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ABSTRACT 
This paper presents a new mesh strategy for unsteady 

potential flow based solvers. It is based on the coupling 

between a panel cutting method used for the body mesh and an 

advance front method to generate the free surface mesh. The 

goal is to deal with complex geometries for time-domain 

simulations for marine operations. Firstly, the new mesh 

generation process is presented in details. Then, two validation 

tests are presented, using an academic geometry (vertical 

surface-piercing cylinder) and a complex geometry (FPSO). 

 

KEYWORDS 
Mesh generation, Panel cutting method, Advance front 
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INTRODUCTION 
 Frequency-domain potential flow based numerical tools 

such as NEMOH [1] or WAMIT [2] are widely used both in the 

industry and in academia for ship maneuverability, design 

approach as well as seakeeping problems. In this fully linear 

model, free surface boundary equations are linearized at the 

mean sea level while the body condition is applied at the mean 

body position. Body meshes are fixed at the equilibrium 

position of the bodies and the free surface mesh matches the 

plane z = 0. This approach is only consistent in case of small 

amplitude body motion and small wave steepness. When these 

assumptions are not fulfilled, body and free surface 

nonlinearities arise. Less restrictive hydrodynamic models are 

required.  

 Four other main approximations exist based on the 

potential flow theory. The nonlinear Froude-Krylov 

approximation is based on the fully linear model but the 

hydrostatic pressure and the pressure due to the incident waves 

are integrated over the instantaneous wetted body surface. 

Consequently, a mesh of the bodies, following the incident 

waves, is necessary. Although this method can show good 

results, it suffers from an inconsistency as the hydrodynamic 

loads are not assessed over the same surfaces. An example of 

application is given by Gilloteaux [3]. 

The body-exact approximation considers the body 

condition is applied at the exact position of the bodies while the 

free surface boundary conditions are linearized at the mean sea 

level. The free surface mesh remains planar but the body mesh 

needs to be updated. This method is only consistent in case of 

small steepness waves, but large amplitude motion may occur. 

An example of such an approach is given by Watai [4]. 

The weakly nonlinear approximation based on the weak-

scatterer hypothesis assumes the perturbed wave field is small 

compared to the known incident wave field. Consequently the 

free surface boundary conditions are linearized around the 

incident free surface elevation while the body condition follows 

the exact position of the bodies. The free surface mesh and the 

body mesh follow the known incident wave field. Large 

amplitude motion and large steepness waves may occur while 

the weak-scatterer hypothesis is satisfied. 

The fully nonlinear model is obtained when no 

linearization is achieved. The free surface and body boundary 

equations are applied at the exact positions. The mesh follows 

the disturbed wave field. An example of such a model is 

provided by Bai [5]. 

In these different models, except for the fully linear 

approximation, the mesh has to be updated during the time-

domain simulation. The generation of good quality surface 

meshes for complex bodies and wave fields for academic and 

industrial applications is a challenging task.  

At Ecole Centrale de Nantes, a numerical tool, named 

WS_CN, based on the time-domain weakly nonlinear potential 

flow theory using the weak-scatterer hypothesis, has been under 

development since 2012. It has been used with single 

submerged bodies [6], single surface-piercing bodies [7] and 

has been extended to multibody simulations [8]. In these 

previous studies, the mesh generator of WS_CN is based on a 
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semi-analytical approach. Bodies are represented by a set of 

parametric surfaces. The computation of the free-surface-to-

body-surface intersection curve is seeked from the parametric 

equations of the body surfaces using a marching method. This 

method starts from a known starting point on the intersection 

curve and then steppes along it in a direction prescribed by the 

curve local geometry. Once the intersection curve is known, the 

mesh generation is achieved using an advance front method for 

both the body and free surface meshes [7]. This method has 

been used with academic geometries (vertical cylinder, sphere, 

cube, Wigley hull) where the parametric equations of the 

surfaces are available. 

Nevertheless, this mesh strategy (named initial mesh 

generator or strategy in the rest of this paper) suffers of a lack 

of robustness for complex geometries. As pointed out by Ko et 

al. [9], the marching method, as used in WS_CN, becomes 

problematic when the shape of the body is complicated and the 

configuration of the intersection with the free surface is 

complex. The improvement of this mesh strategy would involve 

the development of a robust geometric modeler for any floating 

body, for instance based on NURBS [7]. This would require 

lots of work and mean the development of a computer-aided 

design tool from scratch, whereas some tools already exist and 

some of them are free and open-source (such as Gmsh [10]). 

