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Abstract: A sensor’s spatial resolution has traditionally been a difficult concept to define, but
all would agree that it is inextricably linked to the Ground Sampling Distance (GSD) and
Instantaneous Field of View (IFOV) of an imaging sensor system. As a measure of the
geospatial quality of imagery, the Modulation Transfer Function (MTF) of the system is often
used along with the signal-to-noise ratio (SNR). However, their calculation is not fully
standardized. Further, consistent measurements and comparisons are often hard to obtain.
Therefore, in the Infrared and Visible Optical Sensors (IVOS) subgroup of the Working
Group on Calibration Validation (WGCV) of the Committee for Earth Observation Satellites
(CEOS), a team from various countries and professional entities who are involved in MTF
measurement was established to address the issue of on-orbit MTF measurements and
comparisons. As a first step, a blind comparison of MTF measurements based on the slanted
edge approach has been undertaken. A set of both artificial and actual satellite edge images
was developed and a first comparison of processing results was generated. In all, seven
organizations contributed to the experiment and several significant results were generated in
2016. No single participant produced the best results for all test images as measured by either
the closest to the mean result, or closest to the truth for the synthetic test images. In addition,
close estimates of the MTF value at Nyquist did not ensure the accuracy of other MTF values
at other spatial frequencies. Some algorithm results showed that the accuracy of their
estimates depended upon the type of MTF curve that was being analyzed. After the initial
analysis, participants were allowed to modify their methodology and reprocess the test images
since, in several cases, the results contained errors. Results from the second iteration, in 2017,
verified that the anomalies in the experiment’s first iteration were due to errors in either
coding or methodology, or both. One organization implemented a third trial to fix software
errors. This emphasizes the importance of fully understanding both methodology and
implementation, in order to ensure accurate and repeatable results. To extend this comparison
study, a reference data set, which is composed of edge images and corresponding MTF
curves, will be built. A broader audience will be able to access the edge images through the
CEOS CalVal Portal (http://calvalportal.ceos.org/. This paper, which is associated with the
reference data set, can serve as a new tool to either implement or check, or both, the MTF
measurement that relies on the slanted edge method.

©2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

The geo-spatial quality of a sensor and its imagery often revolves, at least in part, around the
concept of the spatial resolution of a sensor which is often reduced to the Ground Sampling
Distance (GSD) associated with the Instantaneous Field Of View (IFOV) defined by the pixel
size. However, spatial resolution, and hence geo-spatial quality, is more complex than this.
Most agree that the effective spatial resolution is due to three (or four) features of the sensor:
the IFOV (and the GSD if different), the Modulation Transfer Function (MTF) and the signal
to noise ratio (SNR). The MTF is often used as a measure of image sharpness [1,2]. This
important parameter for image quality has to be checked on orbit in order to be sure that
launch vibrations, transition from air to vacuum, or thermal state have not degraded the
sharpness of the images. In some cases, it can lead to a refocusing decision.

This paper deals with one of the methods used for on-orbit MTF assessment, called the
edge method, the knife-edge method, or the slanted-edge method. This method is widely used
for laboratory measurements and may be implemented in various manners. For on-orbit MTF
assessment, it requires a slanted edge as explained in section 2. It has been used for numerous
space sensors such as Landsat TM [3], MOS-1 MESSR [4], IKONOS [5], SPOT5 [6], and
more recently Sentinel2 MSI [7].

In the framework of the Infrared and Visible Optical Sensors (IVOS) subgroup of the
Working Group on Calibration Validation (WGCV) of the Committee for Earth Observation
Satellites (CEOS), a team of people from various countries and professional entities, who are
involved in MTF measurement, has been created to address a variety of issues regarding the
geo-spatial quality of optical satellite imagery. One of the first efforts of this group has been
to compare processing methodologies for the edge method of MTF estimation. For this
comparison experiment, the team was composed of Frans van den Bergh from CSIR, Renaud
Fraisse from Airbus DS, Dennis Helder from SDSU, Dong Han Lee from KARI, Amy
Newbury and Robert Kudola from Digital Globe, Sébastien Saunier from Telespazio and
Frangoise Viallefont-Robinet from ONERA

This paper presents the method and its various implementations followed by the
comparison experiment. The first results, obtained with a blind test approach, were analyzed.
This exercise was an opportunity to correct or improve the software of each participant. Thus,
a second run was performed by most of the participants in order to improve the results,
leading to a second comparison. For two test cases, a third and final run was performed by
one of the outliers. All comparisons are presented and commented on.

2. Edge method
2.1 Theory

Considering the sensor as a linear system without spatial variation of its response (shift
invariant), the relation between the radiances (or top of atmosphere reflectances) of the
landscape and the image is simply:

i(x,y) = 1(x, ) ®h(x, ) (M

where i(x,y) stands for the image,

1(x,y) stands for the landscape,

h(x,y) is the Point Spread Function of the sensor,

® is the convolution integral.

For sensors using a CCD in the image plane, the system is no longer strictly shift
invariant; but it can nevertheless be described using the usual theory for regions of the
imaging array without loss of generality. The sampling done by the CCD can be written as a
multiplication by a Dirac comb.

