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Abstract

Identification of constitutive parameters relies mainly on their sensitivity to the

measurands. In particular, the specific static and kinematic responses controlled

by each parameter of interest has to be captured by full-field measurements. The

development of modern constitutive models has led to many new and interesting

sample geometries and loading histories, aiming at maximizing the sensitivity

to their delicate material parameters, especially through their kinematics of

interest. However, it is often impossible to design an experiment that activates

all material parameters of interest, and thus multiple experiments are needed.

This paper discusses a methodology for combining the data from such multi-

experiments into a single identification process to calibrate a complete set of

parameters at once. Many different ways of merging experimental data exist,

leading to unbiased identifications of the parameters of interest. However, only

one optimal procedure leads to minimal uncertainty, taking into account the

noise of each acquisition source. The proposed identification method is a natural

extension of inverse methods such as Finite Element Method Updating (FEMU)

with appropriate weights or Integrated Digital Image Correlation (I-DIC). This

procedure is illustrated by the identification of the planar parameters of the

so-called Hill48 anisotropic yield surface together with an exponential isotropic

hardening law of AA2219.
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measurements, Identification, Uncertainty

1. Introduction

Engineering applications are increasingly demanding fidelity of nonlinear

constitutive models. The mechanics of materials community has been addressing

this demand for many years. The field has significantly progressed in modeling

nonlinear mechanisms such as plasticity, viscosity, damage, fracture, delami-5

nation. Most of these modern constitutive models have in common that they

require more material parameters often difficult to calibrate for a given mate-

rial. This identification challenge hampers the usability of some of these models,

thereby restricting their academic value and their industrial relevance [1, 2].

Fortunately, the experimental mechanics community is developing new meth-10

ods to address these challenges. Currently, full-field measurement methods such

as Digital Image Correlation (DIC [3, 4]) and the grid-method [5] have reached

a data density level rich enough to identify multi-parameter nonlinear models.

The increase in accuracy, efficiency and versatility of these full-field identifica-

tion methods have greatly expanded the applicability of full-field identification15

methods [6, 7].

The most common identification method is referred to as Finite Element

Model Updating (FEMU [6, 8–13]). In FEMU, the gap between the experiment

and simulation of the same experiment is minimized by optimizing (i.e., up-

dating) the unknown model parameters. Within this paper a similar method20

is applied, which is referred to as Integrated-DIC [14–20]. Integrated-DIC op-

timizes the gap between simulation and experiment directly on the captured

images by integrating the identification step within the DIC algorithm. How-

ever, the differences between the two methods are not essential for the discussion

in this paper. The interested reader is referred to Refs. [18, 21] for more details25

on this last point.

The goal of this paper is to propose a method that aggregates measurement

results from difference sources into a single identification method while account-

2



ing for the uncertainty of each measurement. The critical part is the proper

weighting of each contribution. Some measurement sources consist of numerous30

data with poor quality (e.g., images) while others are limited in number but of

higher quality (e.g., force measurements, strain gauges). The proposed method

is defined such that, the weighting is not an arbitrary choice, but instead nat-

urally follows from a Bayesian formulation given the number of measurements

and their respective uncertainty of each source. The obtained weight is opti-35

mal, i.e., leading to the minimum uncertainty in the parameters for the case of

Gaussian noise and insignificant model error.

Besides FEMU and Integrated-DIC there are other inverse identification

methods (see e.g., [6, 7] for overview). The present paper focuses on these two

methods because both utilize the sensitivity fields in the same way. However, the40

concepts discussed herein may be equally valid for other identification methods

such as the equilibrium gap method [22] or the virtual fields method [23, 24].

The proposed simultaneous multi-experiment identification method is pre-

sented using a proof of concept experiment. For the experiment, three uniaxial

tensile tests were performed on Aluminum Alloy 2219 at the typical 0◦, 90◦45

and 45◦ angles with respect to the rolling direction. Both classical identifica-

tion and Integrated-DIC are performed and compared. The identified law is

an elastoplastic material model with Ludwik (power law) isotropic hardening

postulate [25], and the plane-stress Hill anisotropic yield surface [26]. It is well

known that Hill’s model is not optimal for describing the “anomalous” behavior50

often observed in aluminum alloys [2]. However, a perfect identification of the

model is not the present goal. Validating that the multi-experiment implemen-

tation is able to calibrate an 8-parameter constitutive model using three simple

uniaxial experiments is considered more important.

2. Methodology55

For the application at hand, the experimental data will be the force mea-

sured by the load cell of the testing machine and the images of the sample
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surface recorded for each of the three experiments. It is important to propagate

the measurement uncertainties along the entire identification chain. Therefore,

the applied global DIC algorithm is briefly recalled, followed by a concise sum-60

mary of single experiment identification using I-DIC to ultimately combine all

ingredients into the multi-experiment identification method.

2.1. Measurement Aggregation

In the following, it will be shown that the weighting factor to be used is not

a parameter to be chosen by the user but instead follows from the propagation

of uncertainty. Consider N observables, xi with i = 1, ..., N , for which a model

G can generate corresponding estimates from a set of m parameters {p} =

{p1, p2, . . . , pm}1

xi = Gi({p}) . (1)

Note that the observables xi can be of different types with different units (e.g.,

a set of measured forces and displacements). The measurement x̂i of the ob-

servable xi is corrupted by Gaussian noise ζi

x̂i = xi + ζi . (2)

The statistical distribution of ζi is the normal law N (0, γ2i ) of zero mean and

variance γ2i , thus the probability of the estimated observable to be equal to xi

for each measurement x̂i reads

Pi =
1

(2π)1/2γi
exp

(
− (x̂i − xi)2

2γ2i

)
, (3)

and hence for the entire set of N measurements, assuming they are statistically

independent, the probability reads

P =
1

(2π)N/2
∏N

i=1 γi
exp

(
−

N∑
i=1

(x̂i − xi)2

2γ2i

)
. (4)

1Throughout this article, the notations{�} and [�] are used to express column vectors and

matrices, reserving the ~� notation for vector quantities in R2 or R3.
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Inference of the most likely set of parameters that corresponds to a given set

of measurements is equivalent to finding the maximum of Equation (4), or the

minimum of the log-likelihood that is (up to irrelevant constants)

