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Abstract

Isogeometric shape optimization uses a unique model for the geometric description and for the analysis. The benefits
are multiple: in particular, it avoids tedious procedures related to mesh updates. However, although the analysis of
complex multipatch structures now becomes tractable with advanced numerical tools, isogeometric shape optimiza-
tion has not yet been proven to be applicable for designing such structures. Based on the initial concept of integrating
design and analysis, we develop a new approach that deals with the shape optimization of non-conforming multipatch
structures. The model is built by employing the Free-Form Deformation principle. Introducing NURBS composition
drastically simplifies the imposition of the shape updates in case of a non-conforming multipatch configuration. In the
case of stiffened structures, the use of embedded surfaces enables to tackle the geometric constraint of connecting in-
terfaces between the panel and the stiffeners during shape modifications. For the analysis, we introduce the embedded
Kirchhoff-Love shell formulation. The NURBS composition defines the geometry of the shell while the displacement
field is approximated using the same spline functions as for the embedded surface. We also formulate a new mortar
method to couple non-conforming Kirchhoff-Love shells which intersect with any angle. We apply the developed
method on different examples to demonstrate its efficiency and its potential to optimize complex industrial structures
in a smooth manner.
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1. Introduction

Structural shape optimization requires a suitable mix
of an accurate geometric description and an efficient
analysis model. Even more importantly, a close link
between both the geometric and the analysis models is
highly sought since they repeatedly communicate dur-
ing the resolution. Thus, shape optimization is a great
application of IsoGeometric Analysis since the latter in-
tegrates Computer-Aided Design and analysis [1, 2]. As
a result, isogeometric analysis optimization is an active
research topic and it has been successfully applied in
solid mechanics; see for example Wall et al. [3], Qian
[4], Nagy et al. [5, 6, 7], Kiendl et al. [8], Taheri and
Hassani [9], Wang and Turteltaub [10], Fußeder et al.
[11], Kang and Youn [12], Lian et al. [13], Wang et al.
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[14], Choi and Cho [15], Lei et al. [16], Hirschler et al.
[17], Ding et al. [18], Weeger et al. [19]. A general pro-
cedure, which has been improved over the years [20],
is commonly adopted. It is based on a multilevel de-
sign concept which consists in choosing different refine-
ment levels of the same NURBS-based geometry to de-
fine both optimization and analysis spaces [7, 8, 10, 17].
Shape updates are represented by altering the spatial
location of the control points, and in some case the
weights [4, 7], on the coarse level. The finer level de-
fines the analysis model and is set to ensure good quality
of the solution. The optimization and analysis refine-
ment levels are independently chosen which provides a
problem-adapted choice of the spaces.

From this overview, it appears that isogeometric
shape optimization has not yet been applied to real-
world structures. More precisely, mainly simple ge-
ometries modeled as single patch structures have been
considered. However, it is well-known that a single
NURBS patch cannot represent large and complex ge-
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ometries with for example holes and kinks. For in-
stance, we are interested here in stiffened structures
which are omnipresent in aeronautics [21–23]. These
structures are obtained by the assembly of a main part
(usually denoted by the skin or the panel) with sub-
parts as stringers and ribs (the stiffeners). The fasten-
ing of the stiffeners with the skin gives a final struc-
ture with a high stiffness to weight ratio. Since stiffened
structures are built with multiple parts, it seems obvi-
ous that multipatch modeling will be required to de-
sign them. Even more, the position and the shape of
the stiffeners can be arbitrary which makes it difficult
to model the whole structure with multiple conforming
NURBS patches. Preprocessing procedures seem, in
this case, inevitable to generate analysis-suitable con-
forming NURBS models [24]. In this work we are in-
terested, for example, in finding the optimal position of
the stiffeners along the skin [25, 26]. In this case, the ge-
ometry of the skin remains unchanged during the whole
optimization, and therefore it would be attractive not to
modify its discretization. In addition, the generation of
conforming meshes is not straightforward and may re-
quire time consuming procedures. This kind of frame-
work has already been developed in the FEM commu-
nity, see for example: Mulani et al. [27], Singh et al.
[28], Zhao and Kapania [29]. It can be noted that these
frameworks lack of compactness in the sense that sev-
eral softwares are used during the different steps of op-
timization: geometry parametrization, meshing, analy-
sis. Thus, we are looking for an optimization method
that enables to use non-conforming multipatch models
in order to suppress the tedious generation of conform-
ing parametrization models. However, the imposition of
the shape updates in case of non-conforming patches re-
quires specific attention since there are no explicit links
between the patches. We will show in this work how the
use of Free-From Deformation techniques [30] helps to
deal with this issue. Especially, it transfers the shape
modification between the patches in a master-slave way.

Isogeometric analysis of non-conforming multipatch
structures is an active field of research. The main in-
terest is to be able to perform the analysis directly
on CAD models which almost systematically present
trimming and non-conforming parametrization [31–33].
The coupling can be addressed by different techniques.
In case of arbitrary non-conforming interfaces, the cou-
pling conditions are imposed in a weak sense. There
are different approaches that can be employed; namely
penalty methods [34–36], mortar methods [34, 37–43],
and Nitsche methods [44–48]. Because stiffened struc-
tures are built with thin shells, we seek to consider iso-
geometric Kirchhoff-Love shell formulation. Moreover,

this rotation-free shell formulation is very attractive for
shape optimization because of its low computational
cost [7, 8, 17]. In the specific context of Kirchhoff-
Love shells, penalty [36] and Nitsche [33] methods have
been successfully applied for large and complex indus-
trial structures, even for non-linear analysis. Mortar
coupling of Kirchhoff-Love shells has been done for
geometric continuum surfaces [34] and for non-linear
analysis [34, 49]. However, the formulation in the con-
text of linear elasticity analysis of multipatch Kirchhoff-
Love shells which connect with arbitrary angles does
not seem to have been performed yet. A solution can be
found in [49] but the applicability in the context of lin-
ear analysis may not appear obvious. We present in this
work a new mortar method applicable in this context.
Differences with the mentioned approaches mainly con-
cern the kinematic constraints imposed by the Lagrange
multipliers. From an implementation point of view, the
major benefit of the mortar method is its close link with
domain decomposition techniques [50–53]. We discuss
in this paper the advantages brought by such techniques
to optimize multipatch structures.

