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ABSTRACT

Context. η Car is one of the most intriguing luminous blue variables in the Galaxy. Observations and models of the X-ray, ultraviolet, optical,
and infrared emission suggest a central binary in a highly eccentric orbit with a 5.54 yr period residing in its core. 2D and 3D radiative transfer
and hydrodynamic simulations predict a primary with a dense and slow stellar wind that interacts with the faster and lower density wind of the
secondary. The wind-wind collision scenario suggests that the secondary’s wind penetrates the primary’s wind creating a low-density cavity in it,
with dense walls where the two winds interact. However, the morphology of the cavity and its physical properties are not yet fully constrained.
Aims. We aim to trace the inner ∼5–50 au structure of η Car’s wind-wind interaction, as seen through Brγ and, for the first time, through the He i
2s-2p line.
Methods. We have used spectro-interferometric observations with the K-band beam-combiner GRAVITY at the VLTI. The analyses of the data
include (i) parametrical model-fitting to the interferometric observables, (ii) a CMFGEN model of the source’s spectrum, and (iii) interferometric
image reconstruction.
Results. Our geometrical modeling of the continuum data allows us to estimate its FWHM angular size close to 2 mas and an elongation ratio
ε = 1.06 ± 0.05 over a PA = 130◦ ± 20◦. Our CMFGEN modeling of the spectrum helped us to confirm that the role of the secondary should be
taken into account to properly reproduce the observed Brγ and He i lines. Chromatic images across the Brγ line reveal a southeast arc-like feature,
possibly associated to the hot post-shocked winds flowing along the cavity wall. The images of the He i 2s-2p line served to constrain the 20 mas
(∼ 50 au) structure of the line-emitting region. The observed morphology of He i suggests that the secondary is responsible for the ionized material
that produces the line profile. Both the Brγ and the He i 2s-2p maps are consistent with previous hydrodynamical models of the colliding wind
scenario. Future dedicated simulations together with an extensive interferometric campaign are necessary to refine our constraints on the wind and
stellar parameters of the binary, which finally will help us predict the evolutionary path of η Car.

Key words. Massive stars – LBV binaries – spectro-interferometry – image reconstruction – Eta Car

? GRAVITY is developed in a collaboration by the Max Planck Insti-
tute for Extraterrestrial Physics, LESIA of Paris Observatory and IPAG
of Université Grenoble Alpes / CNRS, the Max Planck Institute for As-
tronomy, the University of Cologne, the Centro Multidisciplinar de As-
trofisica Lisbon and Porto, and the European Southern Observatory.

1. Introduction

Massive stars are among the most important chemical facto-
ries of the interstellar medium (ISM). This is mainly because
their evolution and fate are highly affected by strong stellar
winds (vw ∼103 km s−1), high mass-loss rates (Ṁ ∼ 10−5–10−3

M� yr−1) and deaths as supernovae (SNe) (see, e.g., Conti &
Niemelä 1976; Langer et al. 1994; Meynet & Maeder 2003;
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Fig. 1. Homunculus Nebula and the binary orbit projected in the plane of the sky (left panel; Front view) and in a plane formed by the observer’s
LOS and the sky plane (right panel; Side view). The 3D Homunculus model was obtained from the online resources of Steffen et al. (2014).

Meynet et al. 2011). One of the evolutionary stages of high-mass
stars that exhibit sporadic but violent mass-loss episodes is the
luminous blue variable phase (LBV; Humphreys & Davidson
1994). The importance of LBVs to stellar evolution models re-
lies on the possibility of them to directly explode as SN without
being a Wolf-Rayet (WR) star (Smith 2007; Smith et al. 2011;
Trundle et al. 2008). Therefore, detailed studies of LBVs are cru-
cial to understand the mass-loss processes in high-mass stars (see
e.g., Pastorello et al. 2010; Smith et al. 2011).

The source, η Car, is one of the most intriguing LBVs in
the Galaxy. Located at the core of the Homunculus Nebula in
the Trumpler 16 cluster at a distance of 2.3 ± 0.1 kpc (Walborn
1973; Allen & Hillier 1993; Smith 2006), it has been identified
as a luminous (Ltot ≥ 5x106 L� Davidson & Humphreys 1997;
Smith et al. 2003) colliding-wind binary (Damineli et al. 1997;
Hillier et al. 2001; Damineli et al. 2008b,a; Corcoran et al. 2010)
in a highly eccentric orbit (e ∼ 0.9; Corcoran 2005) with a period
of 2022.7 ± 1.3 d (Damineli et al. 2008a).