Completing Eq. (1), it becomes:



i(x, ) = [1(x, ) ® h(x, y)]-comb(x/ p,,y ! p,) )

where py is the size of the IFOV and p, the GSD in the case of a pushbroom imaging system.
A classical way to deal with a convolution product is to apply a Fourier Transform, which
leads to:

Lo ) =[ LU 1) H o 1) [ ® comb(f, ] fos £, 1 1) 3)

where I(f,,fy) stands for the Fourier Transform of the image,

L(f,.fy) stands for the Fourier Transform of the landscape,

H(f.f,) is the Transfer Function of the sensor,

fix = 1/px is the sampling frequency for the f; axis,

fyy = 1/py is the sampling frequency for the f; axis.

The sensor behavior is known to be similar to a low-pass filter without phase shift [8].
This is why the Optical Transfer Function is usually reduced to the Modulation Transfer
Function defined as the modulus of the Optical Transfer Function normalized by the zero
frequency component.

For the edge method, the landscape is close to a Heaviside function:

I(x,y)=a-hea(x)-unit(y)+b-unit(x)-unit(y) 4)

hea(x) being the Heaviside function centered on x = 0,
unit(x) = 1 for all values of x.
In this case, Eq. (2) becomes:

i(x,y)= [a -hea(x)-unit(y) ® h(x, y)+b-unit(x)- unit(y)] ~comb(x/ p.,y/p,)(5)

As b-unit(x)-unit(y) ® h(x,y) =b =b-unit(x) - unit(y)
Equation (5) can be rewritten as follows:

i(x,y)=i(x)= [a -hea(x)® LSF(x)+b- unit(x)] ~comb(x/ p,) (6)

The convolution by the comb produces aliasing. One way to overcome this problem is to use
an edge with a slight inclination relative to the row or column direction [9]. This is used to
build an oversampled 1-D edge image as illustrated in Fig. 1.

So, the 1-D edge corresponds to:

i(z) = a- hea(z) ® LSF(z) +b-unit(z) )

where z is measured in the direction perpendicular to the edge, which nearly coincides with
the x axis when the edge is vertically oriented as modelled here.
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Fig. 1. Principle of 1-D oversampled edge response (L represents the radiance).

2.2 Implementation strategies

Implementations of the slanted-edge method usually have three identifiable steps: edge
modeling, Edge Spread Function (ESF) construction, and the calculation of an MTF using the



sampled ESF. The implementation of each of these steps can vary significantly, as discussed
in greater detail below. Some common traits of the participant implementations will be
discussed in this section.

Without loss of generality it will be assumed that the Region Of Interest (ROI) containing
the edge transition will be processed on a row-by-row basis with the slanted edge oriented
nearly vertically. Let R denote the ROI such that i(x, y) represents the intensity of the image
at coordinates (x, y) for all (x, y) € R.

2.2.1 Edge modeling

The construction of an oversampled ESF, as illustrated in Fig. 1, requires that the location of
the edge in each image row is known with sub-pixel accuracy. This can be as simple as
calculating the centroid of the discrete derivative of the intensity of each row, as suggested in
the ISO 12233 standard [10, Appendix D], but such a method will be sensitive to image noise
and target non-uniformity. A more robust method is to fit a parametric- or spline function to
each row, using the inflection point of the fitted function as the sub-pixel edge location
estimate.

Once the location of the edge has been estimated in each row, a linear function is typically
fitted across all the per-row results to obtain a more accurate model describing the sub-pixel
location of the edge, as illustrated in section 3.1 in Fig. 3. If the physical target edge is curved,
the linear edge model can be replaced with a low-order polynomial to accommodate the
curvature [11].

2.2.2 ESF construction

A simplified example of the construction of an ESF is illustrated in Fig. 1, where the
oversampled ESF is obtained by interleaving the intensity values of each row of the ROIL.
Constructing the ESF involves projecting the 2-D image intensity values i(x,y) onto a 1-D
representation i(z). The magnitude of z represents the shortest distance from a pixel at
coordinates (x,y) to the slanted edge. The oversampled ESF can be constructed using an
extension of the method described in the ISO 12233 standard [10, Appendix D], or using the
alternative method described by Kohm [12].

In the ISO 12233-based approach the ROI is a rectangle aligned with the rows and
columns of the image, as shown in Fig. 1. For each pixel the value z is calculated as:

z=[x—e(»)] cos(8) (8)

where e(y) denotes the location of the edge in row y, as predicted by the edge model, and 0
denotes the relative edge angle. The cosine factor transforms a distance measured along a row
into a distance measured perpendicularly to the edge.

With Kohm’s method, the ROI is a rectangle that is aligned with the edge itself, as shown

in Fig. 2. A unit vector perpendicular to the edge, n, is used to calculate z such that:
z=0:(p,, =Py, ©)

where (Xo,yo) are the coordinates of an arbitrary point on the edge.
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Fig. 2. An alternative method of constructing the oversampled ESF. The edge (1) is identified
during the edge modeling step. A vector perpendicular to the edge (2) is constructed. Each
point (3) in the ROI is projected onto the perpendicular vector (4).