Based on these observations, we develop in this work
an approach which integrates the design and analysis
into a single model accordingly to the isogeometric con-
cept. Our approach deals with non-conforming multi-
patch models which are inevitable for designing stiff-
ened structures. We offer a smooth way to impose the
shape updates during the optimization even for complex
geometries with varying curvatures. Neither during the
design, the analysis nor the optimization steps we in-
troduce approximations, reparametrizations, and other
tedious procedures. To do so, we first tackle the ge-
ometric challenges in section 2. We present the idea
of embedded surface related to Free-Form Deformation
(FFD) methods [30]. This will lead us to formulate,
in section 3, the embedded isogeometric Kichhoff-Love
shell. Then we present our mortar approach for the cou-
pling and we remind basics on domain decomposition
methods for the resolution. In section 4, we highlight
the benefits and the potentials of using NURBS compo-
sition to perform shape optimization. Finally, section 5
presents advanced numerical examples that demonstrate
the applicability and the efficiency of our approach to
design innovative stiffened structures. This brings us
to section 6 where concluding remarks and perspectives
are discussed.

2. Geometric modeling

We first need to deal with the geometric difficulties of
imposing shape updates to complex geometries. In par-
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Figure 1: Construction of a portion of cylinder with one stiffener by
using two non-conforming NURBS surfaces.

ticular, this work focuses on stiffened structures which
are obtained by the assembly of a main part (the panel)
with one or more specific substructure (the stiffener).
The main part and its substructure are coupled at a com-
mon interface. We introduce in this section the use of
embedded surfaces to tackle this geometric constraint
of connecting interfaces during shape modifications.

2.1. Geometric challenges
The simple case of a portion of a cylinder with one

stiffener helps to highlight the geometric challenges. A
first configuration can be defined as depicted in figure 1.
Two classical NURBS surfaces describe the portion of
cylinder and the stiffener. During the design, or more
specifically, the optimization process, the designer may
want to modify the shape of the different parts. In the
IGA-based framework, it consists in changing the con-
trol point coordinates and, in few cases, their associated
weights [3–8, 11, 14, 17]. Figure 2 shows two difficul-
ties that arise with non-conforming multipatch configu-
rations. The first difficulty occurs when trying to mod-
ify the shape of the stiffener. We want the bottom of the
stiffener to perfectly lie on the cylinder. This geometric
constraint is not easily fulfilled as shown in figure 2(a).
In other words, sliding the control points along the edge
of the cylinder disconnects the surfaces. The second
difficulty is to modify the global shape (i.e., in this case
the portion of cylinder) while keeping the substructure
connected. More precisely, the question here is: how
to transfer the shape update from the global part to its
substructure? An illustration of the problem is shown in
figure 2(b). If we move one control point of the main
surface, the stiffener does not lie anymore on it. In this
simple case, one could formulate an appropriate condi-
tion in order to glue the stiffener but, in general, it is not
a trivial task. In case of curvilinear stiffeners lying on a
curved surface, reparametrizations and approximations
appear inevitable.

(a)

(b)

Figure 2: Geometric difficulties to impose design modifications to a
stiffened cylinder: (a) while moving, the stiffener disconnects with
the cylinder, and (b) the stiffener does not follow the shape variation
of the cylinder.

2.2. Embedded surface

2.2.1. Main idea
We introduce the concept of embedded surface in or-

der to overcome the geometric challenges highlighted
in the previous section. The idea comes from Bauer
et al. [54] who considered univariate embedded enti-
ties. More precisely, they embed a curve into a surface.
This technique allows them to model cables in mem-
brane structures or to apply line loads and supports to a
shell structure without being limited to the edges of the
surface.

A similar procedure is undertaken to define the stiff-
ener for the stiffened cylinder depicted in figure 1. We
do not use classical NURBS surfaces to describe the
stiffeners. Instead of a simple surface, we introduce the
composition of a NURBS volume and a NURBS sur-
face. In other words, we immerse a surface into the
parametric space of a volume. The volume can be seen
as a mapping that smartly transforms the embedded sur-
face in order to create a final surface with the desired
properties. Figure 3 illustrates this process.

In general, embedded entities (curve, surface or vol-
ume) can be introduced when the shape modification of
a given structure is controlled by another one or by so-
phisticated geometric rules. In this work, we restrict
ourselves to embedded surfaces without loss of gener-
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Figure 3: Construction of a stiffened structure using embedded surfaces. The final surface describing the stiffener is obtained by the composition
of a NURBS surface and a NURBS volume. This construction ensures that the stiffener is perfectly lying on the portion of cylinder.

ality. The embedded entities can be interpreted as slave
parts since their shapes are driven by external geometric
properties. Conversely, the master parts are those which
dictate specific constraints during the shape update. For
example, in the case depicted in figure 1, the portion
of cylinder is the master part and the stiffener consti-
tutes the slave part: modifying the master part imposes
to transfer shape modification to the slave part and, in
turn, the possible shape modifications of the slave part
are restricted to follow the master geometry.

2.2.2. Mathematical description
Let us now introduce the following quantities. We

define the mapping V as a NURBS volume:

V(ξ1, ξ2, ξ3) =
∑
i jk

Ri jk(ξ1, ξ2, ξ3)Pi jk, (1)

where Ri jk are trivariate NURBS basis functions and Pi jk

are the related control points. The parametric coordi-
nates ξ1, ξ2 and ξ3 are defined over the parametric do-
main Ω̄. The embedded surface S̄ is a NURBS surface
defined as:

S̄(θ1, θ2) =
∑
ab

R̄ab(θ1, θ2)Qab, (2)

with R̄ab some bivariate NURBS basis functions and
Qab their associated control points. Under the consid-
eration that the codomain of S̄ is included in domain Ω̄,
we finally compose the two previous mapping (1) and
(2) to get the phyical surface:

S(θ1, θ2) = V
(

S̄(θ1, θ2)
)
. (3)

The surface S is parametrized by the same set of vari-
ables (θ1, θ2) as the embedded surface S̄ and it returns
value in the physical space R3.

2.3. Design benefits brought by embedded surfaces

The potential of using embedded entities is multiple
from the design point of view. Our first motivation is to
design stiffened structures found in aeronautics but, of
course, it should not be limited to this purpose.

To demonstrate the flexibility of the proposed ap-
proach, we apply it to design the internal substructure
of a curved wing. The wing is described by its exter-
nal geometry as shown in figure 4(a). The outer skin of
the wing can, for example, be defined by two classical
NURBS surfaces. In order to build the internal substruc-
ture, we firstly introduce a NURBS volume that fills the
inside of the wing. The two outer surfaces compose two
opposite faces of the volume. Degree one is chosen be-
tween these faces. Thus, the control points associated to
the volume are none other than the union of those asso-
ciated to the both outer surfaces. Figure 4(b) shows the
defined volume. Once the volume is generated, embed-
ded surfaces are introduced into its parametric space.
The composition of these embedded surfaces and the
volume gives surfaces that are located inside the wing
and that are perfectly coincident at some of their edges
with both outer skins. One can simply modify the shape
of the substructure by changing the location of some
control points of the embedded surfaces. As shown in
figure 5, a uni-directional translation of the embedded
surface in the parametric space of the mapping leads to
a smooth translation of the substructure which follows
the curvature of the wing. It also automatically takes
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Physical Space

Internal Volume

(a) (b)

Figure 4: Example of a wing: (a) the geometry is defined by its outer surface. (b) The skin of the wing can be defined by two NURBS surfaces
(red and blue patches). These surfaces are used to define a NURBS volume that fills the inside of the wing. Then, one can embed surfaces into its
parametric domain to describe the internal substructure (see for example figure 5).