The goal of this paper is the development of a new mesh 

strategy which could deal with complex geometries and 

generate good quality meshes able to be used in an unsteady 

potential flow based solver, such as WS_CN, for academic and 

industrial applications. 

 

PART I: COUPLING BETWEEN THE PANEL CUTTING 
METHOD AND THE ADVANCE FRONT METHOD 

 

The lack of robustness of the initial mesh strategy 

(Parametric curves – Intersection curves – Mesh generation) is 

due to the intersection curve tracking algorithm. Consequently, 

if the intersection curve cannot be figured out, the body and 

free surface meshes cannot be generated by the solver. Our new 

mesh strategy is based on the segregation of duties: the body 

mesh for the user, the free surface mesh for the solver. The 

mesh of the whole body is assumed to be known initially, for 

instance by using a third-party open-source mesh generator. 

Then, the mesh is cut at the known incident free surface 

elevation, leading to the knowledge of the intersection curve 

numerically, without using any parametric equations. Finally, 

the free surface mesh is generated, from the intersection curve, 

with the advance front method already used in the initial mesh 

generator.  

In the literature, the panel cutting method has been used in 

two cases: 

 The computation of the nonlinear hydrostatic and 

Froude-Krylov loads (used in the nonlinear Froude-

Krylov approximation); 

 The solving of the steady nonlinear wave resistance 

problem. 

Examples of the computation of the nonlinear hydrostatic 

and Froude-Krylov loads based on the panel cutting method 

may be found in [11,12,13]. The original mesh is recursively 

subdivided at the incident wave elevation using a quadtree 

process. Then, the adjacent underwater subpanels are 

agglomerated to form bigger panels and coarser meshes. Horel 

et al [14] and Sengupta et al. [15] applied directly the panel 

cutting method by clipping the panels of the initial mesh to fit 

the incoming waves. Lee and Lee [16] used the panel cutting 

method in case of hydrostatic calculations with flexible 

structures and non-matching meshes. 

Regarding the solution of the steady nonlinear wave 

resistance problem, this was achieved by Choi et al. [17]. The 

panels were cut at the real wave elevation and then the mesh 

generated was used to perform a hydrodynamic computation 

and not only the hydrostatic and Froude-Krylov calculations. 

Nevertheless, due to the steadiness of the problem, an iterative 

method was used to compute the velocity potential and the 

wave elevation such as the nonlinear steady free surface 

boundary conditions were satisfied. 

Thus, the panel cutting method has never been used in case 

of an unsteady potential flow theory based on the body-exact, 

weak-scatterer or fully nonlinear approximation. WS_CN 

gathers the two first approximations. Finally, the originality of 

the proposed method is the generation of meshes adapted for a 

time-domain unsteady potential flow approach requiring high 

quality connected nodes surface meshes using triangular panels 

with possibly sharp edges for thousands of time steps. This new 

mesh strategy unfolds in five steps: 

 An initial mesh of the whole body is obtained from an 

external mesh generator; 

 The body mesh is clipped at the known incident wave 

field; 

 The intersection curve is tracked from the cut body 

mesh; 

 The free surface and numerical tank walls are meshed 

using the advance front method; 

 The cut body mesh is connected with the free surface 

mesh, leading to the final mesh. 

 

Mesh clipping 
The panel cutting method comes from the numerical tool 

Meshmagick [18] of Ecole Centrale de Nantes. It enables the 

management of surface meshes encountered in the potential 

flow theory. This tool is implemented in Python and released 

under the GPLv3 license. 

The mesh clipping starts with a partition of the mesh (Fig. 

1 for a cylinder of radius 0.2 m and height 1 m). The panels 

which are strictly below the incident wave fields are 

automatically kept. Regarding the panels where some vertices 

are above the incident free surface and some others below, they 

form the crown mesh. The panel cutting method is only applied 

to this part of the mesh. 