η2({p}) =

N∑
i=1

(x̂i − xi)2

γ2i
. (5)

The choice of the prefactor is such that the expectation of η2 at convergence

is N , assuming that the difference (x̂i − xi) is only due to noise. It is also65

noteworthy that the quadratic difference is not any arbitrary choice among

many convex functions that are minimum at the origin, but the consequence

of the Gaussian probability density function assumed for noise. At this point,

typically nonlinear optimization methods are applied to find the optimal set of

parameters that minimize Equation (5).70

The most important conclusion from Equation (5) is that an identification

using different aggregated measurement sets (in the presence of white noise)

translates into minimizing the weighted sum of the squared differences. Taking

the example of two sets of measurement data, withN1 andN2 measurements and

variances γ21 and γ22 respectively, and labeled sequentially from 1 toN = N1+N2,

the cost function is decomposed as

η2total({p}) =
1

γ21

N1∑
i=1

(x̂i − xi({p}))2 +
1

γ22

N∑
j=N1+1

(x̂j − xj({p}))2. (6)

This property endows the above cost function with a very convenient extensivity

property that will be used farther down. This equation is equivalent to what

is obtained from a variational approach or nonlinear least squares method [18,

19]. However, the important difference is that the weights that are required

to combine multiple cost functions follow from the derivation instead of being75

chosen arbitrarily. Choosing a different weight will still result in an unbiased

identification, but it will overemphasize the importance of one measurement

source as compared to the others, and hence lead to larger uncertainties. Let

us also note that an intensive version can be defined, η̂2 ≡ η2/N , in which case

the total intensive cost function is the average of that of subgroups, weighted by80
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the proportion of measurement number, a mathematically equivalent property

convenient to assess model error when η̂ � 1, but requiring N to be known for

assembling different measurements.

The above case was written in the simple case of independent measurements.

Correlated measurements can be treated in the very same framework and still

result in a quadratic form to be minimized but now with a metric that is not

Euclidean, but based on a kernel that is the inverse of the covariance matrix

of the measurements [27]. If Cij denotes the covariance of the noise affecting

measurements of xi and xj , then the general expression of η becomes

η2({p}) =

N∑
i,j=1

(x̂i − xi)C−1ij (x̂j − xj). (7)

2.2. Global DIC

Digital image correlation aims at minimizing the difference in the observed

intensity of a reference image f and an image taken in the deformed state g

within some region of interest. The cost function that is minimized is defined

as

η2dic =
1

2γ2I

Nk∑
k=1

(fk − g̃k)
2
, (8)

where Nk is the number of pixels considered in the region of interest, fk is the85

gray level of the kth pixel at the location ~xk, γ2I the variance of the noise on

each pixel, and g̃k the gray level at the location ~xk +~uk in the image g. A factor

of 1/2 has been included in the prefactor since noise affects both reference and

deformed images, and hence with this factor the expectation of η2dic is equal to

the number of pixels. Note that g̃ typically requires gray level interpolation at90

non-integer pixel locations.

This DIC cost function is to be optimized with respect to the displacement

field parameterized by a finite set of degrees of freedom. Since the proposed

identification method already relies on finite elements, it is natural to adopt the

very same finite element mesh for this purpose, for which the displacement field
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reads

~uk =

Na∑
i=1

~ϕkiai, (9)

where ai are the nodal degrees of freedom and ~ϕki the corresponding finite

element shape functions. In this paper, a single camera system is adopted

resulting in 2D measurements. Ergo, the number of nodal degrees of freedom

Na is two times the number of mesh nodes.95

Newton’s method is then applied to iteratively minimize Equation (8) start-

ing from an initial guess {a0}. The solution at iteration n+ 1 is defined as

{a}(n+1) = {a}n + {δa} , (10)

where {δa} is the iterative update. It is found by solving the linearized cost

function

[Mdic]{δa} = {bdic}, (11)

where

Mdic
ij =

Nk∑
k=1

(∇fk · ~ϕki) (~ϕkj · ∇fk) , (12)

bdic
i =

Nk∑
k=1

∇fk · ~ϕki

(
fk − g̃k({a}n)

)
. (13)

The above global DIC formulation is common and discussed in the literature

(see e.g., Refs. [28, 29]).

Besides operating as the tangent matrix in the optimization algorithm, the

Hessian [Mdic] serves a second purpose as its inverse represents the covariance

matrix [Cdic] if converged

[Cdic] = [Mdic]−1, (14)

providing the means to relate gray level uncertainty to nodal displacement un-

certainty while accounting for element size and pattern contrast variations.
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2.3. Single-Experiment Identification100

The cost function for an Integrated-DIC routine is similar to the DIC cost

function with the major change being that the unknowns now represent Np

material parameters. A dimensionless version of the parameters is applied to

allow for relative comparisons in sensitivity and uncertainty later on in the paper

{p} =

{
p1
p∗1
,
p2
p∗2
, . . .

pNp

p∗Np

}
, (15)

where for the scaling values p∗i the initial parameters are used (i.e., {p0}). The

Integrated-DIC cost function then becomes

η2I ({p}) =
1

2γ2I

Nt∑
t=1

Nk∑
k=1

(
fk − g̃kt({p})

)2
, (16)

where Nt is the number of time steps considered for identification and γ2I the

estimated gray level variance for each acquisition. The additional summation

over time reflects the fact that the constitutive parameters are equally valid for

all time steps and according to Section 2.1, the different log-likelihood function-

als are to be simply summed. Hence, the gray level g̃kt is taken at the location105

~xk + ~ukt of the image acquired at time step t. The displacement field ~ukt({p})

is provided by an FE simulation using the current estimate of the parameters.