1D translation

Complex motion

Initial Surfaces

New Surfaces

Figure 5: Design of the internal substructure of a wing. Embedding surfaces in the parametric domain of the internal volume of the wing enables to
describe ribs. The designer can simply modify the shape of the internal substructure by modifying the embedded surfaces. Here, a one-dimensional
translation of an embedded surface provides the motion of the substructure along the curvature of the wing.

into account the cross-section variations of the wing.
The geometric constraints given by the curvature and
the cross-section variations could be really tedious, if
not impossible without approximation, to be imposed
with classical NURBS patches.

The example of the wing is only one example of the
capabilities of using embedded entities from the design
point of view. We believe that such techniques can be
successfully applied to a large range of design problems.
The examples tackled in this article illustrate some of
the applications (see more specifically section 5).

3. Shell analysis with embedded surfaces

The analysis of non-conforming multipatch struc-
tures is of high interest in the IGA community (see

[34, 36, 38, 40, 45, 46, 55] to name a few). In
this section, we firstly adapt the popular isogeometric
Kirchhoff-Love shell formulation to the case of em-
bedded surfaces. Secondly, we propose a mortar ap-
proach for the coupling of non-conforming parametriza-
tions and we remind the basics of domain decomposi-
tion methods which enable to efficiently solve mixed
problems.

3.1. Embedded Kirchhoff-Love formulation

The surface obtained by the composition of NURBS
functions, as introduced in section 2, is not a classi-
cal NURBS surface. Thus, the standard isogeometric
Kirchhoff-Love shell requires some adjustments to be
used with embedded surfaces.
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Looking at Kiendl et al. [56], it can be seen that
the starting point of the Kirchhoff-Love element for-
mulation is the definition of the covariant base vec-
tors. Taking equation (3), we observe that the surface
is parametrized and, therefore, it has curvilinear coordi-
nates which are θ1 and θ2. As a consequence, the defini-
tion of the covariant base vectors is straightforward and
is given by the chain rule:

aα =
∂S
∂θα

=
∑
k=1,3

[
S̄,θα · ek

]
V,ξk

(
S̄
)

α = 1, 2 , (4)

where the subscript (·),ξ = ∂(·)/∂ξ indicates the partial
derivative with respect to variable ξ. The unit normal
vector a3 is obtained using the relation:

a3 =
1
J

a1 × a2, where J = |a1 × a2|. (5)

The Kirchhoff kinematic assumptions are well-
known: straight lines normal to the mid-surface are
characterized by rigid-body motions and remain normal
to the mid-surface after deformation. Such assumptions
enable to describe the deformation of the shell body
only by the displacement u of the mid-surface. There-
fore, the overall displacement field U of the shell body
can be written as:

U(θ1, θ2, ζ) = u(θ1, θ2) + ζ [Φ × a3] (θ1, θ2), (6)

where ζ ∈ [- t
2 ; t

2 ], t being the thickness of the shell.
From Echter et al. [57], the linearized rotation vectorΦ
is defined as a function of the covariant base vectors and
rotation angles:

Φ = ϕ1a1 + ϕ2a2, (7)

where the rotation angles ϕ1 and ϕ2 are:

ϕ1 =
1
J

u,θ2 · a3 and ϕ2 = −
1
J

u,θ1 · a3. (8)

It follows that the linearized strain tensor of the shell
body is found to be of the form

εαβ = eαβ + ζκαβ, (9)

where membrane strains e and bending strains κ are
given by

eαβ =
1
2

(
u,θα · aβ + u,θβ · aα

)
, (10)

καβ = −u,θαθβ · a3 (11)

+
1
J

[
u,θ1 ·

(
aα,θβ × a2

)
+ u,θ2 ·

(
a1 × aα,θβ

)]
+

a3 · aα,θβ
J

[
u,θ1 ·

(
a2 × a3

)
+ u,θ2 ·

(
a3 × a1

)]
.

Greek indices take the values 1 and 2. In fact, the
kinematic assumptions make the transverse shear strains
vanish (.i.e. εα3 = 0).

Looking at equation (11) reveals that the derivatives
of the covariant base vectors versus the curvilinear co-
ordinates are required. In case of the composition of
NURBS, the expressions of these derivatives are ob-
tained starting from equation (4) and applying one more
time the chain rule. It gives:

aα,θβ =
∑
k=1,3

[
S̄,θαθβ · ek

]
V,ξk

(
S̄
)

(12)

+
∑
k=1,3

∑
l=1,3

[
S̄,θα · ek

][
S̄,θβ · el

]
V,ξkξl

(
S̄
)
.

One can notice that second derivatives are employed for
the bending term. More specifically, the physical sur-
face obtained by NURBS composition has to be C1 (see
equation (12)). This requirement can be satisfied with
NURBS discretizations of higher continuity. If both the
embedded surface S̄ and the volume mapping V are C1

then the NURBS composition is de facto C1.
Applying Galerkin’s method raises the question of

the choice of the approximation space Vh for the dis-
placement field. In fact, the isoparametric concept may
not be applicable in case of a NURBS composition. We
need to define the solution space as all linear combi-
nations of a given set of basis functions. Since sec-
ond derivatives of the displacement field are involved in
the bending term (see equation (11)), the approximated
displacement field has to be C1 as the geometry. Two
choices emerge:

1. based on the trivariate NURBS discretization of the
mapping:

uh(θ1, θ2) =
∑
i jk

Ri jk
(
S̄(θ1, θ2)

)
Ui jk, (13)

2. based on the bivariate NURBS discretization of the
embedded surface:

uh(θ1, θ2) =
∑
ab

R̄ab(θ1, θ2) Uab. (14)

The first choice provides an immersed-like approach
where the deformation of the shell is prescribed by the
surrounding volume [58–61]. The second choice is
close to the initial Kirchhoff-Love isogeometric shell.
The mapping only plays a role from the geometric point
of view since it modifies the shape of the embedded sur-
face but it is not involved in the solution space. De-
pending on the application, one can adopt either one
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Figure 6: Overview of the embedded isogeometric Kirchhoff-Love shell elements. The displacement field is approximated by the same parametriza-
tion as the embedded surface. However, the embedded surface does not describe the geometry of the shell. An additional mapping step further
modifies the geometry of the shell. The deformed configuration is obtained by adding the displacement field to this NURBS composition.

or the other approach. The first approach can be in-
teresting if the volume which surrounds the surface is
a structural part. In case of void, a lot of degrees of
freedom may be inactive leading to an ill-conditioned
system, which is a well-known drawback of immersed
method. Special treatments, such as penalization tech-
niques [61, 62], have to be performed. It is particularly
true for higher continuity discretizations since the sup-
ports of the NURBS basis functions become larger. The
second approach leads to smaller system because it uses
a bivariate parametrization (instead of a trivariate one
for the first approach). No regularization is required and
higher continuity discretizations (cubic and quartic for
example) can be used. We notice that the second ap-
proach is also easier from the implementation point of
view, especially during the stiffness matrix assembly.