Figure 2 presents the two main cases of the panel cutting: 

when one or two vertices are above the sea level. Other cases 

appear when one or two nodes are exactly on the intersection 
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curve. Originally, only the clipping with planes was considered 

in Meshmagick. For an arbitrary single-valued incident wave 

field, a bisection method has been implemented to track the 

intersection nodes. If an edge has one node above the free 

surface and one below, the intersection node is searched 

iteratively. An example of clipping is displayed in Fig. 3. The 

clipping of the present cylinder with a regular wave of 

amplitude 0.1 m and wave frequency 12 rad/s is used as 

example in the rest of this part. 

 
Figure 1: PARTITION OF A MESH IN MESHMAGICK. 

INITIAL MESH OF A CYLINDER (LEFT) AND ITS 

PARTITION (RIGHT). BLUE: LOWER MESH, GREEN: 

UPPER MESH, RED: CROWN MESH. THE BLACK LINE 

REPRESENTS THE MEAN SEA LEVEL. THE SPACE 

BETWEEN THE PARTS IS ADDED FOR THE 

VIZUALIZATION.  

 

 
Figure 2: EXAMPLES OF PANEL CLIPPING. LEFT: 

(𝒑𝟎𝒑𝟏𝒑𝟐) BECOMES (𝒑𝟎𝒑𝟏
′ 𝒑𝟐

′ ), RIGHT: (𝒑𝟎𝒑𝟏𝒑𝟐) 
BECOMES (𝒑𝟏𝒑𝟐

′ 𝒑𝟏
′ ) AND (𝒑𝟏𝒑𝟐𝒑𝟐

′ ). 
 

The clipping process can lead to large deformations of the 

panels located close to the intersection curve. Two problems 

arise: 

 The density of nodes and panels is much higher at the 

interface than in the rest of the mesh; 

 The panel shape is poor.  

As a consequence, the mesh cannot be used in a hydrodynamic 

solver yet. An extra enhancement is mandatory. 

 

 

 

Panel merging 
One can distinguish two types of very deformed panels: 

 The vertical tiny triangles where two vertices are close 

to each other on the intersection curve; 

 The horizontal tiny triangles where two vertices are on 

the intersection curve and the third one is strictly in the 

mesh but close to the interface. 

Figure 4 displays deformed panels from Fig. 3. 

 
Figure 3: CLIPPING OF A VERTICAL CYLINDER AGAINS 

A REGULAR WAVE. THE RED LINE REPRESENTS THE 

ANALYTICAL INCIDENT WAVE ELEVATION. 

 
Figure 4: EXAMPLES OF VERTICAL (RED SOLID LINE) 

AND HORIZONTAL (RED DASHED LINE) TINY 

TRIANGLES 

 

By merging these tiny panels with neighboring panels, the 

density of nodes and panels on the intersection curve decreases. 

This solves one of the two mesh problems presented in the 

previous section. Regarding the vertical tiny triangles, the two 

nodes on the intersection curve are merged and located at the 

position of one of these nodes, as shown in Fig. 5. This leads to 

the deletion of one node and one panel. For the horizontal tiny 
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triangles, the single node below the waterline is merged with 

one node on the intersection curve, the second node on the 

intersection being also deleted, as displayed in Fig. 6. This 

involves the deletion of at least two nodes and one panel, 

according to the connectivities between the nodes. 

To preserve the geometry of the mesh, these two 

algorithms are applied conditionally. Two geometric criteria are 

defined per algorithm: the first one about the panel area, the 

second one about a characteristic distance. These criteria are 

detailed in Table 1. 

 

Table 1: GEOMETRIC CRITERIA TO APPLY THE PANEL 

MERGING 

Criterion Vertical Horizontal 

Area 𝐴 ≤ 𝛼𝑉𝐴𝑚𝑒𝑎𝑛 𝐴 ≤ 𝛼𝐻𝐴𝑚𝑒𝑎𝑛 

Distance ‖𝒑𝟏𝒑𝟐‖ ≤ 𝛽𝑉𝐿𝑚𝑒𝑎𝑛  |𝑧 − 𝜂𝐼| ≤ 𝛽𝑉𝐿𝑚𝑒𝑎𝑛 

 

where: 

 𝐴 is the panel area; 

 𝐴𝑚𝑒𝑎𝑛  denotes the mean of the panel areas in the 

initial mesh; 

 𝐿𝑚𝑒𝑎𝑛 represents the mean of the edge lengths in the 

initial mesh; 

 𝒑1 and 𝒑2 are defined in Fig. 5; 

 𝑧 is the vertical coordinate of the node 𝒑0 in Fig. 6; 

 𝜂𝐼 means the incident wave elevation at the vertical of 

the node 𝒑0 in Fig. 6; 

 𝛼𝑉, 𝛼𝐻, 𝛽𝑉 and 𝛽𝐻 are the panel merging coefficients. 