The primary, ηA, is a very massive star with an estimated
M ∼ 100 M�, a mass-loss rate Ṁ ∼ 8.5 x 10−4 M� yr−1 and
a wind terminal speed v∞ ∼ 420 km s−1 (Hillier et al. 2001,
2006; Groh et al. 2012a,b). Evidence suggests that ηA is near
the Eddington limit (Conti 1984; Humphreys & Davidson 1994).
Therefore, it loses substantial mass in violent episodes such as
the “Great Eruption” where ∼15 M�, possibly more than 40 M�
(Gomez et al. 2010; Morris et al. 2017), were ejected over a
period of ∼10 yr. Mass-loss events dominate the evolutionary
tracks of the most massive stars (Langer 1998; Smith 2006). In
binary star systems, like η Car, the presence of a companion af-
fects wind-driven mass loss, providing alternative evolutionary
pathways compared to single stars. Therefore, understanding in
detail their mass-loss processes is particularly important.

The nature of the secondary, ηB, is even less constrained
since it has not been directly observed (it is, at least, of the order
of 100 times fainter than ηA; Weigelt et al. 2007) because it is
embedded in the dense wind of the primary. Models of the X-
ray emission (kT ∼ 4–5 keV) predict a wind terminal velocity

v∞ ∼ 3000 km s−1 , a mass-loss rate Ṁ ∼ 10−5 M� yr−1 (Pittard
& Corcoran 2002; Okazaki et al. 2008; Parkin et al. 2011), and
a Teff ∼ 36000–41000 K (Teodoro et al. 2008).

Models of the mutual motion of the stars suggest an inclina-
tion i ∼ 130–145◦, an argument of periastron ω ∼ 240–285◦, and
a sky projected PA ∼ 302–327◦ for the best-fit orbital solution
(Damineli et al. 1997; Okazaki et al. 2008; Parkin et al. 2009,
2011; Groh et al. 2010c; Gull et al. 2011; Madura & Groh 2012;
Madura et al. 2012; Teodoro et al. 2016). This suggests that the
orbital plane of the binary is almost perpendicular to the Ho-
munculus axis ( i ∼ 49◦ with respect to the sky plane; PA∼132◦;
Davidson et al. 2001; Smith 2006). These orbital parameters also
imply that the secondary remains in front of the primary (in the
line-of-sight -LOS- of the observer) most of the time during the
orbital motion, except close to the periastron, where ηB goes be-
hind ηA and it is obscured by the dense primary wind.

Figure 1 displays the inclination and PA of the Homunculus
Nebula and of the orbit of ηB around ηA, according to the orbital
solution reported by Teodoro et al. (2016). The left panel dis-
plays the nebula projected in the plane of the sky. The PA (east
to the north) of the semi-major axis is labeled in the image. The
right panel displays the position of the nebula and of the orbit of
the binary in a plane parallel to the observer’s line-of-sight and
the sky plane. The inclination angles (relative to the sky plane)
of the nebula (iHN) and of the binary’s orbital plane (iBinary) are
labeled.

The secondary, ηB, photoionizes part of the primary wind,
changing the strength of lines such as Hα, He i, [Fe ii], and [Ne
ii] (Hillier et al. 2001; Nielsen et al. 2007; Mehner et al. 2010,
2012; Madura et al. 2012; Davidson et al. 2015). Additionally, it
ionizes the inner 1” circumstellar ejecta (Weigelt & Ebersberger
1986; Hofmann & Weigelt 1988; Weigelt et al. 1995). 2D radia-
tive transfer models and 3D hydrodynamical simulations of the
wind-wind collision scenario suggest that the high-velocity sec-
ondary wind penetrates the slower and denser primary wind cre-
ating a low-density cavity in it, with thin and dense walls where
the two winds interact (Okazaki et al. 2008; Groh et al. 2012a;
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Madura et al. 2012, 2013; Clementel et al. 2015b,a). This wind-
wind collision scenario produces the shock-heated gas responsi-
ble for the X-ray variability, and the ionization effects observed
in the optical, infrared, and ultraviolet spectra.