In this work, we apply the second methodology (14).
An overview of the approach is depicted in figure 6.
Compared to the classical isogeometric Kirchhoff-Love
shell, the difference lies in the additional trivariate map-
ping step that modifies the shape of the undeformed
configuration. We name it the FFD step since it reminds
the Free Form Deformation technique [30]. Finally, in-
troducing the approximation uh into (10) and (11) gives
the discrete membrane and bending strains. The equilib-
rium configurations of the shell followed from the prin-
ciple of minimum potential energy leads to the typical
linear system:

K U = F. (15)

Further details on the expression of the stiffness ma-
trix K and the vector of external force F can be found
in Kiendl [63] and for example in the following pa-
pers; Hirschler et al. [17], Cirak et al. [64], Kiendl et al.
[65]. Here, one has to replace the expressions of the
covariant vectors and their derivatives as given by equa-
tions (4) and (12).

3.2. Non-conforming coupling

We now introduce a new mortar method for the cou-
pling of non-conforming isogeometric Kirchhoff-Love
shells. Similarities with already published papers in the
standard FEM community can be found, especially with
those of Bernadou et al. [66, 67] where theoretical stud-
ies are carried out. In the isogeometric framework, mor-
tar coupling of Kirchhoff-Love shells has been recently
studied by Apostolatos et al. [34] and Duong et al. [49].
Differences with our approach mainly lie in the kine-
matic constraints imposed by the Lagrange multiplier.
In Apostolatos et al. [34], the rotation vector is not
clearly defined and the continuity of the rotation is im-
posed in the three directions of the global basis, which
is only true in case of coplanar domains [52]. In Duong
et al. [49], the chosen kinematic constraints deal with
arbitrary shell junctions but they are only suited and us-
able for non-linear problems.
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the z-displacement field obtained with the three times refined parametrization. (c) Convergence of the z-displacement at points A and B with the
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3.2.1. Mortar approach for Kirchhoff-Love shells
For the sake of simplicity, the method is presented

in the case of two non-overlapping subdomains Ω1 and
Ω2 without loss of generality. At the common interface
denoted by Γ, the continuity of the displacement has to
be ensured. Furthermore, in case of a shell junction with
rigid hinge, an additional constraint is required which
enforces the continuity of the rotation in the tangential
direction associated to the interface curve. Thus, we
formulate the kinematic constraints as:

u1 = u2 on Γ [3 displacements], (16)
Φ1 · t = Φ2 · t on Γ [1 rotation], (17)

where t is a unit tangent vector associated to the inter-
face curve. The constraints are ensured in a weak sense
by introducing two Lagrange multipliers λ ∈ Ld and
µ ∈ Lr (Ld and Lr being ad-hoc spaces for the dis-
placements and the rotation respectively). It results the
formulation of the following Lagrangian for the coupled
problem:

L (u1,u2, λ, µ) = 1
2 a1(u1,u1) − l1(u1)

+ 1
2 a2(u2,u2) − l2(u2)

+
〈
λ,u1 − u2

〉
+

〈
µ,Φ1 · t −Φ2 · t

〉
,

(18)

where bilinear forms as and linear forms ls constitute
the standard variation forms of the elasticity problem
on each subdomain. Operator 〈·, ·〉 is a bilinear form

defined such that:〈
v,w

〉
=

∫
Γ

v · w dl . (19)

Then, the variational principle written in the discrete
form gives the coupled linear system to be solved:

K1 0 CT
1 ZT

1

0 K2 CT
2 ZT

2

C1 C2 0 0

Z1 Z2 0 0





U1

U2

Λ

M


=



F1

F2

0

0


, (20)

where vectors U1, U2, Λ, and M collect the Degrees Of
Freedom corresponding to the discretizations of u1, u2,
λ, and µ respectively. The displacement coupling matri-
ces Cs and the rotation coupling matrices Zs consist in
sparse rectangular operators. As for the stiffness matri-
ces Ks, they are obtained by assembling local matrices
Cloc and Zloc that can be expressed at the control point
level as:

Cloc = ±

∫
Γ

RλR Id dl, (21)

Zloc = ±

∫
Γ

Rµ a3

J

(
R,θ2 (a1 · t) − R,θ1 (a2 · t)

)
dl . (22)

Here, we voluntarily skip the indices to ease the reading.
Rλ and Rµ correspond to some basis functions of the
displacement and of the rotation Lagrange multipliers
respectively. R is a basis function of one displacement
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field. Id is the 3-by-3 identity matrix. Finally, Cloc is a
3-by-3 matrix and Zloc is a 1-by-3 matrix. The symbol
± indicates whether the domain is the master (+) or the
slave (−).

The coupled linear system (20) is a saddle point prob-
lem. A special care may be required for the construction
of the approximation subspaces of the Lagrange multi-
pliers to avoid undesirable energy-free oscillations due
to the non-satisfaction of the inf-sup condition. Let p
denote the smaller degree of both subdomain displace-
ment fields. We adopt the following strategy:

• for the displacement constraint (16), a B-Spline
function λh with degree p − 1 is defined since it
is mainly related to traction forces,

• for the rotation constraint (17), a B-Spline function
µh with degree p − 2 is defined because it transfers
a bending moment,

• same mesh refinement is chosen for both Lagrange
multipliers λh and µh. We discretize these fields
using as many elements as the coarsest of the do-
mains Ω1 and Ω2 over the interface.

At this stage, it is important to say that this strategy
is only based on numerical experiments. With such a
choice, we never encountered instabilities in our com-
putations. To illustrate this point, two classical test
cases, the Scoderlis-Lo roof and the T-beam, are pre-
sented in the next section. Although the numerical stud-
ies validate numerically the formulation, we notice that
a strong mathematical investigation of the choices of
the discrete fields could be of interest from a theoret-
ical point of view. For example, based on the work
of Brivadis et al. [37] and Wunderlich et al. [43] one
could propose appropriate spaces to reach an optimal
convergence rate for the Kirchhoff-Love shells. One
may note that concerning stability issues, the penalty
method [35, 36] and the Nitsche approach [33, 45] are
thus attractive since they involve simpler stability pa-
rameters.