The subscript indicates if the coefficient is used for the 

vertical (𝑉) or horizontal (𝐻) tiny panels. 

 

The higher these coefficients are, the more important the 

number of deleted panels is, but, the more important the risk of 

interpenetration of neighboring panels is. A special attention is 

paid to the nodes along the sharp edges of the mesh. They are 

not moved. Sharp edges are tracked using the discontinuity of 

the panel normals. 

Figure 7 shows the application of the panel merging 

algorithms. The density of nodes and panels is reduced on the 

intersection curve as wanted, but the panel shape is still not 

good enough. This problem is addressed in the next section. 

 
Figure 5: SCHEME OF THE PANEL MERGING 

ALGORITHM FOR A VERTICAL TINY TRIANGLE. 

 

 

 
Figure 6: SCHEME OF THE PANEL MERGING 

ALGORITHM FOR A HORIZONTAL TINY TRIANGLE 

 
Figure 7: RIGHT: EXAMPLE OF THE APPLICATION OF 

THE PANEL MERGING WITH 𝜶𝑯 = 𝜷𝑯 = 𝟎. 𝟑, 𝜶𝑽 = 𝟎. 𝟒 

AND 𝜷𝑽 = 𝟎. 𝟑. LEFT: MESH BEFORE PANEL MERGING.  

 

Mesh improvement 
The panel merging reduces the density of nodes and panels 

close to the intersection curve but the node positions and the 

panel shapes are still not good enough. To improve them, an 

unstructured mesh smoothing algorithm based on the spring 

analogy method is used. The spring analogy method consists of 

a physical analogy which replaces every edge of the mesh by a 

fictitious spring connecting two vertices. The method was 

introduced by Batina [19] for moving boundary problems. But 

it may also be used for unstructured mesh smoothing. In this 

application, the nodes are moved inside the mesh to obtain 

equilateral panels and so better shape panels and higher quality 

meshes. The expression of the spring loads is [20]: 

 

𝑭𝑖 =∑𝑘𝑖𝑗(𝒙𝑗 − 𝒙𝑖)

𝑁𝑣
𝑖

𝒋=𝟏

 (1) 

𝑁𝑣
𝑖 denotes the number of neighboring nodes of the node 𝑖, 

𝑘𝑖𝑗 is the spring stiffness and 𝒙𝑖 represents the position of the 

node 𝑖. Each node 𝑖 is linked to a local direct orthogonal basis 
(𝒖𝑖, 𝒗𝑖 , 𝒏𝑖) where 𝒏𝑖 is the normal vector of the body surface, 

while 𝒖𝑖 and 𝒗𝑖 are two tangential vectors. 

As we want the small panels to get larger and the large 

panels to get smaller, all the panels have to be able to be 

deformed. So, the stiffness is taken constant. Its value has no 

influence so it is chosen as unity. 

 𝑘𝑖𝑗 = 1 (2) 

To ensure the nodes stay on the body surfaces, the normal 

displacement is zeroed: 

 (𝒙𝑖 − 𝒙𝑖
𝑜𝑙𝑑). 𝒏𝑖 = 0 (3) 

On the intersection curve or at the sharp edges in the body 

mesh, a node on this intersection has to remain on it. Thus 𝒏𝑖 is 
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normal to one of the surfaces, 𝒖𝑖 is along the intersection line 

and 𝒗𝑖 is chosen such as the local basis is orthogonal and direct. 