Similarly additional cost functions can be defined for other observables that

will be used for identification purposes. In the test case discussed hereafter,

besides images, the reaction force at one of the grips is also utilized

η2F ({p}) =
1

γ2F

Nt∑
t=1

(F exp
t − Ft({p}))

2
, (17)

where F exp
t and Ft are respectively the measured and simulated resultant force

at the sample boundary at time step t. Similarly as with Equation (16), the cost

function is normalized using the estimated variance for each measurement γ2F .110

Exactly as in Equation (6) in Section 2.1, the cost functions for each ob-

servable is combined by summation in the normalized forms as expressed in

Equations (16) and (17),

η2e = η2I + η2F . (18)
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The solution to this inverse problem is obtained by iteratively minimizing

this cost function using Newton’s method starting with an initial guess for the

parameters {p0}

{p}(n+1) = {p}n + {δp}, (19)

where the incremental update to the parameters {δp} is found by solving

([MI ] + [MF ]) {δp} = {bI}+ {bF }, (20)

with

[MI ] =
1

2γ2I
[SI ]>[Mdic][SI ], (21)

{bI} =
1

2γ2I
[SI ]>{bdic}, (22)

and

[MF ] =
1

γ2F
[SF ]>[SI ], (23)

{bF } =
1

γ2F
[SF ]> {F exp − F} , (24)

where [SI ] and [SF ] represent the displacement and the force sensitivities. They

are rectangular matrices projecting from the node-time space to the parameter

space and follow from the derivation using Newton’s method

{SIi} =
∂{a}
∂pi

, (25)

{SFi} =
∂{F}
∂pi

. (26)

In some special cases, analytical derivatives are obtainable (see e.g., Refs. [30–

33]). However, for most constitutive models, approximative derivatives have

to be evaluated, as for example via finite differences. In the above equations,

the sensitivity matrices are computed by performing one simulation using the

current estimate of the parameters to obtain the reference nodal values {a} and115

{F} and a second one per each unknown pi where the parameter is increased

by 1 %.
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Another interpretation of Equation (21) is that the displacement field (in-

stead of the images) is considered the measurand and the [Cdic] matrix is

applied as the metric with which to transport covariance from a previous mea-120

surement (DIC) to the identification method. This observation highlights that

the build-up of covariance is transparent to the identification method if it is

consistently transported along the measurement chain (see also Equation 7).

In other words, performing FEMU (with the displacement field as measurand),

results in exactly the same cost function definition as I-DIC (using the image125

as measurand), provided the covariance accumulated during the DIC phase is

taken into account (see also Ref. [18]).

2.4. Multi-experiment identification

The premise that drives multi-experiment identification is that the consti-

tutive parameters are valid for a range of experiments of the studied material.

Consequently, different experiments may be performed to activate different ma-

terial parameters. While some experiments may be relevant to trigger sensitivity

for specific parameters, other parameters will be active in all experiments. The

proposed method of measurement aggregation (see Section 2.1) and its adop-

tion in the previous section to aggregate multiple data sources into a single

experiment is extended to aggregate data from multiple experiments

η2 =

Ne∑
e=1

η2e , (27)

where the total cost function η2 is simply the sum of the individual cost functions

for each experiment, as defined in the previous section, Ne being the total130

number of experiments.

The chosen solution strategy remains unchanged from Newton’s method as

defined in Equation (19), where the update to the degrees of freedom obtained

by solving the linearized system of equations reads

[M ]{δp} = {b}, (28)
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where the Hessian [M ] and the right hand member {b} are the sums of the “per

experiment” respective contributions

[M ] =

Ne∑
e=1

([MIe] + [MFe]) , {b} =

Ne∑
e=1

({bIe}+ {bFe}) , (29)

thereby resulting in one global Hessian and right hand member seamlessly com-

bining the data from multiple experiments. Iteratively solving this system of

equations will result in finding a single set of parameters that optimally mini-

mizes the discrepancy between multiple experimental sets of data and multiple135

simulations as gauged by their uncertainty.

2.5. Identification framework

The previous sections have introduced the general identification procedure.

However, details still remain to be discussed for the method to become practical.

Boundary Conditions. The previously discussed approach relies on simulating140

the experiment using FE models. The quality of the parameter identification

relies on the simulations to mimic the experiments as closely as possible and

thus they need to be driven with accurate boundary conditions. The chosen

method is to use a regular (i.e., non-integrated) DIC routine to measure the

displacements near the edges of the field of view and use these displacements as145

boundary conditions for the simulation. These displacements are measured by

DIC and thus are affected by noise creating an alternative way for measurement

noise to influence the identification. The influence of this noise is an ongoing

research subject and is not considered in the analyses and results [34]. However,

effort is made to minimize this influence, which will be discussed in Section 2.9.150

On the other hand, the method of using the DIC measured boundary conditions

has a few advantages, namely, it limits the simulation domain to the region of

interest, it provides time synchronization, it naturally deals with any sample

misalignment and rigid body motion [35].

Conditioning. Although the proposed method condenses a large amount of data

to a relatively smaller system of equations to be solved (Equation (28)), the
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system can still be poorly conditioned. Reasons for ill-conditioning can be,

for example, insufficient sensitivity to a given parameter (or linear combina-

tions thereof). To limit the impact of these issues, Tikhonov regularization is

applied [36] (
[M ] + α[I]

)
{δp} = {b}+ α

(
{pref} − {p}

)
, (30)

where [I] is the identity matrix, α the regularization strength set to α = 10−5λ,155

where λ is the largest eigenvalue of [M ] and {pref} is a set of parameters obtained

from external sources such as other experiments of the literature (here chosen

as {p0} the initial guess of the minimization procedure). The regularization

strength is set sufficiently low such that parameters with sufficient sensitivity will

be calibrated by the multi-experiment identification while suppressing spurious160

behavior of the ill-conditioned parameters. Note that when α = 0 the original

system is obtained.

Secant method. For the proposed method, most of the cost is in the finite

element simulations. Consequently, updating the sensitivity matrices (Equa-

tion (25) and 26) is costly, since they require Np + 1 simulations. Therefore,165

within this paper the sensitivity matrices are not updated for every iteration.

This effectively modifies Newton’s scheme to a secant method. The update in

the sensitivity matrices is only performed when the cumulative update in the

parameters since the last sensitivity update is larger than 5 %.

Algorithm Summary. The implemented framework consists of the following170

steps:

1. Measure the boundary conditions using DIC

2. Choose the initial parameter set {p0}

3. Compute the reference displacement field and force for each experiment

4. If large changes in parameters, compute the sensitivity matrices for each175

experiment (Equations (25) and (26))

5. Aggregate the data from all experiments (Equation (29))
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6. Solve for the correction in the parameters (Equation (28))

7. Update the parameters (Equation (19))

8. If not converged return to step 3180

Most of the computational cost lies in steps 3 and 4 since they involve a

number of often heavy finite element simulations. However, these simulations

can be performed concurrently while each of them can be parallelized. This can

greatly reduce computation time if the computational resources are available.