Both these approaches yield an oversampled ESF in the form of a set of tuples {[z, i(x,
y)]} for all (x, y) € R. In general the z values are not uniformly spaced, which makes the set
{[z, i(x, y)]} unsuitable for the next step in the slanted-edge algorithm involving a Fast
Fourier Transform (FFT).

The ESF can be resampled to a uniform spacing by fitting a model to the set {[z, i(x, y)]}
followed by sampling the model at the desired spacing (1/4th pixel, for example). This model
can be piecewise, like the LOESS method employed by Kohm [12], or global like a spline or
another suitable parametric function. A different approach, inspired by the method suggested
in the ISO 12233 standard, is to bin the set {[z, i(X, y)]} into uniformly spaced bins, but with
additional low-pass filtering to further reduce the impact of image noise and target non-
uniformity.

2.2.3 MTF calculation and correction

Once the ESF has been resampled to a uniform spacing, the final step is to compute the MTF
either using the derivative method, or the spectral method [9]. The derivative method involves
computing the finite-difference derivative approximation of the uniformly-spaced ESF to
produce the Line Spread Function (LSF). The MTF is then calculated as the magnitude of the
FFT of the LSF, normalized by the zero-frequency component. Care must be taken to correct
the MTF derived this way to compensate for the finite-difference approximation used to
obtain the LSF [13].

The spectral approach bypasses LSF estimation completely, instead of removing the
contribution of the ideal step edge (the expected target scene) from the observed ESF, both
are transformed to the frequency domain, to obtain the system MTF. The spectral approach is
described in detail in section 3.1.



3. Implementations of the edge method
3.1 ONERA

The ONERA implementation follows the spectral approach [9], which is less widely known
than the derivative method [4,5,14].

In this case, the finite number of samples has to be taken into account. This can be done as
follows:

i(z) =[a-hea(z) ® LSF(2)+b-unit(z)]- w(z) (10)

noting w(z) as the window corresponding to the finite interval.
In the Fourier domain, the relation becomes:

I(f.)=[a-Hea(f.)-H(f.,0)+b-8(f.)]®W(f.) (11)

The window has to be chosen so that Hea(f,)®W (f,) # 0 for all frequencies and not far from
Hea(f,).
After removal of the background b, the following ratio gives the transfer function:

[(f)!a-Hea(f)®W(f)] = H(/..0) (12)

ONERA tool follows the 3 steps general implementation.

For edge modeling, or in other words the 2-D to 1-D transformation, each row is
interpolated using a spline function and the inflection point is computed. A straight line is
fitted on the set of inflection points and may be used (depending on the user choice) to replace
the positions found as shown in Fig. 3. The inverse of the slope of the straight line provides
the oversampling rate for building the ESF. At this stage, the 2-D edge image is split into a
list of rows where each ESF location is indicated by the position of the edge e(y).

The second step aims at mixing the rows to construct the oversampled ESF. For the
inclination, in the ideal case of Fig. 1, the sequence spans a whole number (4 in this case) of
rows. However, it is not possible to have a whole number of rows corresponding to the
sequence for any edge. Thus, the user chooses the oversampling rate Nr, not too far from Ns
(Ns being the whole number closest to the actual number of rows of the sequence) and then
each row of the sequence is properly phased in the Nr grid. Some cases of Nr # Ns, may lead
to incomplete sampling.

A user can choose between linear interpolation or model fitting options to construct an
ESF with regular sampling. In the model fitting case, all the edge samples are replaced by the
samples deduced from a parametric transfer function model as explained in [15]. The model
fitting implementation eliminates noise due to non-uniformity of the dark or light areas of the
ROI, which is an added advantage even when the sampling is regular.

Once the regularly sampled ESF is built, the parameters a and b, as well as the position z
= gz, of the Heaviside function, are assessed. Several approaches are available to the user for
selection of a, b, and z:

* the first value of the edge for a and the last value for b,
* the values at a distance of -d (relative to zy) for a and + d for b,
* the value corresponding to (a + b)/2 for z,,

« the value corresponding to the inflection point for z,
Once the parameters a, b and z, are found, the distribution a.Hea(z) + b is built and drawn
over the ESF. The background b is then removed.
ESF may be artificially extended, as shown Fig. 4 in order to reach the desired sampling
rate for the MTF curve and to limit windowing effects.



A Hann window is applied to the ESF and to the distribution. An FFT is applied to the
windowed ESF and to the windowed distribution. The ratio of the modulus of each spectrum
is computed and normalized to obtain the MTF according to Eq. (12). The f, frequencies are
converted to f, frequencies. Once the MTF is computed, there is a possibility to fit the model
described in [15] to the values obtained and to resample the MTF in order to obtain the
desired frequency step.
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3.2 SDSU

Based on the theory presented in Section 2, the South Dakota State University
implementation follows a series of steps designed to be largely target and model independent
so the algorithm will work with a variety of edge target types. The steps are described as
follows.