In that case, the displacement along 𝒗𝑖 is also zeroed: 

 (𝒙𝑖 − 𝒙𝑖
𝑜𝑙𝑑). 𝒗𝑖 = 0 (4) 

If three surfaces intersect each other at the same node 𝑖, 
then the displacement along 𝒖𝑖 is zeroed too: 

 (𝒙𝑖 − 𝒙𝑖
𝑜𝑙𝑑). 𝒖𝑖 = 0 (5) 

In case of a node on a smooth surface (without sharp 

edges), the final system of equations to solve yields: 

 

{

𝑭𝑖 . 𝒖𝑖 = 0
𝑭𝑖 . 𝒗𝑖 = 0

(𝒙𝑖 − 𝒙𝑖
𝑜𝑙𝑑). 𝒏𝑖 = 0

 (6) 

Figure 8 presents the application of the spring analogy 

method once the mesh clipping and the panel merging are 

applied. The panel shape is improved on the intersection curve 

as expected. The mesh is now good enough to be used in the 

fluid solver (WS_CN). 

 

 
Figure 8: EXAMPLE OF THE APPLICATION OF THE 

SPRING ANALOGY METHOD. LEFT: MESH AFTER THE 

PANEL MERGING, RIGHT: MESH AFTER THE SPRING 

ANALOGY METHOD. 

 

To evaluate the mesh quality, two metrics are used [21]: 

 The relative size metric 𝑓𝑠𝑖𝑧𝑒 which detect triangles 

which are unusually large or small relative an 

equilateral triangle. Its definition is: 

 
𝑓𝑠𝑖𝑧𝑒 = min (τ,

1

τ
) (7) 

with 𝜏 the ratio of the triangle area 𝐴 to the area of an 

equilateral triangle of edge length 𝐿: 

 
𝜏 =

A

√3
4
𝐿2

 
(8) 

𝑓𝑠𝑖𝑧𝑒 = 1 if and only if the triangle has the same area 

as an equilateral triangle of edge length 𝐿 and       

𝑓𝑠𝑖𝑧𝑒 = 0 if the triangle is degenerate. 

 The shape metric 𝑓𝑠ℎ𝑎𝑝𝑒 which detects distortions in 

the shape of a triangle independently of its size, is 

used. Its definition is: 

 
𝑓𝑠ℎ𝑎𝑝𝑒 =

2√3𝐴

𝑳1. 𝑳1 + 𝑳1. 𝑳2 + 𝑳2. 𝑳2
 (9) 

with 𝑳1 = 𝒑0 − 𝒑2 and 𝑳2 = 𝒑1 − 𝒑0 by keeping the 

notations of Fig. 5. 𝑓𝑠ℎ𝑎𝑝𝑒 = 1 if and only if the 

triangle is equilateral and 𝑓𝑠ℎ𝑎𝑝𝑒 = 0 if the triangle is 

degenerate. 

Figures 9 and 10 show the evolution of these two metrics 

(𝐿 = 0.02 m) after the mesh clipping, after the panel merging 

and after the mesh improvement. The use of both the panel 

merging and the spring analogy method improves significantly 

the quality of the mesh, especially on the intersection curve.  

 

Multiple node tracking 
In WS_CN, unknowns are at the nodes of the mesh. At the 

free surface – body interface and at the sharp edges of the body 

mesh, it arises a discontinuity of the normal vectors, so the slip 

condition is not well defined. The multiple node technique is 

used at the interfaces and at the sharp edges to ensure the body 

condition is satisfied correctly. Doing so, several boundary 

conditions are written at the same location. When an initial 

mesh is used, it only includes a set of nodes and a table of 

connectivities. Consequently, multiple nodes need to be 

automatically identified. 

The multiple node tracking algorithm unfolds in three 

steps: 

 The detection of multiple nodes is achieved from the 

discontinuity of the panel normals in the body mesh. A 

node is multiple if and only if it exists at least two 

neighboring panels of normal vectors 𝒖 and 𝒗 such as: 

 𝒖. 𝒗 < 𝜖 (10) 

𝜖 is a constant, arbitrary defined as equal to cos(20°). 
Consequently, an angle of 20° between two 

neighboring normal vectors leads to a multiple node. 

 Then, the order of multiplicity of the node needs to be 

figured out. It is necessary to know if the node is 

double (intersection of two surfaces), triple 

(intersection of three surfaces), etc. The following rule 

is applied (by assuming only double and triple nodes 

here): if it exists a neighboring normal vector 𝒘 such 

as {
𝒖.𝒘 < 𝜖
𝒗.𝒘 < 𝜖

, then the node is triple, otherwise it is 

double. 