Fig. 2. η Car’s u − v coverages obtained during the GRAVITY runs
in February 2016 (top) and May-June 2017 (bottom). Different quadru-
plets are indicated with different colors.

These aforementioned models also show that during the pe-
riastron passage (phase φ ∼ 0.98–1.02) the acceleration zone of
the post-shock wind of ηB is affected by ηA. The hot wind of ηB
pushes the primary wind outward and it ends up trapped inside
the cavity walls. The material in the walls is accelerated to veloc-
ities larger than ηA’s wind terminal velocity, creating a layer of
dense trapped primary wind. These layers have been observed as
concentric fossil wind arcs in [Fe ii] and [Ni ii] images at the in-
ner 1” obtained with the HST/STIS camera (Teodoro et al. 2013;
Gull et al. 2016).

To explain the wind-wind phenomenology at 2–10 mas (∼5–
25 au) scales, several attempts have been made to characterize
the core of η Car. Particularly, long-baseline infrared interfer-

ometry has been a decisive technique for such studies. Kervella
et al. (2002) and van Boekel et al. (2003) resolved an elongated
optically thick region using the K-band (2.0–2.4 µm) beam-
combiner VINCI (Kervella et al. 2000) at the Very Large Tele-
scope Interferometer (VLTI; Glindemann et al. 2003). Those au-
thors measured a size of 5–7 mas (11–15 au) for η Car’s core,
with a major to minor axis ratio ε = 1.25 ± 0.05, and a PA =
134 ± 7◦. Using a Non-Local Thermal Equilibrium (non-LTE)
model, a mass-loss rate of 1.6 ± 0.3 × 10−3 M� yr−1 was esti-
mated.

Follow-up observations (Weigelt et al. 2007) with the K-
band beam combiner VLTI-AMBER (Petrov et al. 2007) using
medium (R = 1500) and high (R = 12000) spectral resolutions of
the He i 2s-2p (2.0587 µm) and Brγ (2.1661 µm) lines, resolved
η Car’s wind structure at angular scales as small as ∼ 6 mas (∼ 13
au). These authors measured a (50% encircled energy) diameter
of 3.74–4.23 mas (8.6–9.7 au) for the continuum at 2.04 µm and
2.17 µm; a diameter of 9.6 mas (22.6 au) at the peak of the Brγ
line; and 6.5 mas (15.3 au) at the emission peak of the He i 2s-2p
line. They also confirmed the presence of an elongated optically
thick continuum core with a measured axis ratio ε = 1.18 ± 0.10
and a projected PA = 120◦± 15◦.

The observed non-zero differential phases and closure phases
indicate a complex extended structure across the emission lines.
To explain the Brγ-line profile and the signatures observed in the
differential and closure phases, Weigelt et al. (2007) developed
a “rugby-ball” model for an optically thick, latitude dependent
wind, which includes three components: (a) a continuum spheri-
cal component; (b) a spherical primary wind; (c) and a surround-
ing aspherical wind component inclined 41◦ from the observer’s
LOS.

New high-resolution AMBER observations in 2014 allowed
Weigelt et al. (2016) to reconstruct the first aperture-synthesis
images across the Brγ line. These images revealed an asymmet-
ric and elongated structure, particularly in the blue wing of the
line. At velocities between −140 and −380 km s−1, the intensity
distribution of the reconstructed maps shows a fan-shaped struc-
ture with an 8.0 mas (18.8 au) extension to the southeast and 5.8
mas (13.6 au) to the northwest. The symmetry axis of this elon-
gation is at a PA = 126◦, which coincides with that of the Ho-
munculus axis. This fan-shaped morphology is consistent with
the wind-wind collision cavity scenario described by Okazaki
et al. (2008), Madura et al. (2012, 2013), and Teodoro et al.
(2013, 2016), with the observed emission originating mainly
from the material flowing along the cavity in a LOS preferen-
tial toward the southeast wall.