First, it is important that, to the degree possible, an edge target is used that has a proper
orientation with respect to the sampling grid of the satellite sensor. Some combinations of
edge angles and sampling grid orientation will result in data that are not reasonably uniformly
distributed as shown in Fig. 1. When this happens, the result is that the steep part of the edge



is represented by data points that are clustered together. This leads to very poor LSF/MTF
estimates. Extensive modeling has indicated that relative angles of 6-8 degrees are optimal.
This has the added advantage of orienting the edge nearly orthogonal to the sampling grid,
and minimizes the correction necessary to obtain LSF/MTF estimates in the typical along-
track and cross-track directions in which sensor specifications are often given.

A second critical aspect of target development is that the length of the edge should span a
sufficient number of rows (or columns) in the image so that the oversampling process
produces enough samples for edge reconstruction to be accurate. Empirical analysis has
indicated that a minimum of 20 cross sections of the edge should be obtained for accurate
results.

Signal-to-noise ratio (SNR) has a significant bearing on PSF/MTF estimation accuracy.
For purposes of LSF/MTF estimation, SNR can be defined as the ratio of the edge height to
the average of the standard deviations of the region on either side of the edge. Modeling has
indicated that SNR > 50 produces accurate and consistent results.

The first step to developing an oversampled ESF is to estimate the edge location from
each slice of data across the edge. A simple, but accurate, approach is to fit a Fermi function
to the data of the form of Eq. (13):

b—d
fO)=d (13)

where x represents the pixel locations for row y, d is the bias level, b is the magnitude of the
bright side of the edge, e(y) is the edge location and s represents the steepness of the edge.
This approach does not model ESF which have ringing in them, but will still fit the steep part
of the ESF well and give good estimates of the precise edge location which is the goal of this
step. To determine the parameter values, a common optimization algorithm, such as the
Levenberg-Marquardt algorithm, is employed. The output of this step is the parameter, e(y),
which provides, for each row, subpixel estimate of the true edge location using the integer-
based grid of the edge image input data.

An oversampled but irregularly spaced ESF is constructed using Eq. (8). Only the data
within a distance of five pixels from the edge are retained, based on typical LSF width of two
pixels.

The truncated, oversampled ESF is simultaneously filtered (to reduce high frequency
noise) and resampled (to obtain uniformly spaced samples) using a non-linear modified
Savitzky-Golay filter. In this approach, a window of data is selected (typically set to two
pixels in length) and a low-order polynomial is fitted to the data using a linear least squares
approach. Through extensive modeling, it was determined that a fourth order polynomial is
optimal. The output of the filter is the value of the polynomial at the center of the window.
The window is then shifted by the amount of the desired output sampling interval, and the
process is repeated. It is recommended to oversample by a factor of 10 or more. This step
produces as an output a uniformly oversampled ESF that has been smoothed for high
frequency noise but, at the same time, has not been modified significantly at frequencies
below the Nyquist frequency.

Because smoothing has already been done to the ESF, a simple first order differencing
approach is employed to obtain the LSF. The final step is to obtain the MTF by applying the
Fourier transform (via the Fast Fourier Transform) to the LSF and normalizing by the zeroth
value.

The various steps in the SDSU MTF estimation process are illustrated Fig. 5. In the upper
left corner is an actual satellite image of a slant edge that was obtained from deployed tarps.
The upper right chart shows the oversampled ESF that has been produced after application of
the modified Savitzky-Golay filter. Note the uniform spacing of the data, even in the steep
region of the edge response. At this point an estimation of the SNR for this edge response can
be calculated. The lower left plot shows the line spread function after simple first order



differentiation. Here the data values have been suppressed and a simple curve connecting the
data points is shown for clarity. Note the noise present on either side of the LSF, despite the
observation that SNR is greater than 90 for this particular example. The corresponding MTF
function is shown in the lower right which indicates for this example an MTF at Nyquist of
0.1117.
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3.3 Airbus DS

Airbus DS has developed and used its edge method implementation to evaluate all high
resolution satellites launched over the last 20 years. It is used operationally for all the in-orbit
follow-on monitoring of Airbus DS satellites, including SPOT and Sentinel2. The
implementation follows the familiar steps: edge modelling, ESF modelling, and final MTF
calculation using the LSF.

The edge model supports both linear target edges and curved edges, allowing more
accurate modeling of natural edges that are not necessarily straight. The sub-pixel location of
the edge in each image row is estimated by low order polynomial fitting.

After the edge model parameters have been obtained, the oversampled ESF is constructed
using Eq. (8), after aligning the individual per-row edge profiles using the edge location
predicted by the (potentially curved) edge model. A uniformly spaced ESF is obtained by
fitting a suitable model to the irregularly spaced ESF, followed by sampling the ESF model at
the desired sampling intervals. Different models can be used, some being theoretical like
sigmoid, other being linked to the physics (introducing knowledge on the optical



combination). Optional outlier rejection can be activated during the ESF model fitting stage if
needed.

The LSF is obtained by numerical differentiation of the uniformly spaced ESF. The MTF
is computed as the normalized magnitude of the FFT of the LSF.