 Once a multiple node is found with its order of 

multiplicity, new nodes are created at the same 

position. Therefore, each multiple node is made of 

several elementary nodes: two for a double node, three 

for a triple node, etc. The table of connectivities needs 

to be updated to associate each elementary node to a 

surface. Each neighboring panel of normal 𝒏 is 

connected to the correct elementary node from the 

following rule (by assuming only double and triple 

nodes here): 

 If {
𝒖. 𝒏 > 𝜖
𝒗. 𝒏 < 𝜖

, then the neighboring panel belongs 

to the same surface as 𝒖; 

 If {
𝒖. 𝒏 < 𝜖
𝒗. 𝒏 > 𝜖

, then the neighboring panel belongs 

to the same surface as 𝒗; 

 Otherwise, 𝒏 belongs to a third surface. 

Examples of a multiple node tracking are shown in Fig. 11. 

Multiple nodes are properly found. 
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Figure 9: EVOLUTION OF 𝒇𝒔𝒊𝒛𝒆 DURING THE MESH GENERATION. LEFT: AFTER THE MESH CLIPPING, MIDDLE: AFTER 

THE PANEL MERGING, RIGHT: AFTER THE SPRING ANALOGY METHOD. 

 

 
Figure 10: EVOLUTION OF 𝒇𝒔𝒉𝒂𝒑𝒆 DURING THE MESH GENERATION. LEFT: AFTER THE MESH CLIPPING, MIDDLE: AFTER 

THE PANEL MERGING, RIGHT: AFTER THE SPRING ANALOGY METHOD. 

 

 

   
Figure 11: EXAMPLES OF MULTIPLE NODE TRACKING: LEFT: VERTICAL CYLINDER, MIDDLE: HORIZONTAL CYLINDER, 

RIGHT: CUBE. THE PANELS INCLUDING A SINGLE, DOUBLE OR TRIPLE NODE ARE IN BLUE, GREEN AND RED, 

RESPECTIVELY. 
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Intersection curve tracking and free surface mesh 
generation 

Once the final body mesh is obtained, the intersection 

curve is tracked from the nodes which satisfies 𝑧 = 𝜂𝐼. But, 

doing so, the list of nodes does not form an oriented curve 

which is mandatory to generate the free surface mesh with the 

advance front method. Consequently, the nodes on the 

intersection curve have to be sorted. The process unfolds in 

three steps: 

 An initial node 𝒙𝑖𝑛𝑖𝑡  is randomly chosen on the 

intersection curve. This point has exactly two 

neighbors: 𝒙𝑎 and 𝒙𝑏. The curve orientation demands 

to define a predecessor, 𝒙𝑝𝑟𝑒𝑑, and a successor, 𝒙𝑠𝑢𝑐. 

For instance, let us assume 𝒙𝑝𝑟𝑒𝑑 = 𝒙𝑎. 𝒙𝑏 becomes 

the successor of 𝒙𝑖𝑛𝑖𝑡 , so its ancestor is known. 

 For each node, the ancestor is known, so there is only 

one possibility for the successor. Thus, the curve is 

built step by step along the succeeding nodes. 

 When the successor matches the initial point 𝒙𝑖𝑛𝑖𝑡 , the 

curve is defined and oriented. 

When the intersection curve is found, the free surface mesh 

is generated using the advance front method [7]. Then the body 

mesh and the free surface mesh are connected.  

 

PART II: VALIDATION 
 

The new mesh strategy presented in this paper is now 

validated with two cases: 

 A first case using an academic geometry for the 

comparison between the initial and the new mesh 

generators using the hydrodynamic solver of WS_CN;  

 A second case using a complex geometry that the 

initial mesh generator cannot handle. The comparison 

is achieved by using the frequency-domain potential 

flow based solver NEMOH. 

 

Hydrodynamic model 
In this section, the governing equations of the weakly 

nonlinear potential flow theory based on the weak-scatterer 

theory are described. More details may be found in [6,7,8]. 