3.2.2. Numerical investigation of the coupling
We shortly present two test cases to assess the pre-

sented coupling strategy. The goal is to underline the
applicability of the approach for well-known problems.

The Scoderlis-Lo roof is discretized with three non-
conforming embedded patches. Starting from the con-
figuration depicted in figure 7(a), refinement is per-
formed to investigate the convergence of the solu-
tion. The vertical displacement of the midpoints of the
free edges is compared to the reference value uref =

0.000 0.015 0.029 0.044 0.059
Disp Magnitude

Coarse
Fine

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interface abscissa

89.96

89.98

90

90.02

90.04
Angle (°)

1 Element

(a)

(b)

(c)

Figure 8: T-Beam non-conforming coupling: (a) Description of the
problem: the interface cuts the upper patch at the middle of some el-
ements. The upper patch has one more element in the beam direction
than the bottom patch. (b) Deformed configuration with scale factor
of 10 and the magnitude of the displacement field. (c) Angle between
the patches along the interface after deformation. Coarse case corre-
sponds to the mesh depicted in (b). Fine mesh is three times refined.

−3.005925× 10−1 (see Herrema et al. [36]). The results
are given in figure 7(c). Good convergence of the solu-
tion is obtained. For the T-beam problem, we take the
same numerical setting as in Herrema et al. [36]. Two
planar patches are connected in a non-matching way.
The interface crosses the middle of the upper patch. We
use here the classical Kirchhoff-Love shell to show that
the proposed coupling strategy is fully applicable in this
context. We obtain a similar deformation as in Herrema
et al. [36] where penalty coupling was performed. In
order to show that the rotation constraint is well pre-
scribed, we plot in figure 8(c) the resulting angle be-
tween the patches along the interface. It can be seen
that it remains equal to 90◦ after deformation. Without
the rotation constraint, the angle between the patches
was found to be equal to 86.6◦ at the end of the beam
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because the interface acts as a hinge [36]. The pres-
ence of small oscillations for the coarser parametriza-
tion highlights the non-optimality of the chosen spaces
for the Lagrangian fields. It could be interesting to in-
vestigate the inf−sup condition to clarify the stability
of the method [37]. However, these oscillations vanish
with a finer parametrization.

In addition to these two examples, the following stud-
ies of section 5 will further confirm the potential of the
proposed coupling approach.

3.3. Domain decomposition
A great benefit of mortar coupling is its link with

domain decomposition methods [50–53]. The coupled
problem (20) can be decomposed in order to solve only
local and smaller systems. This is a particularly inter-
esting technique to analyze large and complex structures
characterized by the assembly of many substructures.

The starting point is to split the coupled system (20)
into the following coupled equations:

Us = K−1
s

(
Fs − CT

sΛ − ZT
s M

)
∀s (23)∑

s

CsUs = 0 and
∑

s

ZsUs = 0. (24)

The dual interface problem is obtained by the conden-
sation of the problem at the interface. It consists in sub-
stituting equation (23) into equation (24). We get:[

Sd

] (Λ
M

)
=

(
Tc

Tz

)
(25)

where the condensed right hand side T and the so-called
dual Shur complement operator Sd read:[

Sd

]
=

∑
s

(
Cs

Zs

) [
K−1

s

] (
CT

s ZT
s

)
, (26)

(
Tc

Tz

)
=

∑
s

(
Cs

Zs

)
· K−1

s Fs. (27)

Now, the analysis of the non-conforming multipatch
structure is done in two main steps: first we solve the
interface problem (25), and secondly we deduce the lo-
cal solutions from equation (23). One can see that these
equations involve only local systems. Finally, a last
ingredient comes into play to entirely decompose the
problem (and make it parallelizable). The Shur comple-
ment is neither computed nor assembled. Indeed, the
condensed symmetric linear system (25) is solved using
a Krylov iterative solver, and more precisely a precon-
ditioned conjugate gradient solver. With such a solver
in hand, only matrix-vector products are required. As

operator Sd is expressed as a sum on subdomains, these
products are computed as follows:

Sdv =
∑

s

(
Cs

Zs

)
· ys, ys = K−1

s

(
CT

s ZT
s

)
· v. (28)

The vectors ys are solutions of local systems. Thus, dur-
ing the whole resolution, only local quantities are in-
volved making the approach parallelizable.

We do not go further into the details regarding do-
main decomposition in the present contribution. Other
key aspects as efficient preconditionner, floating do-
main, and practical implementation of the method are
not of interest here. The goal is to present the main
concepts behind the domain decomposition methods in
order to highlight the potential of using mortar cou-
pling to analysis non-conforming multi-patch struc-
tures. For structural optimization, the domain decompo-
sition method enables, in a preprocessing step, to factor-
ize once for all the stiffness matrices of patches located
in non-design regions. Following the invoked strategy,
the solution at every iteration of the optimization pro-
cess is therefore computed at a very competitive cost
compare to the monolithic resolution [48].

4. Optimal design

Using IGA to perform structural optimization is at-
tractive since it integrates design and analysis. We
show in this section that introducing embedded surfaces
into the IGA-based shape optimization framework of-
fers new possibilities. It enables to tackle challenging
optimization problems in a proper and accurate manner.

4.1. IGA-based shape optimization
A commonly adopted procedure is used in this work,

and thus only the basics of IGA-based shape optimiza-
tion are reminded. Interested readers can find more in-
formation in the following papers [7, 8, 11, 14, 17].

The main ingredient is the multilevel approach which
allows to define the optimization model and the anal-
ysis model in a versatile manner. Both optimization
and analysis models are initially obtained through k-
refinement of the initial geometry of the structure and
represent the exact same geometry during the optimiza-
tion process. The shape variations are imposed on the
optimization model. Therefore, depending on the com-
plexity of the admitted shape variations, one can choose
an appropriate discretization level. A coarser optimiza-
tion model may provide a simpler optimal shape than
a finer optimization model. Then, the level of refine-
ment for the analysis model is defined so as to ensure
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good quality of the solution. Thus, the analysis model
is finer than the optimization model. Finally, thanks
to the refinement procedure of NURBS functions, the
link between both models is kept. The shape modifi-
cations imposed on the optimization model can be ex-
plicitly transferred to the analysis model by using the
linear relation between the control points of these two
discretizations [4].