Typically step 5 can be performed within a few minutes for a moderate data185

set on a normal desktop computer and thus its cost will only be significant for

cases with comparable finite element simulation costs.

2.6. Experiment

The three typical tensile experiments treated in this paper are those that

are commonly performed for identifying planar anisotropic yielding [37, 38].190

The samples were cut such that their respective loading axes aligned with three

important rolling direction, namely the Longitudinal (L), Transverse (T) and

Diagonal (D) directions. The longitudinal direction was aligned with the rolling

direction of the sheet at 0◦. The transverse sample was cut at 90◦ while the

diagonal sample was cut at 45◦ with respect to the rolling direction, as shown195

in Figure 1. These sample directions will be denoted as L, T and D henceforth.

Transverse Direction

L
on

gi
tu

d
in

al
D

ir
ec

ti
on

L

T

D

10 mm

R = 120 mm

10 mm

2mm thick AA2219 sheet

(a) Samples

L T D

(b) Mesh

Figure 1: (a) Orientation of the samples as cut from the aluminum alloy sheet. (b) Picture of

the three samples with their speckle pattern and conforming mesh.
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Each sample was 2 mm thick and 180 mm long, the width at the narrow-

est section was 10 mm, with the dog-bone radius of each side of the sample

equal to 120 mm, see Figure 1. The samples ware loaded in a servohydraulic

tension/compression testing machine equipped with a 50 kN load-cell. The top200

grip of the tensile machine was stationary while the bottom grip was driven at

constant velocity of 0.01 mm/s to specific load levels (i.e., [1.8, 6.0, 8.5, 9.1, 9.3,

9.5, 9.6, 9.65] kN). When a load level was reached the sample was unloaded to

0.1 kN upon which the next loading cycle starts.

Time [s]
0 500 1000 1500 2000 2500

Fo
rc

e 
[k

N
]

0

5

10
LT D

Figure 2: Force response over time for all three experiments. This figure shows all experimental

cycles the three samples, indicating where each sample ultimately failed (marked X) and the

images that were considered herein (marked •). Note that the first two cycles wee used with

unloading, while upon plasticity only the parts where the force was monotonically increasing

are used up to the 8th cycle.

Only the first 8 cycles are considered as the experimental dataset in this205

paper. Moreover, for the “plastic” cycles, only the images where the force was

monotonically increasing are kept in the dataset (Figure 2). The later cycles

were discarded because the applied constitutive model (to be introduced below)

was not rich enough to allow for parameter calibration after the onset of neck-

ing. Each experiment was started holding the load at 0 N while capturing 20210

images. These images are only used to estimate the measurement uncertainty.

The identification dataset is based on [114, 110, 114] images per experiment

respectively, 1 reference and [113, 109, 113] deformed increments containing

two elastic load-unload cycles and the monotonic loading part up to 9.65 kN of

load.215
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The images were captured with a single Manta G-223 camera equipped with

a telecentric lens of magnification ×0.125, and captured one side of the speckle-

painted sample twice at 5 s intervals, once at 1 s and once at 5 s in each interval.

The recorded images are of definition 1120 × 2160 px, where each pixel captures

the intensity, digitized with 16 bits, of 26 × 26 µm2 of the sample area. The220

three experiments were performed consecutively without any changes to the

camera and lighting settings. Consequently, the dynamic range of the images,

which is defined as the difference between the brightest and the darkest pixel,

is 63,600 gray levels over all images and experiments.

Besides using the images for the full-field identification procedure the images225

are first processed using a relatively standard Finite Element (FE) based global

DIC algorithm [29]. The adopted FE mesh (used for DIC) for each experiment

is shown in Figure 1(b) using 207 4-noded bilinear elements with 240 nodes

in total for each experiment. The meshes are adjusted to the geometry as

captured in the reference image of each experiment. Although the meshes are230

equal in topology, they are slightly different in shape due to differences in sample

alignment. Consequently, the number of pixels supporting each mesh is [691,

686, 700] ×103 pixels for the L-, T-, D-experiments respectively.

All full-field data discussed in this paper are 3D, namely 2D space and 1D

time. Furthermore some are vector or tensor fields. Consequently, a condensed235

plotting style is adopted throughout the paper that merits a few words of ex-

planation (see e.g., Figure 3). The 3D data volume is represented by two 2D

cross-sections, the first is in the time-y plane taken at x = [200, 145, 170] px

respectively for the L-, T- and D-samples, the second is in the x-y plane taken

at increment [108, 104, 108] respectively. Both cross-section planes are indicated240

in the figures with dashed lines in the other cross-section. Furthermore, various

vector components of the fields are plotted as rows of sub-figures. Single point

data (e.g., force) are plotted when relevant using the same time axes below

the final vector/tensor component time-y figure. In this visualization style all

data considering a single experiment can be compactly summarized in a vertical245

arrangement, allowing the data of the three experiments (L, T and D) to be
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plotted side by side for easy comparison.
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Figure 3: Displacement field (in space and time) as measured by non-integrated DIC for all

three experiments (rows 1 and 2), and the respective image residuals (row 3) and the measured

force at the load-cell (row 4).

Figure 3 summarizes the full-field space-time displacement data as obtained

by DIC for all three experiments. In the experiments, the top grip of the tensile

machine is fixed and the bottom grip is driven. However, since the imaged field250

of view is smaller than the clamped sample length (i.e., ∼ 48 mm) both top

and bottom mesh boundaries are moving vertically. The L-sample was mounted

with a visible misalignment that resulted in a significant horizontal motion of

the bottom mesh boundary due to the lateral freedom of the bottom grip. Due

to the limited number of samples, the experiment was not discarded but the255

data were used as-are. Fortunately, the adopted full-field identification method

is naturally tolerant to these real-word experimental issues.