Additionally to the wind-wind collision cavity, several
other wind structures were discovered in the images reported
by Weigelt et al. (2016). At velocities between −430 and
−340 km s−1, a bar-like feature appears to be located southwest
of the continuum. This bar has the same PA as the more ex-
tended fossil wind structure reported by Falcke et al. (1996) and
Gull et al. (2011, 2016), that may correspond to an equatorial
disk and/or toroidal material that obscures the primary star in
the LOS. At positive velocities, the emission appears not to be
as extended as in the blue-shifted part of the line. This may be
because we are looking at the back (red-shifted) part of the pri-
mary wind that is less extended because it is not as deformed by
the wind collision zone. Finally, the wind lacks any strong emis-
sion line features at velocities lower than −430 km s−1 or larger
than +400 km s−1.

This work presents VLTI-GRAVITY chromatic imaging of η
Car’s core across two spectral lines in the infrared K-band: He i
2s-2p and Brγ. The paper is outlined as follows: Sect. 2 presents
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Fig. 3. 2016 (blue straight line) and 2017 (black straight line) η Car normalized spectra in the 2.0–2.2 µm bandpass. The vertical red-dashed lines
indicate the spectral features identified in the spectrum.

our GRAVITY observations and data reduction. In Sect. 3 the
analyses of the interferometric observables, and the details of
the imaging procedure are described. In Sect. 4 our results are
discussed and, finally, in Sect. 5 the conclusions are presented.

2. Observations and Data reduction

2.1. Observations

The milliarcsecond resolution of GRAVITY (Eisenhauer et al.
2008, 2011; Gravity Collaboration et al. 2017) enables spec-
trally resolved interferometric imaging of the central wind re-
gion of η Car. At an apparent magnitude of mK = 0.94 mag, the
target is bright enough for observations with the 1.8-meter Aux-
iliary Telescopes (ATs). η Car was observed during the nights
of February 24th and 27th, 2016, as part of the commissioning
phase of the instrument, and during the nights of May 30th and
July 1st 2017, as part of the GRAVITY Guaranteed Time Ob-
servations (GTO). The observations were carried out using the
highest spectral resolution (R = 4000) of the GRAVITY beam
combiner, together with the split-polarization and single-field
modes of the instrument. With this configuration, GRAVITY
splits the incoming light of the science target equally between
the fringe tracker and science beam combiner to simultaneously
produce interference fringes in both. While the science beam
combiner disperses the light at the desired spectral resolution,
the fringe tracker works with a low-spectral resolution of R∼22
(Gillessen et al. 2010) but at a high temporal sampling (∼1 kHz).
This allows to correct for the atmospheric piston, and to stabilize
the fringes of the science beam combiner.

For the 2016 observations, ten data sets were recorded with
the A0-G1-J2-K0 array plus four more with the A0-G2-J2-J3
configuration. The u − v coverage obtained (Fig. 2) provides
a maximum projected baseline of ∼130 m (J2-A0) that corre-
sponds to a maximum angular resolution (θ=λ/2B; where B is
the maximum baseline) of θ = 1.75 mas, at a central wavelength
of λ0= 2.2 µm. The 2017 observations comprise three data sets
with the D0-B2-J3-K0 array plus seven data sets with the A0-
G1-J2-K0 array. For this second epoch the maximum baseline
length (J2-A0) was around 122 m (θ = 1.85 mas). However, since
most of the longest baselines for both imaging epochs are of 100

m, we adopted a mean maximum angular resolution θ = 2.26
mas for our imaging program. Tables A.1 and A.2 list individual
data sets and observing conditions.

2.2. Data reduction

The interferometric observables (squared visibilities, closure
phases, and differential phases) as well as the source’s spectrum
were obtained using versions 0.9.0 and 1.0.7 of the GRAVITY
data reduction software1 (Lapeyrere et al. 2014). More details on
the data reduction procedure are provided in Sanchez-Bermudez
et al. (2017). To calibrate the interferometric observables, inter-
leaved observations of the science target and a point-like source
were performed. We used the K3 II star HD 89682 (K-band Uni-
form Disk diameter dUD = 2.88 mas) as interferometric calibra-
tor for both epochs. Before analyzing the data, all the squared
visibility (V2) points with a signal-to-noise ratio (S/N) ≤ 5 and
closure phases with σcp ≥ 40◦ were excluded from the analysis.