The robustness of the implementation is improved by careful filtering and/or model fitting
at the various stages of the algorithm to reduce the impact of measurement noise and target
non-uniformity. The Airbus DS implementation steps are illustrated Fig. 6.
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3.4 Digital Globe

Digital Globe uses the Image Quality Metric Toolkit to measure MTF using a ground-based
tilted MTF target made up of black and white square areas that are approximately 20 m on a
side. The toolkit was developed by Harris Corporation and is a plug-in to the Exelis ENVI
image processing software. The toolkit takes the measured edge response and uses
enhancements to the methodology described by Taitian in his 1965 paper [16] to convert the
measured edge response to MTF as a function of sampling frequency. On-orbit measurements
of Nyquist MTF using this tool have been consistent to within about 0.006 (1c) for periods
well over 1 year.

3.5CSIR

The CSIR’s implementation of the slanted-edge method, as used in this study, was inspired by
the method of Kohm [12]. The only additional user input to the algorithm is a mask
specifying the region of interest (ROI) for each edge to be analyzed. The ROI is typically a
rectangular region that is aligned with the edge as in Fig. 2.

For the edge model estimation step, the edge location and orientation is estimated
iteratively using weighted Principal Component Analysis (PCA) applied to the (x,y)
coordinates of the samples within the ROI, where the weight of each sample is the image
gradient magnitude raised to the fourth power. Once an initial estimate of the edge centroid



and edge normal vector is obtained, the image gradient magnitude values are projected onto
the normal and grouped into coarse bins by their signed distance from the edge. Outliers
within each bin are flagged using a variant of Tukey’s quartile test. The PCA and outlier
rejection steps are iterated until the outliers stabilize. In this context, the PCA provides a total-
least-squares estimate of the edge parameters.

For the ESF/LSF construction step, following the method of Kohm outlined in section 2.2,
the coordinates of the samples within the ROI are projected onto the edge normal to yield the
set{[z, i(X, y)]} using Eq. (9). Outliers identified in the edge parameter estimation stage are
excluded. An ESF with a regular sample spacing of 1/8th pixel is constructed by weighted
binning of the set {[z, i(x, y)]}. To avoid poor sampling caused by certain edge slopes (e.g.,
1/2 or 1/4), the value of each ESF bin k is calculated according to Eq. (14):

Zf[z(x’y)_mk]i(x:y)
IECRIN

e =

(14)

where my denotes the midpoint value (distance from edge) of bin k, and f(d) a low-pass kernel
function. In practice, the function f(z) = exp(—13|z|) works well. The effect of this low-pass
filter must be removed from the final MTF by dividing the measured MTF by the Fourier
transform of f(z), i.e., 13%/(13? + £,%) in its normalized form. The proposed kernel f(z) is wide
enough so that even if the edge angle is 26.565 degrees (a slope of 1/2), none of the ESF bins
will have a zero denominator.

The notion of filtering the ESF during construction is taken one step further by switching
to a different low-pass kernel for the tails of the ESF, similar to the method proposed by
Williams and Burns [14]. In particular, using f(z) = rect(k-z) with k decreasing with distance
from the edge reduces the impact of noise on the eventual MTF measurement. The starting
locations of the ESF tails are defined relative to the 10% and 90% quantiles of a heavily
smoothed temporary ESF. No correction of the MTF is applied for these ESF-tail low-pass
kernels.

The LSF is constructed by a finite-difference approximation of the ESF derivative. The
ESF-tail smoothing described previously obviates the need for windowing of the LSF before
applying the FFT, since the LSF tails naturally taper to zero with sufficient smoothing.

For the final MTF calculation step, the FFT of the LSF is computed, followed by
normalization. The appropriate sinc(c-f,) correction is applied to the final MTF to compensate
for the finite-difference approximation. To reduce the variance of the MTF estimates further,
a variable-width Savitzky-Golay filter is applied. The width of the filter increases gradually at
higher normalized frequency values.

3.6 KARI

The KARI slanted-edge implementation has been developed to measure the spatial quality of
the KOMPSAT image data starting from the SDSU algorithm [5]. The same implementation
was also used for ground testing before launch.

The selection of the inputs for the current KARI algorithm are the ones leading to is the
largest values of Relative Edge Response (RER), Function Width at half maximum (FWHM)
for LSF and MTF.

The edge modeling involves fitting an edge model, starting with an initial estimate of the
edge location within each row of the ROI that is obtained by finding the pair of adjacent
pixels with the largest difference. This estimate is refined by computing the inflection point of
a cubic polynomial fitted through the four values surrounding the initial estimate. The overall
edge model is obtained by fitting a linear function across all the rows through the refined edge
locations.



In the ESF construction step, the irregularly spaced oversampled ESF is obtained as
described in Section 2.2, using Eq. (8). It involves trimming the ESF to contain only the edge
transition region in order to limit the impact of noise and target non-uniformity as shown in
Fig. 7(3). The edge transition region of the ESF is initially estimated in three steps: first a
cubic smoothing spline is fitted to the oversampled ESF, then the LSF is obtained as the
derivative of the smoothed spline, and lastly the knee points of the LSF are found as the
extrema of the second derivative of the LSF. These LSF knee points correspond
approximately to the points of maximum curvature in the LSF, and therefore correspond to
the knee points of the ESF, illustrated with the short dashed blue lines in Fig. 7(4:a). The knee
points are extended outwards from the edge by one pixel to define the final edge transition
region, illustrated as the interval between the dotted blue lines of Fig. 7(4:b,c). From here
onwards, only this central part of the ESF is considered. Another cubic smoothing spline
(MATLAB’s csaps routine with p = 0.98) is fitted to the trimmed ESF, which is sampled at a
uniform spacing determined by the desired oversampling factor. The first-order difference of
the uniformly sampled trimmed ESF yields the LSF.