In this work, we focus on the common optimization
problem that consists of minimizing the compliance un-
der a given volume constraint. The mathematical for-
mulation of this problem is:

min
1
2

F(s) · U(s) subject to sl ≤ s ≤ su,

V(s) ≤ V0,
(29)

where vector s collects the ns design variables. These
variables take real values limited by lower bound sl and
upper bound su. In IGA-based shape optimization, the
design variables are related to the control point coordi-
nates in order to parametrize the geometry of the struc-
ture. Other quantities involved in the problem (29) are
the load vector F, the state variables U, the volume of
the structure V , and a prescribed volume V0. There are
plenty of numerical methods to solve such an optimiza-
tion problem. We use in this work the gradient based
algorithm SLSQP [68] available in many scientific pack-
ages, as for instance SciPy [69]. Computation of the
sensitivities are required for specification of the search
direction. Accurate sensitivities are crucial to obtain
trustful results since they control the shape updates of
the iterative optimization process. In this work, we man-
age to evaluate discrete sensitivities in a fully analyti-
cal fashion. This is made possible because of the close
link between design and analysis within the isogeomet-
ric framework [4, 7, 9, 16].

L

h

q

Figure 9: The parabolic arch problem taken from Kiendl et al. [8].
When subjected to constant vertical load q, the optimal shape is a
parabola with ratio h/L = 0.54779.

4.2. Design capabilities

Taking the example of the parabolic arch described
in Kiendl et al. [8], we illustrate the design capabilities
offered by embedded surfaces. We compare the resolu-
tion of this problem when using the classical Kirchhoff-
Love shell and the introduced embedded version. The
description of this benchmark example is given in fig-
ure 9. Under the consideration of a small thickness, the
bending stiffness vanishes, and the optimal shape is an-
alytically found to be a parabola with a specific length
to height ratio (see again [8]).

One can solve the arch optimization problem by mod-
elling the arch with isogeometric Kirchhoff-Love shell
elements. In this case of a classical NURBS surface, the
design variations are imposed in the vertical direction
through design variables which move the inner control
points of the beam, as depicted in figure 10. With the pa-
rameters given in [8], one has to find the final solution
of a parabola with a height hopt = 5.4779 (see figure 10).

Now, we solve the arch optimization problem with
the embedded Kirchhoff-Love shell elements. The dif-
ference lies in the imposition of the shape variations.
In fact, it can be done in two ways. Firstly, the de-
sign variables can be related to the control points of the
volume mapping. We call this approach the FFD-like
shape update because it recalls Free-Form Deformation
techniques [30]. Secondly, the design variables can be
linked to the control points of the embedded surface in
order to modify the shape of the shell. This second ap-

Random Initial Shape
Initial CPs

Intermediary 
shape

Final shape

Final CPs

Intermediary
CPs

x
y

z

Figure 10: Isogeometric resolution of the arch optimization problem
with classical Kirchhoff-Love shell elements. A set of design vari-
ables (3 in the current case) move couples of control points in the
z-direction.
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Optimal 
Shape

i=0

Figure 11: Resolution of the arch optimization problem with embedded Kirchhoff-Love elements in case of FFD-based shape updates. The
embedded surface is fixed while the shape modifications are imposed by moving the control points associated to the volume mapping (i denotes the
SQP iteration).

Fixed 
Mapping

Movable
CPs

Fixed CPs

i=3 i=6

i=9 i=20

Optimal 
Shape

i=0

Figure 12: Resolution of the arch optimization problem with embedded Kirchhoff-Love elements in case of embedded shape updates. The volume
mapping is fixed and it limits the design space. The shape modifications are imposed by moving the control points associated to the embedded
surface (i denotes the SQP iteration).
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Figure 13: Construction of the geometry of the stiffened roof: starting from the square plate, the first step consists in generating a volume by
extrusion. Degree one is set in the direction of the extrusion. Once the volume is obtained, NURBS surfaces are embedded into the parameter space
of the volume. Finally, the compositions of these embedded surfaces with the volume give the final surfaces that describe the stiffeners.

proach is referred to the embedded shape update. Fig-
ures 11 and 12 illustrate the resolution of the arch op-
timization problems with these two techniques. Obvi-
ously, the parametrizations used here are not the unique
way to solve the problem. For the FFD shape update,
we define the embedded surface as a parabola with an
arbitrary length to height ratio, because we know, in this
particular case, that the final volume we are looking for
is a linear mapping that corrects the ratio in order to
obtain the expected parabola. Figure 11 shows the op-
timized solution. The final volume has a rectangular
shape as predicted. It gives a parabola with the correct
height. Note that another initialization than a parabola
could have been considered and also lead to the correct
optimal design. In case of embedded shape updates, the
volume is fixed. We define it sufficiently large to ensure
that the design space contains the optimal solution. Fig-
ure 12 shows that the optimized shape corresponds once
again to the analytical solution.

The potential of the two design techniques is signif-
icant. We present in next section a few examples that

highlight inherent benefits. The FFD design helps to op-
timize the global shape of structures composed of mul-
tiple parts. Conversely, the embedded technique offers a
smooth way to optimize specific parts of a global struc-
ture. In any case, main and specific parts remain per-
fectly connected through the optimization process.

5. Advanced numerical examples

We apply the presented approach to three problems.
The stiffened roof illustrates the use of the FFD de-
sign technique. The global shape modifications of the
roof are automatically transferred to the stiffeners. The
curved wall problem shows how the design modifica-
tions of the embedded surfaces allows to optimize the
shape and the position of stiffeners along curved and
complex geometries. Finally, the wing problem proves
the applicability of our approach to design innovative
aeronautical structures.
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5.1. Stiffened roof
The problem of the stiffened roof is derived from the

initial shape optimization problem of a roof under ver-
tical uniform load [70, 71]. Two stiffeners are added
to the initial square plate. We introduce two embedded
surfaces to define these stiffeners as shown in figure 13.
The construction can be divided into two steps. First,
the volume mapping is generated by the extrusion of
the square plate. We set the degree to one in the direc-
tion of extrusion (.i.e. the knot vector in direction ξ3
is defined as W = {0 0 1 1}). Thus, the generation of
the volume is straightforward. The volume shares half
of its control points with those associated to the square
plate. The additional control points are a copy of the
previous ones where the z-component is set to an off-
set value. The second step consists in embedding sur-
faces into the parameter space of the created volume.
These embedded surfaces, once composed with the vol-
ume mapping, give the final surfaces within the physi-
cal space that define the stiffeners. Here, the embedded
surfaces are B-Splines of one single element with de-
gree 2-by-1. Thus, each surface has six control points
as depicted in figure 13. The coordinates of their con-
trol points can directly be interpreted from this figure
considering the ratio d1/d2 = 0.35. The other geometric
and mechanical parameters of the problem are the fol-
lowing: Young’s modulus E = 210 · 109, Poisson’s ratio
ν = 0.30, plate length L = 10, shell thickness t = 0.1,
stiffener height h = 0.6, vertical uniform load P = 1000.
The 4 corners of the plate are fixed.