DIC is also applied to the first 20 images, captured without load on the sam-

ple. The root-mean-square (RMS) of the image residuals, standard deviation

of the nodal displacements and the standard deviation of the measured force

over these 19 time steps are used as estimates of the respective measurement
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uncertainties

γI ≈ 1911 GV ≈ 2.9%,

γU ≈ 0.017 px ≈ 0.44 µm,

γF ≈ 5 N.

(31)

where the gray level uncertainty is computed using

γI =
1

6

√
6G〈γUL〉, (32)

where G is the mean field average of the image gradient and L the element length

which is approximated as the square root of the average element area [29, 39].

The images are recorded using 16-bit gray levels, resulting in the gray level260

uncertainty being approximately 2.9% of the dynamic range. This method of

obtaining the gray level uncertainty is used to be consistent with a previous

study that used the same images [20]. In the latter reference, this estimate was

introduced as an effective gray level uncertainty that also accounts for gray level

variations from other sources such as cross-pixel correlation, speckle degradation265

and sub-pixel interpolation errors. The impact of this choice is currently under

research but is estimated to be small.

2.7. Constitutive Model

The constitutive model chosen to be identified using the three experiments

is an elastoplastic law with isotropic exponential hardening and an anisotropic

yield surface. The chosen hardening law is that proposed by Ludwik [25]. In a

1D setting, under increasing plastic strain εp the stress (σ) strain (ε) relationship

reads

σ = Eε, σ ≤ σ0, (33)

σ = σ0 + hεmp , σ > σ0, (34)

where E is the Young’s modulus, σ0 the yield stress, h the hardening modulus,

and m the hardening power. Together with Poisson’s ratio ν, this model results

in five unknown material parameters. The anisotropic yield surface is described
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with Hill’s model [26], which is readily available in Abaqus [40]. The anisotropic

plasticity criterion is defined as

H1(σ22 − σ33)2 +H2(σ33 − σ11)2 +H3(σ11 − σ22)2

+ 2H4σ
2
23 + 2H5σ

2
31 + 2H6σ

2
12 = 1, (35)

with

H1 =
1

2

(
1

R2
22

+
1

R2
33

− 1

R2
11

)
, H4 =

3

2

1

R2
23

, (36)

H2 =
1

2

(
1

R2
33

+
1

R2
11

− 1

R2
22

)
, H5 =

3

2

1

R2
13

, (37)

H3 =
1

2

(
1

R2
11

+
1

R2
22

− 1

R2
33

)
, H6 =

3

2

1

R2
12

, (38)

where R11, R22, R33, R12, R13 and R23 are yield stress ratios. For a near plane-

stress state, these ratios are interrelated such that four parameters suffice to270

fully describe the yield surface [2]. Therefore, the parameters R22, R33, R12

and σ0 are used adding 3 parameters to the identification routine. A large

transformation framework is used in the FE simulations.

2.8. Classical Identification Methods

A more classical identification approach is first applied before using the pro-275

posed full-field multi-experiment identification. This analysis serves two pur-

poses, (i) provide a set of parameters {p0} to initialize the identification, (ii)

provide a reference to compare the identified parameters with. This classical

identification is not considered as a golden standard, yet for the test case at

hand, both methods are within their application range and should provide com-280

parable results.

The non-integrated DIC displacement measurements are used to compute

the logarithmic strain fields that are shown in Figure 4. A virtual strain gauge

is applied by averaging the strains in the center region of the samples indicated

by the dashed box in Figure 1(b).285
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Figure 4: Strain fields (in space and time) as measured by non-integrated DIC for all three

experiments.

The stress in the tensile direction of the sample (i.e., y-direction) is estimated

using the measured force F , the cross-sectional area in the reference state A0

and the stretch in the same direction

σiyy ≈
Fi exp(εiyy)

A0
, i = [L, T,D], (39)

Equation (34) is fitted to the L-data using Newton’s method to obtain the

parameters E, σ0, h and m. The ratio between the xx- and yy-components

of strain for the sample experiment are used to identify ν. The result of the

stress-strain curve obtained by the fit is shown with a dashed line in Figure 5(a).
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Figure 5: Plots of (left) stress-strain data for all three experiments, (center) Lankford ratio

vs. strain and (right) Hill’s yield stress ratio vs. strain

From each experiment Lankford’s ratios are extracted using the plastic strains

εp from the two directions in the cross-sectional plane (i.e., the xx- and zz-

directions)

ri =
εpixx

εpizz

, i = [L, T,D], (40)

where the plastic strains in those directions are estimated using the total strain

the xx- and yy-directions and the parameters identified in the previous section

εpxx
= εxx + ν

F

AE
, (41)

εpyy
= εyy −

F

AE
, (42)

εpzz
= log

(
1

exp(εpxx
+ εpyy

)

)
. (43)

The Lankford ratios for each time increment are shown in Figure 5(b).290

Last, the three yield stress ratios are obtained from the three Lankford ratios

R22 =
σ22
σ0

=

√
rT (rL + 1)

rL(rT + 1)
(44)

R33 =
σ33
σ0

=

√
rT (rL + 1)

rL + rT
(45)

R12 =
σ12
τ0

=

√
3rT (rL + 1)

(2rD + 1)(rL + rT )
(46)
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where 1, 2 and 3 indicate directions corresponding to the material orientation,

1 and 2 are in the plane of the metal sheet while 3 is perpendicular to the

plane of the sheet. The yield stress ratios for each time increment are shown

in Figure 5(c). The values above 3 % strain are averaged to identify the yield

stress ratios.295

2.9. FE Simulations

The simultaneous multi-experiment identification algorithm detailed in the

previous section is implemented within the Correli 3.0 framework, which is in

continuous development at LMT [41]. The framework contains the tools to per-

form non-integrated DIC, manage the launch and data retrieval of all the FE300

simulations. For this paper Abaqus2 is used to perform the FE simulations. In

general, Integrated-DIC treats the simulation software as a “black box” where

each simulation is started with a different set of parameters and the only ex-

ploited output data are the displacement fields and nodal forces for each time

step.305

The FE meshes used for the simulations are based on those shown in Fig-

ure 1(b) with two modifications. The first is the removal of one row of elements

from each side of the sample (see Figure 6). This is done so that the applied

boundary conditions are those measured by DIC on internal nodes, which are

less sensitive to acquisition noise compared to boundary nodes [29]. To fur-310

ther reduce the impact of measurement noise the measured displacements are

filtered using 4th order polynomials [42]. The second modification to each mesh

is that it is extruded in the z-direction to create a 3D model (see Figure 6).