In the last step the FFT of the LSF is computed, and the resulting magnitude values are
normalized to obtain the MTF.

The following metrics are calculated in addition to the MTF: Relative Edge Response
(RER), LSF width at 25%, 50% (FWHM), and 80% of maximum as illustrated in Fig. 8.

Not Flat X
Edge Spread Function (csaps= 0.98)
@) D

1 :
g o8
o
& os
©
€04
z

02+F- Rossannise s Srvansnes Boreeende - Not Flat
ol (Abe) b NI
8 6 4 -2 0 2 4 6 8

Pixel
Fig. 7. Edge Spread Function from Edge data by KARI.

KARI’s implementation adds five constraints designed to achieve more accurate results:

(1) Edge step magnitude: greater than 2000 DN (KOMPSAT-3 is a 14 bit sensor,
0~16383 DN).

(2) Edge angle: greater than or equal to 5°.
(3) Number of rows in ROI: at least 15 lines.
(4) RMSE of linear edge model fit: at most 3 pixels.

(5) MTF must be strictly non-increasing up to the Nyquist frequency. A violation of this
rule is indicated by the red arrow in Fig. 8.
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3.7 Telespazio

The edge MTF measurement method presented here has been developed and operated in the
context of ESA contribution to the ALOS PRISM calibration campaign [17]. The improved
method and the basis of the algorithm used in this comparison exercise are described below.
Step 1 - Edge identification and orientation: the main objective of this stage is to
determine the location of the edge and its angle with the Along-track (AL) and Across-track
(AC)) directions, as shown in Fig. 9. A second objective is to check each image line/column
in terms of noise and contrast affecting the edge profile. Beside the use of an edge model, this

preparatory task requires manual operations and, in particular, visual inspection.




Fig. 9. As the initial step, the operator identifies suitable key marks which will be used to
estimate parameters of the two edge lines (depicted in yellow). Key marks are select at each
side of the image. The location of a given edge line is estimated at two distinct points (depicted
in blue) and then line parameters computed. The main objective of this procedure is to
compute the angle between Along-track (AL), Across-track (AC) directions, respectively, and
the vertical/horizontal directions.

Step 2 - Edge spread function construction: oversampling of the input target is therefore
accomplished using the method proposed by Kohm [12], as described in section 2.2. The
algorithm projects edge profiles (in AL, AC directions) onto the perpendicular line to the
edge, using Eq. (9) as illustrated in Fig. 3. The perpendicular direction is deduced from the
angle discussed above. All edge profiles are projected to construct a non-equally spaced ESF.
The purpose of the next step is to provide an ESF with uniform sampling.

Step 3 - ESF Modeling: different methods exist for the ESF modeling, and these are
divided into two main categories: modeling based on a non-parametric approach and
modeling based on a parametric approach. These approaches were tested for our test case and,
finally, the parametric curve method proposed in [18] was selected for its robustness to noise
and flexibility as discussed above. Parameters of the following function are estimated
iteratively.

x-a, |
f(x)—al-erf[o_ﬁ]i- , (15)

where a; is the parameter designating the inflection point.

Some shortcomings have been observed with this model: asymmetric ESFs cannot be
modelled, and the model fits poorly in the corners (knee points) of the ESF. For these reasons
a second curve fitting, applied to locally deform the curve in the transition area, is performed.
Finally, the ESF parametric model is summarized with the following formula:

esf ()= /() +w(z—ap e, (z—a,) (16)

where w(z)) is the Hann window and the ¢, coefficients are estimated by using least square

adjustment method. Results are shown in Fig. 10.
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This stage requires several manual operations to set up the transition area extent in order
to control the deformation applied. Quality information such as Relative Edge Response,
Signal to Noise Ratio and the L2 Norm residual are used to assess the validity of the

procedure. Visual inspection remains an important aspect.

Step 4 - Modulation Transfer Function Calculation: Numerical differentiation of the ESF
discussed above leads to the LSF as shown in Fig. 11(a). Special attention is paid when
trimming the LSF to obtain sufficient points in the MTF. An example of the MTF, with 0.1

frequency step, is shown in Fig. 11(b) below.
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Fig. 11. (a) LSF produced with the first derivative of ESF curve, (b) MTF normalized modulus

produced from the LSF.

4. Comparison experiment

Airbus DS, Digital Globe and CSIR have provided sample image data of slanted-edge targets.
The available data set is large: 20 edges. A subset of six edges was selected for this
experiment as shown Fig. 12. Four of them are simulated and the remaining two are extracted

from actual images.
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Concerning simulations, two images have been generated thanks to analytic Point Spread
Functions, without noise, according to [19]. The angle is small: less than 5°. The two others
are as representative as possible of real acquisitions in term of sensor performances. The
pattern is a slanted edge of angle close to 15° and size 50 meters. The simulated MTF takes
into account typical optical diffraction and aberrations, the detector MTF and some dynamic
contribution. Then representative noise is added (photon noise plus dark noise) with a SNR of
150 for the bright area. Two values of GSD have been provided: 1m with high MTF and
30cm with low MTF.

