be more important, our algorithm shows
a more predictable behavior (with more consistent values for
number of messages and time required) than the 3GPP algo-
rithms.

The proposed algorithm uses the optimal transmission proba-
bility based on the user density prediction. Although each value
of the transmission probability is optimal for a range of users,
moving from one value to the next one is very delicate. At cer-
tain transition points, small variations in the number of users
may switch the optimal value of the transmission probability.

For our scenarios, we consider 5 subframes and 4 resources
block pairs. In Figure 7, we plot the optimal transmission prob-
ability for different number of users based on Equation 9, af-
ter rounding 6 to the nearest multiple of %. We observe that
for a number of users varying between 29 and 49, the optimal
transmission probability is equal to 0.5. However, if the net-
work traces predict 50 UEs, the computed optimal transmission
probability value will be 0.5. If, in reality, we have 52 UEs, the
actual optimal transmission probability should be 0.25. Pre-
diction errors like that double the number of messages sent,
and are the most significant factor on the cases where the pro-
posed algorithm behaves worse than the 3GPP one. This may
be avoided with finer granularity in the input and more accurate
predictions.

1

by
5
©
Q
S 0.75F ] 1
a
c
o
‘»
2
£
(%]
c
S 05F 900000000000 000000p |
-
©
E
a
(@]

0.25 1

0 20 40 60 80 100

Number of UEs

Figure 7: Optimal transmission probability associated to the number of UEs for
5 subframes and 4 resources block pairs
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6.3. Morning Traffic with High User Density

6.3.1. Scenario Description

Unlike the scenario described in 6.2, in this subsection, we
consider a business district covered by 13 eNBs as shown in
Fig. 11. The area is also predicted to accommodate a morn-
ing traffic profile, but in this case, with higher concentration of
deployed UEs.
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Figure 11: Example of nodes position for the morning traffic scenario with high
user density

6.3.2. Results

Simulation results are represented in Fig. 14, 15, 16, 17, 18,
and 19 we show the results obtained for the first 6 eNBs in
the topology. The remaining eNBs show performance results
similar to these ones, and those figures have been omitted for
simplicity.

As we can see, while the specific values are different, the
trends obtained are similar to those from the scenario with
lower user density. The most significant difference is that, with
more UEs to detect in each area, the 60 second high bound is
in this case a hard bound to the amount of UEs detected, with
all the versions of 3GPP and the algorithm using all that time,
and still failing to discover all the UEs in the area. Looking at
Fig. 20 we see how for all these eNBs the high user density pre-
vented discovering all the UEs, except in the case of extremely
low predicted density. During the rest of the day, the percent-
age of discovered users became almost a constant, as during
the times with higher number of users sending messages that
translated as higher interference, and in the periods with lower
amount of UEs, message collisions and lower received signal
strength (due to the greater distance to some UEs), kept the ra-
tio of discovered UEs almost constant.

Apart from that major difference, we can observe how the
number of messages sent during discovery follows a similar
pattern to those obtained for the lower density scenario. This
means that the predicted user densities worked equally well re-
gardless of the saturation of the network, with consistent results
across all the eNBs in the area.

Additionally, it is possible to use Eq. 7 to theoretically com-
pute the time required for one random UE to discover another

10

UE in its vicinity, according to a defined confidence (i.e. suc-
cess criteria) [38]. As an example, we consider a success cri-
teria value of 99 % and we integrate the prediction traces to
anticipate the number of devices throughout the day. For two
different densities, we draw the number of periods needed for
one UE to discovery another UE, then deduce the consumed en-
ergy percentage, when using our proposed algorithm (adaptive
dynamic transmission probability) and other static transmission
probabilities values. In Fig. 12, we can see how, regardless
of the fluctuation of UEs connected to the network, and there-
fore, the different values of the optimal Transmission Probabil-
ity during the day, with our proposed algorithm the UEs always
finish discovery as quickly as possible. In turn, this means that
as a result of that, the total energy consumed by the UEs that
use our proposed algorithm is lower (as shown in Fig. 13).

6.4. Discussion

In this Section we have presented the results obtained with
our simulations of a morning traffic pattern. Similar results
were obtained with the simulation of scenarios following the
evening traffic pattern, with the results obtained being compa-
rable to the ones in this paper. In all the cases, the discovery
algorithm using predictions from the traces performed close to
the version of the 3GPP algorithm with the optimal transmis-
sion probability. A detailed analysis of the reasons for why the
proposed algorithm was not performing optimally showed that
this behavior is similar to what was observed in [34], where a
discovery algorithm based on the same concept performed in
each case slightly worse than the optimal version of the 3GPP
algorithm, but better than every other version. Furthermore,
also similarly to the results in [34], we observe how a fixed
transmission probability provides optimal performance in the
scenarios where that happens to be the optimal choice, but in
the rest of cases that fixed value significantly slows the whole
discovery process.

In our case we observe a similar behavior, where the 3GPP
algorithm with the optimal transmission probability for each
hour behaves better than our proposed algorithm. However,
when the user count changes and a different version of the 3GPP
algorithm becomes the optimal, our algorithm’s performance
stays close to that optimal value.

We have also observed that there is a strong correlation be-
tween the accuracy of the predictions used by the algorithm,
and its performance. If the predictions are not accurate, or if
the 95 % confidence interval is too ample, it is likely than in a
given scenario the algorithm will choose a transmission prob-
ability that is not the optimal for the number of UEs actually
deployed in the area.

Finally, we should highlight the value of being able to predict
the user density in the network, as it can be used by the devices
to adjust their operational parameters depending on the situa-
tion (for example, aim for a faster discovery process at the ex-
pense of spectrum utilization when minimizing the delay is the
top priority, but switch to a longer process that requires sending
less messages when the batteries are low).
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7. Conclusions

In this paper, we proposed the use of predicted user density
values to build an adaptive discovery algorithm that improves
the performance of D2D discovery. This algorithm is novel
compared to other proposals in that it can use historic informa-
tion of users in the network to dynamically adjust its operating
parameters and provide always optimal performance.

We show how adaptive algorithms that use the predicted val-
ues as their baseline and account for deviations from that ex-
pected value can significantly improve the overall performance,
not just in a specific subset of scenarios. We also show how
an algorithm derived from an analytical model, without fur-
ther tuning, can strike a balance between channel utilization
and time required for discovery. So that a significant energy
consumption savings can be achieved by reducing overall dis-
covery messages signaling in the network, and further optimize
network resource utilization for the discovery procedure.

From the work presented here, there are several lines of fu-
ture work to enhance and expand these contributions: Further
testing and evaluation of different scenarios should be carried
out, to further consolidate the users’ behaviors and the conclu-
sions drawn in this work. This work should become the founda-
tion of a process so that the discovery algorithm can feedback
on the predicted user patterns, in order to maintain the accu-
racy of the predictions over time. Furthermore, the design of
context-aware algorithms that change their operational param-
eters based on the environment (e.g. number of users expected
to be in the same area) and its internal state and priorities (e.g.
battery level, and user delay expectations) emerges not only as
a feasible line of research, but one that, based on the results
shown in this paper, can deliver significant results in the short
and mid-term. Finally, further research into the discovery pro-
cess and its limits, to better understand the effect that caps like
the 60 second maximum time that we used in this paper have on
the overall performance, and to dynamically set limits (defined
either in terms of number of messages or amount of periods)
for each topology and deployment, depending on the required
confidence, minimum or required number of UEs that need to
be discovered, need for optimization of the amount of messages
sent, and so on.
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