Even though the applied measurement is 2D, there is no limitation on perform-

ing the simulations in 3D. It was shown that it is desirable when dealing with315

elastoplastic laws [35].

2Abaqus Standard: Dassault Systèmes Simulia [40]
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Figure 6: Complete sample shape (dashed line) with the image positioned on top with the 2D

DIC mesh (yellow) and the 3D FE mesh.

3. Identification Results

The main objective of identification is the set of parameters. However, the

proposed method also allows for the analysis of the obtained result providing

understanding about the sensitivity and uncertainty for each parameter. The320

analysis is mainly based on the sensitivity matrices (Equations (25) and (26)),

the Hessians (Equations (21), (23) and (29)) and the full-field residuals.

3.1. Sensitivity Matrices

Figure 7 shows the sensitivity fields for the five isotropic parameters for the

L-experiment. Similar figures can be created for the other two experiments.325

However, these will not show significantly different results. The figure is com-

posed of five columns of five sub-figures each. Each column corresponds to one

parameter. The displacement component of the sensitivity matrix for one pa-

rameter has the same data structure as a displacement field, which is in this

case 3-dimensional with two dimensions in space and one in time. Consequently,330

the same representation can be used as shown in Figure 3. The full field data in

the displayed figures (first and second rows) are scaled per parameter with the

amplitude that is given above the column p̄i. This normalization is mainly per-

formed to aid visualization since it brings all the drawn fields within the same

[-1, 1] range allowing a single color bar. Since the parameters {p} are dimension-335

less, the units of the sensitivity matrices are equal to the respective measured

quantities, namely, px for the displacements and N for the force sensitivity.

22



-3.17

0

3.17

time

S
F

[k
N

]

7E = 0:05

y
y

x

-0.04

0

0.04

time

78 = 0:02

x

-3.26

0

3.26

time

7<0 = 0:07

x

-1.33

0

1.33

time

7h = 0:11

x

-1.54

0

1.54

time

7m = 0:04 L

S
I
x

[p
x
]

x

S
I
y

[p
x
]

-1

0

1

Figure 7: Sensitivity fields in terms of the x- and y-displacement and force sensitivity for the

five isotropic parameters for the L-sample each scaled with the amplitude p̄ given on top.

Figure 7 quantitatively shows where in space and time each parameter is

sensitive. For instance, it illustrates that the second parameter ν has the weak-

est sensitivity, indicated by its normalization factor ν̄ = 0.02 px and its force340

amplitude being approximately 0.05 N. Both are within the expected measur-

able range and thus this parameter should be tunable. However, it will be the

most prone to measurement noise. It should be noted that it is possible to com-

pute these figures before performing the experiment. Consequently, they are a

useful tool for optimizing the experiment to enhance the sensitivity of certain345

parameters [34]. For example, as expected, most of the sensitivity for the plastic

parameters comes from the end of the experiment.

Figure 8 shows the sensitivity fields for the first anisotropic parameter (i.e.,

R22) for each of the performed tests (i.e., L, T, and D). As expected, the

contribution of each experiment to the sensitivity is distinct. Interestingly, the350

L and D experiments show the strongest displacement sensitivity while the T

experiment shows the strongest force sensitivity. The difference in sensitivity in

the force part is much more significant showing a 50 times increase in sensitivity

for the T experiment compared to the L experiment.
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Figure 8: Sensitivity fields for the anisotropic stress ratio R22 for each of the three tensile

directions (L, T and D).

Figure 9 shows similar results for the other two anisotropic stress ratios355

R33 and R12. The R33 stress ratio shows equivalent kinematic sensitivity fields

for all three experiments while the static sensitivity is approximately 10 times

stronger for the D-sample. As expected, the shear stress ratio R12 requires the

45◦ experiment to activate significant sensitivity. This sensitivity field analyses

show that all three anisotropic parameters are significantly activated in one or360

more experiments both from kinematic and static points of view. Sensitivity for

the R22 parameter depends mostly on the T-sample while R33 and R12 mostly

on the D-sample. Interestingly, it seems that the L-sample is not significantly

carrying sensitivity not already present in the other two experiments. The data

from the L-sample to the identification will however increase the sensitivity for365

these three and the five isotropic parameters. Since uncertainty is inversely

related to sensitivity it is advised to use all three experiments. However, if

some uncertainty can be tolerated, the experimental load can be reduced by

omitting the L-experiment.
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Figure 9: Sensitivity fields for the anisotropic stress ratios R33 (a) and R12 (b) for each of the

three tensile direction (L, T and D).

3.2. Uncertainty quantification370

The full-field sensitivity analysis is effective for analyzing where in space

and time each parameter is active. However, the final system of equations that

is solved during the iterative process is a condensed version of the sensitivity

fields (see Equation (29)). The Hessian is the sum of many sub-Hessian matri-

ces, namely, one displacement and one force per experiment. Each experiment375

generates two sub-Hessians, only the two for the L-experiment are visually rep-

resented in Figure 10. This figure shows that the image (or kinematic) part of

the measurement carries a significant portion of the sensitivity. It also shows

that some groups of parameters are dependent on each other. This is visible

from a block diagonal aspect of the Hessian. However, to further interpret the380

structure of this Hessian, one should consider the eigenvectors and eigenvalues

of [M], as the presence of off-diagonal terms means that the actual uncertainty

is more intricate. This is considered out of the scope of this paper.

25



=

[ML]

+

[MIL] [MFL]

10-2

10-1

100

101

Figure 10: Hessian matrix for the L-sample [ML], which is the sum of its kinematic part

[MIL] and static part [MFL]. The matrix rows and columns correspond to the constitutive

parameters in order E, ν, σ0, h,m,R22, R33, R12.