2.3. Calibration of η Car’s integrated spectrum

For each one of the data sets, four samples of η Car’s inte-
grated spectrum were obtained with GRAVITY. The data reduc-
tion software delivers the spectrum flattened by the instrumen-
tal transfer function obtained from the Pixel to Visibility Matrix
(P2VM; Petrov et al. 2007). Additionally, GRAVITY uses the
internal calibration unit (Blind et al. 2014) to obtain the fiber
wavelength scale, producing a wavelength map with a precision
of ∆λ = 2 nm. Apart from this preliminary calibrations, we had
to correct the η Car spectrum for the atmospheric transfer func-
tion together with a more precise wavelength calibration. For this
purpose, we used the following method:

1. A weighted average science and calibrator spectra were com-
puted from the different samples obtained with GRAVITY.

2. To refine the wavelength calibration, we used a series of tel-
luric lines across the spectrum of our interferometric cali-
brator. A Gaussian was fitted to each one of the lines pro-
files recording their peak positions. The high-resolution (R

1 http://www.eso.org/sci/software/pipelines/gravity/gravity-pipe-
recipes.html
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Fig. 4. Normalized GRAVITY spectrum at the position of the He i 2s-2p and Brγ lines. The calibrated differential visibilities (middle) and phases
(bottom) of one of the GRAVITY data sets (MJD: 57903.9840) are also shown. In the middle and bottom panels, different colors correspond to
each one of the baselines in the data set (see label on the plots). The dashed-red vertical lines indicate the reference wavelength of the emission
feature, and the dashed-horizontal lines show the reference value of the continuum baseline.

= 40000) telluric spectrum at the Kitt Peak observatory was
then used as reference to re-calibrate the GRAVITY wave-
length map. For this, we first degraded the reference spec-
trum to the GRAVITY resolution and then, we identified a
mean wavelength shift of the calibrator’s tellurics from the
Kitt Peak ones. Finally, the GRAVITY wavelength map was
corrected. With this method, we reached a 1σ wavelength
calibration error relative to the reference spectrum of 1.23 Å
(∆ν = 16.8 km s−1 at λ0 = 2.2 µm) for the 2016 data, and
0.67 Å (∆ν = 9.1 km s−1) for the 2017 data, respectively. A
similar calibration method was used by Weigelt et al. (2007,
2016) on the previously reported η Car AMBER data .

3. Once the wavelength calibration was performed, we remove
the atmospheric transfer function from the η Car spectrum by
obtaining the ratio of the science target and of the interfero-
metric calibrator spectra. Since the interferometric calibrator,
HD 89682, is a K3 II star, we have to correct for its intrin-
sic photospheric lines (e.g., the CO bands seen in absorption
from 2.29 µm onward). For this purpose, we used a theoreti-
cal BT-Settl2 model (see Allard et al. 2012) of a star with a
Teff = 4200 K, a log(g) = 1.5, and Z= −0.5. Figure 3 displays
the normalized η Car spectrum with all the lines, between
2.0–2.2 µm, with interferometric signals different from the

2 http://svo2.cab.inta-csic.es/theory/newov2/

continuum labeled. Although the 2016 spectrum appears to
be slightly noisier than the 2017 one, no significant differ-
ences were found between the two GRAVITY epochs. This
work focuses on the interferometric imaging of η Car across
He i 2s-2p and Brγ. Figure 4 displays the normalized η Car
spectrum at these wavelengths, together with the differen-
tial visibilities and phases of one of our interferometric data
sets. Notice the strong changes of the observables between
the continuum and the lines.

2.4. Ancillary FEROS spectrum

To complement the analysis of the η Car GRAVITY spec-
trum, we obtained four optical high-resolution spectra of the
source using the Fiber-fed Extended Range Optical Spectro-
graph (FEROS; Kaufer & Pasquini 1998) at the MPG 2.2m tele-
scope at La Silla Observatory in Chile. FEROS covers the entire
optical spectral range from 3600 Å to 9200 Å and provides
a spectral resolution of R = 48 000. All spectra were obtained
using the object-sky mode where one of the two fibers is posi-
tioned on the target star and the other fiber is simultaneously fed
with the sky background. The exposure time was 15 s and 30 s
for every two spectra. The reduction and calibration of the raw
data were performed using the CERES pipeline (Brahm et al.
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Fig. 5. The left panels show the best-fit geometrical model to the Fringe Tracker V2 data. The model is plotted with a black line, the data are shown
with blue dots and the model parameters (with their uncertainties) are indicated on each panel. The right panels display the visibility points used
for each model fitting at two different position angles, PA⊥ = 40◦± 20◦ and PA‖ = 130◦± 20◦.