The data were put on the Cal/Val Portal (calvalportal.ceos.org) with, for the moment,
access limited to the MTF project team. Each participant was asked to obtain the sample
images, to process them and to send results to ONERA. ONERA performed the comparison
using a blind experimental design: each participant was assigned a letter from the alphabet,
which was shared with only that participant, allowing participants to identify their own
results, but not those of the others.

The first results, obtained with this blind test approach were collected in 2016. To draw
further benefit from the experiment, a second run was proposed in order to correct or improve
the processes and/or the inputs used. This second run was performed by most of the
participants leading to a second comparison in 2017. For the StdSystem cases, an additional
third run was performed by participant A.

Table 1. summarizes the history of result submissions.

Fig. 12. Overview of the data set.

Table 1. Result submission history

Data name Measured by
StdSystem_1 All (7), reprocessed by A, B, C, D and F
StdSystem_30 All (7), reprocessed by A, B, C, D and F
Apnn 5, reprocessed by B, D and F
Cgpnn 5, reprocessed by B, D and F
14oct... P3 6, reprocessed by B, C, D and F
15aug... P3 5, reprocessed by B, C, D and F

5. Results

For each edge the following will be presented:

* the 2016 and 2017 MTF curves corresponding respectively to the first results and to
results after reprocessing for some participants (according to Table 1),



« the curves of the difference relative to the mean MTF or to the known MTF,

* a table with the mean, the standard deviation and the largest difference (max-min) at
Nyquist frequency.

In all graphs and in all tables of this section, ACT stands for across track direction or axis,
and ALT stands for along track direction or axis. In 2016, the mean is computed using all the
results. In 2017, the mean is computed without the outliers.

The MTF curves will be limited to the across track direction as they provide enough
illustration of the discrepancies that were observed.

5.1 Results for StdSystem 1 edges

The 2016 and first 2017 (2017a) MTF curves and the discrepancy for the StdSystem 1 edge
are presented in Fig. 13. Another graph, Fig. 14, provides the same curves but related to last
2017 (2017b) results. Table 2 gives the 2016 and the last 2017 (2017b) MTF values obtained
at Nyquist frequency.
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from first 2017 runs, (c) deviation to the model from 2016 runs, (d) deviation to the model
from first 2017 runs.
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Fig. 14. Last 2017 results for the StdSystem_1 edge: (a) MTF, (b) deviation to the model.



Table 2. Results at Nyquist frequency for StdSystem_1 edges.

ACT 2016 ALT 2016 ACT 2017b ALT 2017b
Mean 0.29 0.29 0.29 0.30
Standard deviation 0.03 0.02 0.02 0.02
Max-min 0.08 0.07 0.04 0.04

For this first case, the 2017b results are in quite good agreement. The discrepancy
between the participants increases with the frequency but remains small up to the Nyquist
frequency. This illustrates the value of the comparison for purposes of improving algorithms

and removing errors in algorithms.

5.2 Results for StdSystem 30 edges

The 2016 and first 2017 (2017a) MTF curves and the discrepancy for the StdSystem 30 edge
are presented in Fig. 15. Another graph Fig. 16 provides the same curves but corresponding to
last 2017 (2017b) results. Table 3 shows the 2016 and last 2017 (2017b) MTF values at

Nyquist frequency.
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Fig. 16. Last 2017 (2017b) results for the StdSystem_ 30 edge: (a) MTF, (b) deviation to the

model.




Table 3. Results at Nyquist frequency for StdSystem_30 edges (without D for 2017)

ACT 2016 ALT 2016 ACT 2017b ALT 2017b
Mean 0.08 0.09 0.10 0.09
Standard deviation 0.04 0.04 0.01 0.01
Max-min 0.11 0.13 0.04 0.02

Initially, for this second case, there were two singular results. The successive reprocessing
for case A clearly improved the result. Except for very low frequencies, the discrepancy
between the participants is small.

5.3 Results for apnn edge

The 2016 and 2017 MTF curves and the discrepancy for the apnn edge are shown in Fig. 17.
Table 4 gives the 2016 and 2017 MTF values at Nyquist frequency.
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Fig. 17. Results for the apnn edge: (a) MTF curves from 2016 runs, (b) MTF curves from 2017
runs, (c) deviation to the model from 2016 runs, (d) deviation to the model from 2017 runs.
Table 4. Results at Nyquist frequency for apnn edge (without D for 2017).
ACT 2016 ALT 2016 ACT 2017 ACT 2017
Mean 0.20 - 0.21 -
Standard deviation 0.03 - 0.01 -
Max-min 0.07 - 0.02 -

For this case, the curves are in agreement except for D. It appears that this approach has
difficulties when processing this type of edge (compare to cgpnn below) which was not
solved with reprocessing in 2017.