Figure 11(a) shows the aggregation of the per experiment Hessian matri-

ces into a single Hessian. Note how the sensitivity accumulates from the three

experiments. The parameter sensitivity of the three experiments is perhaps

more clearly illustrated in the covariance matrix, which is the inverse of sensi-

tivity, namely, uncertainty (see Figure 11(b)). For Gauss-Newton algorithms,

the covariance matrix can be approximated by the inverse of the Hessian in the

converged state [43]. Equivalently as the Hessian matrix expresses sensitivity,

so is uncertainty expressed by the covariance matrix. Combining the three ex-

periments into one identification results in a significantly lower variance and

covariance for the anisotropic parameters. To show the correlation between pa-

rameters, the covariance matrix is normalized to obtain the correlation matrix

(no index summation)

Qij =
M−1ij√
M−1ii M

−1
jj

, (47)

which is shown in Figure 11(c). The two elastic parameters E and ν are rel-

atively uncorrelated, the three plastic parameters σ0, h and m are strongly385

correlated as are the three anisotropy parameters. In general, correlation of

parameters does not lead to identification issues as long as there are no double

eigenvalues or near zero eigenvalues in the set of calibrated parameters. How-

ever, correlation does complicate the discussion revolving about uncertainty,

since the uncertainty of one parameter is influenced by other parameters.390
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Figure 11: (a) Total Hessian [MLTD], which is the sum of the per-experiment Hessians ([ML],

[MT ] and [MD]). (b) Inverse of each matrix shown above, which are approximations of the

covariance matrices. (c) Correlation matrices, which are obtained by normalizing covariance

matrices. The colors represent the absolute values of the components, while the signs are

indicated with “+” and “−”. The constitutive parameter order is E, ν, σ0, h,m,R22, R33, R12.

3.3. Identified Parameters

The proposed multi-experiment identification method iteratively minimizes

the gap between the simulated and measured data starting from an initial guess

for the unknown parameters. The case at hand is chosen since it can be well

identified using more classical methods as discussed in Section 2.8. Conse-395

quently, the proposed method should return parameters that are similar to the

classical parameter set. Table 1 shows the two sets of parameters. Most pa-

rameters are nearly identical between the two sets; most notably the elastic

parameters and the anisotropy parameters. The plastic parameters σ0, h and

m have changed significantly. However, even with seemingly large changes in400

these parameters, the stress-strain curves obtained from both parameter sets

are remarkably similar (see Figure 5).
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Table 1: Identified parameters using the classical method and the discussed multi-experiment

framework

E ν σ0 h m R22 R33 R12

GPa - MPa MPa - - - -

Classical 71.7 0.3 356 602 0.5 1.04 0.89 1.07

Multi-Exp. 70.6 0.31 330 446 0.38 1.03 0.9 1.07

To test the dependence on the initial guess, the multi-experiment identifica-

tion routine was initialized with the “Classical” set and the same set multiplied

with various factors ranging from 0.5 to 1.5. The obtained parameters for each405

initial guess were within 10−4 of the parameters shown in Table 1.

3.4. Residuals

The gap between the simulated and measured observables is an integral part

of the discussed identification method. The classical identification methods

typically depend on indirect residuals, such as the gap between the modeled410

and measured stress-strain curves. However, the parameters obtained with any

identification method can be used to simulate the experiment to construct the

full-field residuals as available in full-field identification methods.

The full-field residuals are part of the cost functions discussed in Section 2.3

and are the difference between the simulated and measured quantities

RIkte = fke − g̃kte, R̂I = rms
(
RI

)
, (48)

RFte = FEXP
te − Fte, R̂F = rms

(
RF

)
, (49)

~RUkte =

Na∑
i

~ϕike

(
aDIC
ite − aite

)
, R̂U = rms

(
|~RU |

)
. (50)

In this paper three residuals are discussed, where the image and force residuals

(i.e., RI and RF ) are part of the identification algorithm. The third (displace-415

ment) residual RU is optional and available due to the application of global DIC

with the same mesh as is used for the identification. Note that the indices k, t,

and e indicate pixels, time steps and experiments respectively. The number of
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pixels Nke and time steps Nte depend on the experiment, the number of experi-

ments Ne is three. Consequently RI and ~RU are 3D fields (space and time) per420

experiment, and the former and latter are respectively scalar and vector fields.

The force residual RF is 1D in time per experiment.

The cost functions (Equations (21), (23) and (29)) are defined as extensive

quantities so that they can be aggregated by summation. Consequently, their

expectation is equal to the number of observables in the cost function. To

facilitate the discussion on the quality of the identification intensive versions of

three cost functions are defined here as

η̂2I =

∑Ne

e η2Ie∑
eNteNke

η̂2F =

∑Ne

e η2Fe∑
eNte

η̂2 =

∑Ne

e η2e∑
eNteNke +Nte

(51)

The first two are not used for identification purposes, but they are useful as

indicators of the agreement of the individual data sets with the parameter set

obtained with the identification set. All three have expectations of unity under425

the condition that the assumptions of measurement noise and model error are

valid.

Table 2 shows the displacement R̄U , image R̄I and force R̄F residuals for the

two parameter sets given in Table 1 as well as the image residual obtained using

non-integrated DIC. The displacement and image residuals are only marginally430

larger than their respective uncertainties for both the “Classical” and the “Multi-

Exp.” parameter sets. However, the force residual is considerably larger than its

expected uncertainty for both identification cases. The same is expressed in the

intensive cost function values η̂, which are expected to be close to unity for the

image part of the cost function while being far above unity for the force contri-435

bution. However, both identification methods return similar residuals with the

multi-experiment identification method residuals being lower for all quantities.
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Table 2: Residuals remaining after convergence for both identification cases, η̂ are the intensive

cost function residuals (Equation (51))

R̂U [px] R̂I [%] R̂F [N] η̂I η̂F η̂

Classical 0.24 3.13 380 0.76 76 0.76

Multi-Exp. 0.22 2.78 336 0.67 67 0.68

DIC - 1.80 - - - -

An average gap between the simulated and measured forces of 336 N com-

pared to a peak force of 10 kN may be considered both reasonable or unrea-

sonable depending on the understanding of the experimental setup. The fact is440

that there are significant forces present in the measured data that are not ac-

counted for by the model. These differences can have a number of sources, not

limited to constitutive model error, geometrical model error, synchronization

errors and measurement artifacts. The model error is present in both identifi-

cation methods. However, the advantage of the proposed method is that the445

model error is now clearly visualized to allow the user of the method to judge

whether this error is tolerable or not. Additionally, the signature of the model

error can be analyzed to propose model enrichments that can account for the

missing kinematics [20].