The fluid is assumed incompressible and inviscid whereas 

the flow is considered as irrotational. The velocity field results 

from a scalar velocity potential: 

 

 𝑽 = 𝛁𝜙 (11) 

 

The velocity potential, respectively the wave elevation, is 

decomposed as an unknown scattered component 𝜙𝑃 and a 

known incident component 𝜙𝐼, respectively 𝜂𝐼 and 𝜂𝑃: 

 

 
{
𝜙 = 𝜙𝐼 + 𝜙𝑃

𝜂 = 𝜂𝐼 + 𝜂𝑃
 (12) 

 

The incident wave field is based on the Airy wave theory: 

 

 
𝜙𝐼 =

𝐴𝑔

𝜔

cosh(𝑘(𝑧 + ℎ))

cosh(𝑘ℎ)
sin(𝑘𝑥 − 𝜔𝑡) (13) 

where 𝐴, 𝑔, 𝜔and𝑘 represent the wave amplitude, the gravity 

constant, the wave frequency and the wave number. 

 

The incident and perturbed components follow the weak-

scatterer approximation: 

 

 
{
𝜙𝑃 ≪ 𝜙𝐼

𝜂𝑃 ≪ 𝜂𝐼
 (14) 

   

𝜙𝑃 satisfies the Laplace equation in the fluid domain: 

 

 ∆𝜙𝑃 = 0 (15) 

 

By using the Green’s second identity, one can write the 

well-known integral equation: 

 

 
𝜙𝑃(𝑀)Ω(𝑀) +∬𝜙𝑛

𝑃(𝑃)𝐺(𝑀, 𝑃)𝑑𝑆



𝑆

 

−∬𝐺𝑛(𝑀, 𝑃)𝜙𝑃(𝑃)𝑑𝑆



𝑆

= 0 

(16) 

 

where 𝐺 is the Rankine source distribution:  

 

 
𝐺(𝑀, 𝑃) =

1

|𝑀𝑃|
 

 

(17) 

The dynamic and kinematic free-surface conditions are 

linearized at the incident free surface elevation level 𝑧 = 𝜂𝐼: 
 

 

𝐷0𝜙
𝑃

𝐷𝑡
= 

 

−�̇�𝐼 − 𝑔(𝜂𝐼 + 𝜂𝑃) −
1

2
𝛁𝜙𝐼 . 𝛁𝜙𝐼 

−(𝛁𝜙𝐼 − 𝒗𝑚𝑒𝑠ℎ). 𝛁𝜙
𝑃 

−𝜂𝑃 (
𝜕�̇�𝐼

𝜕𝑧
+
𝜕(𝛁𝜙𝐼 . 𝛁𝜙𝐼)

𝜕𝑧
) − 𝜈𝜙𝑃 

(18) 

 

 

𝐷0𝜂
𝑃

𝐷𝑡
= 

 

−�̇�𝐼 +
𝜕(𝜙𝐼 + 𝜙𝑃)

𝜕𝑧
− 𝛁𝜙𝐼 . 𝛁𝜂𝐼 

−𝛁𝜙𝑃. 𝛁𝜂𝐼 − (𝛁𝜙𝐼 − 𝒗𝑚𝑒𝑠ℎ). 𝛁𝜂
𝑃 

+𝜂𝑃 (
𝜕2𝜙𝐼

𝜕𝑧2
−
𝜕(𝛁𝜙𝐼 . 𝛁𝜂𝐼)

𝜕𝑧
) − 𝜈𝜂𝑃 

(19) 

where 𝜈 is the damping coefficient of the numerical absorbing 

beach and 𝒗𝑚𝑒𝑠ℎ the free surface node velocity. 

 

The no-flux condition through the body surfaces leads to 

the following slip condition for every node of the body mesh: 

 

 𝜙𝑛
𝑃 = −𝜙𝑛

𝐼 + [𝒗 + 𝝎 × (𝒙 − 𝒙𝑮)]. 𝒏 (20) 

 

where 𝒗,𝝎,𝒙𝑮and𝒙 are the linear velocity, the angular 

velocity, the position of the center of gravity of the body and 

the position of the node. 
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Validation case 1: Same hydrodynamic model, 
Different mesh generators, Academic geometry 

A vertical cylinder of radius 0.2 m and draft 0.1 m is 

considered. The cylinder mass is 12.88 kg. An incoming regular 

wave of amplitude 0.005 m and wave frequency 8 rad/s is used. 

A wave probe is present at the position (0.4,0,0). The cylinder 

has a free heave motion. 