5.4 Results for cgpnn edge

The 2016 and 2017 MTF curves and the discrepancy for the cgpnn edge are presented in Fig.
18. Table 5 shows the corresponding MTF values at Nyquist frequency.
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Fig. 18. Results for the cgpnn edge: (a) MTF curves from 2016 runs, (b) MTF curves from
2017 runs, (c) deviation to the model from 2016 runs, (d) deviation to the model from 2017
runs.
Table 5. Results at Nyquist frequency for cgpnn edge
ACT 2016 ALT 2016 ACT 2017 ACT 2017
Mean 0.13 - 0.14 -
Standard deviation 0.01 - 0.01 -
Max-min 0.03 - 0.01 -

For this case, there is a very good agreement among all results. The only significant
deviation comes from C above the normalized frequency 0.8.

5.5 Results for 14oct_P3 edges

The 2016 and 2017 MTF curves and the discrepancy for the 14oct P3 edge are presented in
Fig. 1920. Table 6 gives the 2016 and 2017 MTF values at Nyquist frequency.




(a) 14o0ct_P3 (2016) (b) 14oct_P3 (2017)
1 1
—G —G
08 08 F
—E
ko6 b k06 \ —E
= = \ D
5 04 —¢ G o4 —cC
< s < >
02 | 0,2 | ] B
—|\e2aN —\lean
0 0 - - "
0 0,2 04 06 08 0 0,2 0,4 0,6 08 1
Normalized frequency Normalized frequency
(c) Deviation to the mean (d) Deviation to the mean
140ct_P3 (2016) 14oct_P3 (2017)
0,1 0,1
8 —6G g —c
8 005 _t | Boos F
<@ 3 7~
£ £ A —E
E b | E | — < _|
; 0Tt ——06 08— ; \ > 52 oF— 06 0,8 N\ D
S .005 —C || S-00s —c
|— B ~
2 o 2 o °
Normalized frequency Normalized frequency
Fig. 19. Results for the 14oct_P3 edge: (a) MTF curves from 2016 runs, (b) MTF curves from
2017 runs, (c) deviation to the mean from 2016 runs, (d) deviation to the mean from 2017 runs.
Table 6. Results at Nyquist frequency for 14oct_P3 edges (without D for 2017)
ACT 2016 ALT 2016 ACT 2017 ALT 2017
Mean 0.12 0.14 0.12 0.13
Standard deviation 0.02 0.03 0.01 0.02
Max-min 0.05 0.07 0.04 0.04

For this first case with actual satellite image data, there is good agreement between the
results except for D at low frequencies. Once again, it looks like a problem related to the type
of edge and resulting MTF shape.

5.6 Results for 15aug_P3 edges

The 2016 and 2017 MTF curves and the discrepancy for the 15aug_P3 edge are shown in Fig.
20. Table 7 gives the corresponding MTF values at Nyquist frequency.
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Fig. 20. Results for the 15aug_P3 edge: (a) MTF curves from 2016 runs, (b) MTF curves from
2017 runs, (c) deviation to the mean from 2016 runs, (d) deviation to the mean from 2017 runs.

Table 7. Results at Nyquist frequency for 15aug_P3 edges (without D for 2017).

ACT 2016 ALT 2016 ACT 2017 ACT 2017
Mean 0.12 0.13 0.12 0.13
Standard deviation 0.02 0.02 0.01 0.02
Max-min 0.05 0.06 0.02 0.04

For this actual case, there is a good agreement between the results except for D at low
frequencies, between 0.1 and 0.2.

9. Conclusion

A test of several algorithms derived from the widely used edge method has been performed.
For the test, a set of images of edges was created, mixing both simulations and actual images,
and was made available to the participants without any information about the edges, PSF, or
MTFE. Each participant processed the edge data set to estimate the MTF curve for each edge.
Thus, the first comparison of the MTF corresponds to blind test results. A second one
occurred one year later which allowed possible improvements to the processes or the inputs.

For either the first or for the second comparison, none of the participants was able to
always produce the best estimate (the closest to the expected one for simulation or the closest
to the mean of the measurements for the actual cases). This experiment showed that, in some
cases, the error or inaccuracy may be MTF shape dependent. Thus, a validation should
include several MTF shapes. It also stressed that the results may seem to be consistent when
looking at MTF value, at Nyquist frequency, but are not always consistent for the whole
curve. Indeed, for some participants, the quality of the assessment depends strongly on the
shape of the MTF curve. All participants presented their methods and no theoretical problems
were found. The explanation of some unexpected results could possibly be a bug in the
software or some inadequate inputs. This emphasizes that a full understanding of the method
is required to obtain reliable results.

To extend this comparison study, a reference data set composed of edge image and
corresponding MTF curves will be built. It is planned to give access to edge images through
the CEOS CalVal Portal (http://calvalportal.ceos.org/) and make them available to a broader
audience. In order to promote blind testing as well as to enhance and enlarge this reference




data set, it is planned to deliver the reference MTF curves upon receipt of MTF curves from
user. Moreover, users are invited to propose new images to enlarge the data set. This paper
associated with the reference data set can be seen as a new tool to implement and/or check
MTF measurement relying on the slanted edge method.
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