In this problem, the embedded surfaces remain un-
changed during the optimization. We apply the FFD
design technique. The shape modifications of the stiff-
eners are only imposed by the design updates of the
surface representing the roof. To this purpose, the de-
sign variables are associated to the control points of the
mapping. The volume mapping is discretized in 4-by-
4-by-1 elements. Degree 3 is taken in directions ξ1 and
ξ2 while degree 1 is kept in direction ξ3 (red points in
figure 13). Thus, the optimization model has 45 design
variables that move the control points of the mapping in
the vertical direction z. The analysis model is defined
such that the roof and both stiffeners are discretized into
1024 and 256 bi-cubic elements respectively. The area
of the roof without the stiffeners is constrained to be
lower than 110% of the initial area of the square plate
(.i.e. lower than V0 = 110). The shape evolution of the
optimization model and the analysis model is presented
in figure 14.

Figure 15 presents the optimal results. The final
shape is obtained after 125 iterations of the optimiza-
tion algorithm when setting the stopping criteria regard-

iter=15

iter=30

iter=60

iter=120

0.00 0.875 1.750 2.625 3.50
Shape Modification

Figure 14: Shape updates of the stiffened roof during the optimiza-
tion. At left the optimization model where the color map indicates the
amplitude of the shape variation. These shape variations are imposed
through the control points of the volume mapping (red points) which
move in the vertical direction. At the right are depicted the associate
analysis model. The stiffeners are perfectly lying on the roof during
the whole process.

ing the relative objective function to 1e-8. Figure 15(c)
depicts the evolution of the relative compliance during
the resolution of the optimization problem. The compli-
ance is drastically reduced: final relative compliance is
equal to Copt/C0 = 2.217e-3. The optimized structure
deforms much less than the initial stiffened plate. The
final displacement field is presented in figure 15(b). One
can notice that the angle along the interface between the
roof and the stiffeners varies. Thanks to our coupling
approach, this type of configuration can be dealt with.
Looking at the continuity of the displacement field at
the interface further confirms the suitability of the pre-
sented approach (see again figure 15(b)). It is interesting
to note that the final shape has two planes of symme-
try (see figure 15(a)). This is expected since the prob-
lem presents these symmetries. Therefore, some design
variables have identical optimal values. The fact that
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Figure 15: Optimization results for the stiffened roof problem: (a)
final shape with the associated shape modification field, (b) the dis-
placement magnitude for the optimal shape, and (c) the optimization
history which depicts the evolution of the relative compliance and the
relative volume during the optimization.

we obtain the symmetries without setting groups of de-
sign variables is a meaningful indication to validate the
result. From an engineering point of view, this prob-
lem of the stiffened roof highlights an interesting issue.
We manage to solve the optimization problem with the
substructure. One could also simplify the problem by
ignoring in the optimization process the stiffeners as-
suming that they only have small influence on the be-
haviour of the global structure. We try to solve in a first
step the optimization problem without the stiffeners, and
we build the substructure afterwords. We compute the
compliance on this new global structure and we get a
compliance approximately 15% higher than the one ob-
tained when optimizing the structure with the stiffeners.
It highlights that tacking into account, during the op-
timization, sub-parts as stiffeners, holes, and other ge-
ometric details can be essential to design even better
structures.

5.2. Curved wall

The second problem addresses the optimization of the
shape and the position of a stiffener lying on a curved
surface that represents a wall. Contrary to the stiffened
roof problem, we do not modify the geometry of the
wall which is here the master part. For this problem, we
focus on the substructure only. In order to design this
substructure, we apply the embedded design technique
presented in section 4.2, figure 12.

The geometric construction of the stiffened curved
wall is done similarly as the stiffened plate presented
in figure 13. Starting from the surface defining the wall,
we create a volume by extrusion. Once the volume is
obtained, a surface is embedded in the parameter space
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Figure 16: Geometric construction of the curved wall: control points
coordinates of the surface and the volume mapping.
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Figure 17: Initial configuration of the stiffened curved wall: (a) the
geometry where the stiffener is obtained by NURBS composition, (b)
the magnitude of the displacement, and (c) the definition of the design
variables which are associated to the control points of the embedded
surface.

of the volume. The composition of the embedded sur-
face with the volume mapping gives the surface defining
the stiffener in the physical space. More specifically, the
wall is defined by a quadratic NURBS surface. This sur-
face originally represents a quarter cylinder. We move
some control points to generate the final curved wall de-
picted in figure 16. The embedded surface is defined by
a quadratic NURBS with 2-by-4 elements. Its initial
shape is described in figure 17. In order to perform the
shape optimization of the stiffener, a set of design vari-
ables is associated to the control points of the embed-

ded surface. These design variables modify the cross-
section and the position of the stiffener. With the chosen
parametrization, six groups of four control points are
spread out along the main direction of the stiffener. For
each group of control points, we define four design vari-
ables vi = [vi

1, v
i
2, v

i
3, v

i
4] as explained in figure 17(c) (i

identifies the group number). Thus, a total of 6×4 = 24
design variables is used for this example. The initial
shape is obtained by setting the design variables of each
group equal to v0 = [0.3, 0.90, 0.06, 0.05]. The area of
the stiffener is constrained to be lower than the initial
one which is V0 = 21.579. Additional inequality con-
straints are included to the optimization problem in or-
der to prevent undesired shapes during the resolution:

vi
3 − vi

1 ≤ 0, vi
1 + vi

3 − 1 ≤ 0, vi
4 − vi

3 ≤ 0. (30)

The first two constraints ensure that the embedded sur-
face remains in the parameter space of the volume map-
ping. The third constraint limits the curvature of the
cross-section of the stiffener. Finally, bound constraints
set the range of variation of the design variables. The
lower bounds are vlo = [0., 0.1, 0.05, 0.01] and the up-
per bounds are vup = [1., 1., 0.15, 0.15].

The analysis model is defined trough k-refinement of
the optimization model. More specifically, the wall is

0.00 0.011 0.023 0.034 0.046
Disp Magnitude

i=1 i=5 i=13 i=25 i=50
(a)

Compliance
Volume

V/V0=1

C/C0=0.611

5 10 15 20 25 30 35 40 45 501
SQP Iteration

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 Q
ua

nt
iti

es

(b)

Figure 18: Optimization histories for the resolution of the curved wall
problem: (a) evolution of the geometry and the displacement field,
and (b) evolution of the compliance and the volume.
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Figure 19: Optimal configuration of the stiffened curved wall: (a)
final geometry and (b) the magnitude of the displacement. (c) The
final embedded surface: side, top views and 3D views. The 2D views
give information on the coordinates of the control points.

discretized with 32-by-32 bi-cubic NURBS elements
and the classical Kirchhoff-Love formulation is used.
The embedded surface is discretized with 16-by-64 cu-
bic NURBS elements and the embedded Kirchhoff-
Love formulation is applied. The mechanical parame-
ters of the problem are the following: Young’s modu-
lus E = 105, Poisson’s ratio ν = 0.30, wall thickness
tw = 0.25, stiffener thickness ts = 0.10, uniform pres-
sure P = 0.1. The pressure is applied over the mid-

surface of the wall. The bottom of the wall and the bot-
tom of the stiffener are both fixed as described in fig-
ure 17(a). With this analysis model in hand, the compli-
ance for the initial configuration of the multipatch struc-
ture is found to be equal to c0 = 3.952e-3.

