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Abstract. This paper reports a method to design highly coupled piezoelectric energy harvesters 

with frequency tuning capabilities using nonlinear electrical techniques. A cantilever beam with 

two PMN-PT patches has been optimized thanks to both analytical modelling and Finite Element 

Methods (FEM). The built prototype exhibits a strong electromechanical coupling (k²=17.6%) 

and a figure of merit (km²Q=12.4) which allow a bandwidth corresponding to 22% of the resonant 

frequency value. 

1. Introduction 

Ambient energy harvesting appears as a relevant solution to supply electrical energy to sensors where 

batteries cannot be used or need to be complemented. In environments without light or thermal gradient, 

vibration energy harvesting is necessary and piezoelectric systems based on mechanical resonators are 

interesting for their high power density at small scale [1]. However, the frequency bandwidth limits are 

still an important issue. 

 Electrical nonlinear methods have recently been proposed to enlarge the harvesting bandwidth by 

tuning the resonant frequency of linear piezoelectric harvesters [2,3]. In opposition to nonlinear 

mechanical harvesters [4], these techniques are not dependent on the input excitation level and are based 

on the influence between the mechanical resonator dynamics and the electrical circuit. For that purpose, 

the use of highly-coupled piezoelectric generators was shown to be mandatory to enlarge the frequency 

response. However, few works in prior art have studied such generators, since increasing the 

electromechanical coupling (k²) beyond a certain value did not show any interest to improve the maximal 

harvested power [1], and because the bandwidth was rarely studied.  

 In 2013, Ahmed-Seddik et al. [5] proposed a capacitance tuning technique and a 33-mode PZN-PT 

prototype (k²=49.3%). The structure has though a low quality factor and may not be adapted to industrial 

process as it seems complicated to assemble.  In 2014, Badel and Lefeuvre [2] explained the interest of 

maximizing the electromechanical coefficient to improve the bandwidth thanks to a non-linear electrical 

technique. They also introduced a strongly coupled (k²=53%) cantilever-based PZN-PT harvester, but 

no design method was proposed. Hence, we propose a design method based on both analytical modelling 

and Finite Element Methods (FEM) to build highly-coupled vibration energy harvesters. The built 

prototype reaches a high value of the conventional figure of merit for such harvesters km²Q. 

2. Model 

Like [2], our device implements a long tip mass (figure 1). Nevertheless, the single degree of freedom 

(SDOF) model is inaccurate for this particular geometry [6] and the commonly used distributed 



 
 
 
 
 
 

parameter model [7] is inappropriate for optimization and needs numerical resolutions to compute the 

resonant frequencies and deduce the coupling. Thus, we propose a 2-degree-of-freedom (2-DOF) model 

to design highly coupled bimorph cantilevers with a long tip mass.  

The proposed model, which is an evolution of the one presented by [6], is based on the Euler-

Bernoulli assumptions and the mass of the beam is neglected compared to the mass of the proof mass. 

In addition to the analysis of the deflection u and the force F performed in the SDOF model, the effect 

of the rotation θLb of the tip mass and the resultant couple C are analysed (figure 2). Both tip mass rotary 

inertia It and the distance between its center of gravity and the end of the beam are taken into account 

[6]. Moreover, electrodes cover piezoelectric patches at the bottom and the top surfaces. They are 

connected in parallel and the electric field is not considered uniform along the piezoelectric thickness 

as presented in [8]. 

 

 

 

Figure 1. Parameters of the bimorph cantilever.  Figure 2. Cantilever during bending. 

The constitutive equations of piezoelectric and substrate materials are used to express the internal 

bending moment of the beam according to the plane stress or the plane strain assumption [8]. The beam 

stiffness matrix is then determined and the following system of electromechanical equations (1) is 

derived thanks to the force and torque equilibrium analyses and from the Kirchhoff’s law: 
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where γ is the excitation acceleration of the clamped end, V and I are the voltage across and the 

current through the electrodes respectively. Cp, α, α1, α2 and the coefficients of the stiffness matrix [K] 

depend on the geometry and the material coefficients. Mt and It are the mass and rotary inertia of the tip 

mass respectively. θLp is the bending angle at the end of the piezoelectric patches (x=Lpiezo). 

 The open and closed circuit resonant frequencies (foc and fsc) of the first vibration mode can be 

analytically expressed from (1) and thus, the corresponding global coupling coefficient can be calculated 

from (2) [9]. 

k2 =
foc

2 − fsc
2

foc
2  (2) 

3. Optimization for a given patch 

Our model is used to find the geometrical parameters (figure 1) that maximize the first vibration mode 

coupling coefficient for given PMN-PT patches (45×10×0.5mm). The analytical expression of the global 

coupling simplifies the parametric study in comparison with the distributed parameters model or FEM 

simulations. The first resonant frequency was sought around 30Hz and the total length (Lm+Lbeam) had 

to be less than 90mm. The beam and the mass are made of steel and the piezoelectric parameters are 

given in table 1. 