The mesh convergence for the two mesh strategies is 

displayed in Fig. 13. It shows that a mesh of 10 000 panels for 

the initial mesh generator and of 9 600 panels for the new one 

are sufficient. The initial meshes are shown in Fig. 12. The time 

step convergence (not presented in this paper) involves the use 

of a time step of 0.01 s. The comparison between the numerical 

results of the two mesh generators of WS_CN is shown in Fig. 

14, for the heave motion and the wave elevation at the wave 

probe.  

A very good agreement is obtained for all these results. 

Some slight differences are observed, probably due to the 

permanent remeshing process in the new mesh generator 

whereas, in the initial mesh strategy, the mesh is only deformed 

if the regeneration is not necessary. The remeshing involves an 

interpolation between the old and the new mesh as explained in 

[8] and so numerical errors may occur. 

The sum of the incident wave amplitude and the heave 

motion amplitude represents 9% of the draft, which involves a 

significant deformation of the body mesh during the time-

domain simulation and proves the robustness of the new 

method. 

 

Validation case 2: Different hydrodynamic models, 
Complex geometry 

A FPSO is now considered [22]. This geometry is not 

academic and includes several sharp edges which lead to triple 

and quadruple nodes. Its mass is 3.66e8 kg. The incoming 

regular wave has an amplitude of 0.01 m, a wave frequency of 

0.8 rad/s and a direction of 180°. The mesh and time-step 

convergences (not presented in this paper) involve the use of a 

mesh of 12000 panels and a time step of 0.1 s in WS_CN. These 

results are compared with those obtained with InWave [23] 

based on the frequency-domain solver NEMOH. A body surface 

mesh of 1000 panels and a time step of 0.1 s are used in the 

fully linear approach. The initial meshes are displayed in Fig. 

15. 

The numerical results of WS_CN using the new mesh 

strategy are compared with those of InWave in Fig. 16. A good 

agreement is obtained once the steady state is reached. The 

differences observed at the beginning of the simulation are due 

to the effects of the ramp for smoothing the appearance of the 

waves. 

For the sake of illustration, the perturbed wave pattern at 

𝑡 = 168.4s is displayed in Fig. 17. 

 

CONCLUSION 
In this paper, a new mesh strategy for unsteady potential 

flow based solvers has been developed in WS_CN, based on the 

idea: the body mesh for the user, the free surface mesh for the 

solver. It results from the coupling between the panel cutting 

method and the advance front method. It enables to mesh non-

academic surface-piercing bodies in waves for industrial 

applications.  

The process of mesh generation has been explained in 

details and has led to the generation of good quality meshes, 

sufficient for performing time-domain simulations. The non-

regression of the new mesh generator compared to the initial 

one has been proved using an academic test case based on a 

vertical floating cylinder in waves. The robustness of the new 

mesh strategy is demonstrated by the time-domain simulation 

of a FPSO in waves and the comparison with a classical linear 

potential flow approach based on the frequency-domain solver 

NEMOH. The extension of this new mesh strategy to multibody 

simulations would provide the possibility for dealing with more 

complicated cases. 

 

 
 

 
Figure 12: INITIAL MESHES FOR THE VALIDATION 

CASE 1. TOP: INITIAL MESH GENERATOR, BOTTOM: 

NEW MESH GENERATOR. 
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Figure 13: MESH CONVERGENCE FOR THE VALIDATION CASE 1. TOP: INITIAL MESH GENERATOR, BOTTOM: NEW 

MESH GENERATOR 

 

 

 
Figure 14: COMPARISON OF TIME SERIES OF THE HEAVE MOTION AND THE WAVE ELEVATION FROM NUMERICAL 

RESULTS USING THE TWO MESH GENERATORS 
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Figure 15: LEFT: MESH USED IN NEMOH, RIGHT: INITIAL MESH USED IN WS_CN FOR THE VALIDATION CASE 2 

 

 

 
Figure 16: COMPARISON OF TIME SERIES OF THE HEAVE MOTION FROM NUMERICAL RESULTS USING WS_CN AND 

INWAVE-NEMOH 

 

 
Figure 17: PERTURBED COMPONENT OF THE WAVE ELAVATION (𝜂𝑃) AT 𝑡 = 168.4s FOR THE VALIDATION TEST 2 
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