The optimization results are given in figures 18
and 19. During the resolution, the stiffener moves along
the wall until it is located at the middle. Due to the
symmetry of the problem, this result was predictable.
The optimal shape has this symmetry which demon-
strates the quality of the result. Especially, the weak
coupling between the non-conforming patches is well
defined and apparently does not yield any significant in-
accuracy. The cross-section of the stiffener is larger at
the bottom than at the top of the wall. A large cross-
section at the bottom improves the fixation of the overall
structure. The cross-section also becomes larger where
the deformations are critical. Reducing the deformation
at the bottom decreases the global deformation of the
structure 18(a). The compliance of the final multipatch
shape is equal to copt = 2.416e-3, which is 39% lower
that for the initial configuration. More details on the
optimal shape are given in figure 19.
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ξ2
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Initial NURBS Surface:

NURBS Volume:

EMBED

MAP

Figure 20: Definition of a single stiffener for the wing problem. A
surface is embedded into the parameter space of the volume that fills
the inside of the wing. The mapping transforms the initial surface into
the one defining the stiffener in the physical space.
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Figure 21: Initial (a) and optimal (b) configurations for the wing problem. From left to right, case of 2, 4, and 8 stiffeners. The displacement color
map is scaled differently for each number of stiffeners. The deformation factor is the same for each configuration. As expected, the wing deforms
less with the optimal position of the stiffeners.

5.3. Wing

The last example of the wing highlights the applica-
bility of our approach to design real world structures.
We apply the concept presented in figures 4 and 5. The
goal is to optimize the substructure of a simplified wing.
We build the substructure by embedding surfaces into
the parameter space of the volume that fills the inside of
the wing. More precisely, we define a stiffener as pre-
sented in figure 20. The optimization problem consists
of finding the best position of the stiffeners in order to
increase the stiffness of the whole wing. We study suc-
cessively the case of 2, 4 and 8 stiffeners.

One border of the wing is clamped and a uniform
pressure is applied on its top. The initial configurations
are obtained with evenly distributed stiffeners. Fig-
ure 21(a) shows these initial configurations with 2, 4,
and 8 stiffeners. The placement of the stiffener is crucial
for the global behaviour of the complete structure. One
can notice that for the initial configuration with 2 stiff-

eners, the upper and lower skins deform locally under
the loading. This deformation appears due to the com-
plex curvature of the wing. A better placement of the
stiffeners could limit this phenomena. Therefore, one
can perform the optimization with the present approach.
Moving the stiffener along the wing is simplified by the
use of the embedded surfaces as explained previously
(see figure 5). One single design variable is associated
to each embedded surface. These variables modify the
appropriate coordinate of the control points in order to
impose uni-directional translation. Thus, we have the
same number of design variables as the number of stiff-
eners (i.e. 2, 4, or 8). Simple inequality constraints
are added to the optimization problem so as to main-
tain a minimal distance between the stiffeners and an
ascending order. Finally, there is no volume constraint
in this example. The optimal results are depicted in fig-
ure 21(b). The decrease of the compliance is significant,
and particularly in case of a low number of stiffeners.
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More precisely, the final values of the compliance are
14.9%, 15.1%, 7.69% lower than the initial ones for 2,4
and 8 stiffeners respectively.

6. Concluding remarks

We successfully applied the concept of Free-Form
Deformation to design multipatch shell structures. It
consists in geometrically defining the shell mid-surface
by a NURBS composition of an embedded surface with
a volume mapping. We illustrated this construction
principle on multiple examples and we applied it for
stiffened structures. We managed to directly use the
NURBS composition for the analysis by introducing
the embedded Kirchhoff-Love shell formulation. This
means that the original idea behind isogeometric analy-
sis is maintained since both the design and the analysis
are performed on an common model. It is particularly
attractive when it comes to structural optimization. This
way, analytical sensitivity of the compliance is achieved
in this work. Moreover, the Free-Form Deformation
techniques offer a smooth and an effective way to im-
pose complex shape variations. It eliminates sophisti-
cated geometric rules, reparametrizations and other ap-
proximations one can introduce when designing large
and complex multipatch structures.

Thus, we were able, for example, to create a versa-
tile model of a wing with its substructure. Not only
the position of the stiffeners are easily modified but
also the shape of the whole design of the wing can be
parametrized. One can change the shape of the outer
skins by acting on the control points associated to the
volume mapping. Due to the use of embedded entities,
the internal substructure of the wing automatically fol-
lows the update of the outer geometry. This can be a
very useful tool in a Multidisciplinary Design Optimiza-
tion (MDO) context [72, 73]. One can simultaneously
optimize the outer skin regarding an aerodynamic crite-
ria and the shape of the internal substructure regarding
the structural behaviour. In the aero-structural optimiza-
tion framework, it seems that mainly sizing variables
such as the thickness are introduced into the design pro-
cess [74, 75]. The use of an isogeometric model with
embedded entities can be very attractive to enlarge the
design space by adding shape variables as the position
of the stiffeners [76, 77].

Finally, we pointed out the advantage of adopting a
mortar coupling for optimizing multipatch structures.
We believe that domain decomposition techniques are
of great interest to efficiently solve multipatch optimiza-
tion problem. One can factorize once and for all the
stiffness matrix associated to the unmodified patches

and perform the analysis with the domain decomposi-
tion approach. In addition, the decomposition allows to
distribute the patches amongst several processors run-
ning in parallel, at a very competitive cost.
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[40] W. Dornisch, J. Stöckler, R. Müller, Dual and approximate dual
basis functions for B-splines and NURBS Comparison and ap-
plication for an efficient coupling of patches with the isogeomet-
ric mortar method, Computer Methods in Applied Mechanics
and Engineering 316 (2017) 449–496.

[41] K. Sommerwerk, M. Woidt, M. C. Haupt, P. Horst, Reissner-
Mindlin shell implementation and energy conserving isogeo-
metric multi-patch coupling, International Journal for Numeri-
cal Methods in Engineering 109 (2017) 982–1012.

[42] Z. Zou, M. Scott, M. Borden, D. Thomas, W. Dornisch,
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