Table 1. Material parameters (PMN-PT X2B of TRS ceramics). Material coupling coefficients  

k31² are calculated from [9]. 
   

d31 (pm.V-1) 𝐬𝟏𝟏
𝐄 (×10-12Pa-1) 𝛜𝟑𝟑

𝐓  (F.m-1) 𝐤𝟑𝟏
𝐥 ² plane stress 𝐤𝟑𝟏

𝐰 ² plane strain 

-699 52.1 5400 ϵ0 19.62% 68.09% 

 



 
 
 
 
 
 

According to a parametric study using the 2-DOF model presented in section 2, the piezoelectric 

patches should be as long as the substrate beam. It also shows that increasing the mass length 

homogenizes the strain distribution, which explains why such geometries are advantageous. As depicted 

in figure 4, different optimal substrate thicknesses and coupling coefficients are found for plane stress 

and plane strain assumptions. Even if the proposed 2-DOF model fits well with 2D FEM simulations 

(Comsol), it is shown that two-dimensional analysis is not sufficient to predict the actual 

electromechanical coupling [10]. Indeed, there is a notable impact of the length/width ratio for strongly 

coupled cantilevers and a 3D FEM analysis is compulsory to design such generators. As this ratio is 

large for the PMN-PT patches, our model with plane stress hypothesis is closer to the 3D study.  

 

 

Figure 3. Global coupling 

coefficient vs substrate 

thickness for Hm=5mm, 

Lbeam=Lm=45mm and 

beam width = 10mm for 

3D FEM. Full dots are the 

maximal values. 

4. Experiment results 

The determined optimal substrate thickness is equal to 0.5mm and a prototype has been assembled 

(figure 4). Its admittance response has been measured thanks to an impedance analyser and has been 

matched with the model presented in [2] to get the coupling coefficient and the quality factor (table 2 

and figure 5). The differences between the simulations and the experiments are probably due to the 

imperfectly clamped end and potential errors on material properties. 

Table 2. Analytical, numerical and experimental results for the cantilever with the optimal parameters. 

 

Short circuit 

resonance 

frequency 

Open circuit 

resonance 

frequency 

Global 

coupling 

coefficient  

k² 

Modified  coupling 

coefficient 

𝒌𝒎
𝟐 = 𝒌𝟐/(𝟏 − 𝒌𝟐) 

Mechanical 

quality 

factor 

Q 

Max 

power @ 

0,08g 

2-DOF Plane Stress 31.46 Hz 33.69 Hz 12.78% 14.65%   

2-DOF Plane Strain 36.74 Hz 53.52 Hz 52.89% 112.26%   

3D FEM 34.32 Hz 38.70 Hz 21.37% 27.17%   

Experimental results 28.61 Hz 31.52 Hz 17.61% 21.37% 58 370µW 

 

 
Figure 4. Fabricated prototype under test (hs=hp=0.5mm) 

 The product km²Q (computed from Table 2) reaches 12.4 for our prototype. It is much larger than 

what was obtained in a previously reported, more sophisticated, PMN-PT structure [6] (km²Q=1.39). The 

cantilever presented in [2] exhibits a km²Q of 31.6 thanks to the better electromechanical properties of 

the PZN-PT compared to the PMN-PT we used.  
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 The prototype has been excited under a constant acceleration of 0.02g between 25Hz and 38Hz. The 

root mean square output voltage of the device has been measured for 50 resistive loads (1kΩ to 35MΩ) 

and 50 frequency values in this band. As shown in figure 6, the harvester provides a maximal power of 

32.7µW and a bandwidth equal to 8.4% of the resonant frequency by tuning the resistive load.  

 

 

 

Figure 5. Measured admittance of the prototype 

and comparison with the model presented in [2]. 
 

Figure 6. Measured power vs frequency at 

optimal resistive load under 0.02g acceleration. 

Conclusion 

A fully analytical model has been developed to optimize the global electromechanical coupling of a 

vibration energy harvester. This highly coupled device is based on a cantilever beam with long tip proof 

mass and two PMN-PT patches. We discussed the validity of our model when the structures are highly 

coupled and the need to take the effect of the beam width into account. In this case, we emphasise that 

3D simulations must be used to refine the design of the harvester. Our prototype exhibits a coupling of 

k²=17% and a figure of merit km²Q=12.4. With these characteristics, we expect a 22% frequency 

bandwidth when associated with a non-linear interface circuit such as the FTSECE [2] or the SC-SECE 

[3].  
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