The η̂ values reported in Table 2 are unexpectedly smaller than unity. First450

let us note that the image intensive cost function η̂I is dominant in the global

cost function, essentially because of the very large number of pixels as compared

to the number of force measurements. Even, if η̂F is very large as a result of

a model error, this does not increase much the (intensive) global residual. The

most likely explanation for η̂I being smaller than 1 is that the estimate for455

the image uncertainty γI was high. The 20 images that were used to estimate

image uncertainty may have been contaminated by a small but non-zero load.

A deeper analysis of the uncertainty estimate may resolve this. However, it is

considered out of the scope of this paper. A possible consequence is that the

current identification method slightly overemphasized the force data.460

Figure 12 shows the residuals for the parameter set obtained using the clas-
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sical identification method. It presents the residuals as three columns, one per

experiment, with seven sub-figures each. The first two rows are the displace-

ment residual between the simulated displacements and those measured with

non-integrated DIC (see Equation (48)) for one time and one space cross-section.465

The third row reports the image residual (Equation (50)) and the fourth and

final row shows the residual force (Equation (49)) as a function of time.

L

y
y

y

x

1  108

-0.7

0

0.7

inc

R
F

[k
N

]

T

x

1  104

-0.7

0

0.7

inc

D

R
U

x
[p

x
]

R
U

y
[p

x
]

R
I

[%
]

x

1  108

-0.7

0

0.7

inc

-1

0

1

-1

0

1

0

5

10

15

Figure 12: Full-field residuals in terms of displacement (first two rows), gray levels (3rd row)

and force (4th row) for all three experiments when using the “Classical” parameter set as

shown in Table 1.

The vertical dashed lines in the figure indicate the transition from the elastic

part of the experiment to the plastic part roughly in the center of the time axis

(see also Figure 3). The displacement and image residuals show a relatively low470

residual before this instant of time, and then gradually increase as plasticity

is mobilized in the sample. This behavior is similar for all three experiments.

However, the residuals for the T-sample are generally lower. For the force resid-

ual (4th row) the inverse is shown, with high residuals in the elastic part and

lower residuals after the onset of plasticity. Additionally, the force residual is475

lowest for the L-sample, which is expected because the elastoplastic parameters
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(i.e., E, ν, σ0, h and m) were all obtained from the L-experiment data only.

The high residuals in force in the elastic part correlate with the load-unloading

cycles in the elastic regime and clearly indicate a phenomenon present in the

experiment that is not modeled. This type of model error is common in iden-480

tification, and the consequence of using real data instead of synthetic data. No

further investigation of the source of this model error will be carried herein as

it lies outside of the scope of the paper.

Similar to Figure 12, Figure 13 shows the full-field residuals, now for the

parameter set calibrated with the discussed identification method. As was al-485

ready known from the global residuals (Table 2), the multi-experiment residuals

are generally lower for the multi-experiment identification as compared to the

classical method. This is expected, since the multi-experiment framework is

targeting these residuals directly in its cost function. Additionally, the residuals

are more homogeneously distributed among the three experiments.490
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Figure 13: Full-field residuals in terms of displacement (first two rows), gray levels (3rd row)

and force (4th row) for all three experiments when using the multi-experiment parameter set

as shown in Table 1.
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4. Conclusions

An identification method is proposed that aggregates the experimental data

from multiple sources of multiple experiments into an identification method

to calibrate a single set of constitutive parameters. The method is based on

Bayesian principles, thereby automatically accounting for the uncertainty of495

each data source to find their optimal weighting. An extractor is constructed to

identify the set of unknown parameters considering all data that can reliably be

represented by the chosen numerical model. The method provides an identifica-

tion framework that naturally encompasses and extends on previously published

global DIC and Integrated-DIC frameworks. However, the proposed method is500

not limited to full-field data and works equally well with other measurement

types, such as, load-cells, strain gages.

As a proof of concept, the method is applied to the identification of an 8

parameter isotropic elastoplastic model with a planar anisotropic yield surface.

The parameters calibrated with the proposed method are very similar to those505

using more classical methods. Moreover, the residual gap between the measured

and modeled quantities is significantly reduced using the proposed method. The

test case is chosen to illustrate this comparison, but it is emphasized that the

proposed method is applicable to a much wider range of constitutive models

and inhomogeneous experiments.510

One of the challenges in the identification of complex material models is

dealing with non-uniqueness. Often there are multiple solutions that minimize

the identification cost function. For cases that are not interested in the param-

eter values directly, picking any of the parameter sets will suffice, provided the

application of the calibrated model remains close to the identification regime.515

However, often the purpose of identification is to study the constitutive model

directly. In those cases the parameter values are important. A way to discrimi-

nate between the solution sets is to enrich the identification with an additional

experiment, designed specifically to trigger mechanisms previously not or not

sufficiently present. Within this paper methods are discussed to aid in de-520
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signing these experiments by means of analyzing the sensitivity of promising

experiments.

The proposed method is based on the concept of transporting uncertainty

along the experimental chain up to parameter identification. Consequently, it

provides uncertainty assessments of the calibrated parameters. It is based on525

a Gaussian model of the acquisition noise. Although a reasonable assumption

for acquisition noise, such an assessment does not include any non-stochastic

effects. The major critical point not yet addressed is the impact of model error.

Most, if not all, parameter identification methods leave a residual gap between

the measured and modeled quantities. Often, the amplitude of this gap is more530

significant than the uncertainty due to random noise. Comparing the residual

gap of the proposed method to more classical and trusted identification methods

reveals that this issue is only mildly improved with the proposed method. The

key difference is that the proposed method shows the residual gap very visually

and thus provides means of assessing whether the gap is acceptable. For the535

example discussed herein, the most likely cause of the residual gap is a limited

model (be it from the constitutive law, experimental control, or measurement

acquisition) that is not capable of describing the experiment correctly at the

transition from loading to unloading and for higher plastic strains. One way

to address this issue is the successive enrichment of the model with more pa-540

rameters [20]. One should take care of the risk of degeneracies. However, the

proposed method provides various tools for progressing along this challenging

path.
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