2017). Figure F.1 displays a normalized mean spectrum of the
four samples.

3. Data Analysis

3.1. Geometric model to the GRAVITY Fringe Tracker data

To obtain an angular measurement of the continuum size, a ge-
ometrical model was applied to the V2 Fringe Tracker data. The
model consists of two Gaussian disks with different angular sizes
tracing the compact and extended brightness distribution of the
source. The expression used to estimate the complex visibilities,
V(u, v), is the following one:

V(u, v) =
G(θ1, u, v) + F2/F1G(θ2, u, v)

1 + F2/F1
(1)

with

G(θ, u, v) = exp

−πθ√(u2 + v2)
4ln(2)

 , (2)

where F2/F1 is the flux ratio between the two Gaussian
disks, (u, v) are components of the spatial frequency sampled
per each observed visibility point (u=Bx/λ and v=By/λ), and θ is
the fitted full-width-at-half-maximum (FWHM) angular size for
each one of the components.

Since previous studies suggest an elongation of η Car’s core
along the projected PA of the Homunculus semi-major axis, we
applied our geometrical model to V2 at two orientations. To
cover PAs perpendicular and parallel to the semi-major axis of
the nebula, we used all the V2 points at PA⊥ = 40◦± 20◦ and
at PA‖ = 130◦± 20◦, respectively. The model optimization was
done using a dedicated Markov-Chain Monte-Carlo (MCMC)
routine based on the python software pymc (Patil et al. 2010). To
account for the standard deviations and correlations of the model
parameters, we explore the solution space over 10000 different
models, considering the first 5000 iterations as part of the burn-
in phase and accepting only one every three draws of the Monte
Carlo. Initial linear distributions were assumed for all the param-
eters. To avoid an underestimation of the error-bars, the waist of
the posterior Gaussian likelihood distribution was also marginal-
ized for each one of the fitted parameters. Figure 5 shows the
best-fit model and its uncertainties. Table 1 displays the best-fit
parameters of our geometrical model and Figure B.1 shows the
2D posterior distributions of the fitted parameters.

3.2. Image reconstruction of the Science Beam Combiner
data

3.2.1. Chromatic reconstruction: Brγ and He i

The high accuracy of the interferometric observables allows a
chromatic image reconstruction of η Car across the Brγ and He i
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Fig. 6. Brγ interferometric aperture synthesis images from the Feb. 2016 data. The Doppler velocity of each frame is labeled in the images. For all
the panels, east is to the left and north to the top. The displayed FOV corresponds to 36×36 mas. The small white ellipse shown in the lowermost-
left panel corresponds to the synthesized primary beam (the detailed PSF is shown in Fig. D.1). Above all the images, the GRAVITY spectrum is
shown and the different positions where the images are reconstructed across the line are labeled with a colored square, which is also plotted in the
images for an easy identification.

Table 1. Best-fit parameters of the geometrical model

PA Parameter Value 1-σ
40◦ ± 20◦ θ1 [mas] 2.09 0.03

θ2 [mas] 10.17 0.13
F2 / F1 1.00 0.02

130◦ ± 20◦ θ1 [mas] 2.21 0.09
θ2 [mas] 9.51 0.79
F2 / F1 1.19 0.15

2s-2p lines. For this purpose, we used SQUEEZE3 (Baron & Klop-
penborg 2010), an interferometry imaging software that allows
simultaneous fitting of the visibility amplitudes, squared visibili-
ties, closure phases, and chromatic differential phases (or combi-
nations of them). At infrared wavelengths, image reconstruction
from interferometric data is constrained mainly by the (i) sparse
baseline coverage and (ii) the lack of absolute phase informa-

3 https://github.com/fabienbaron/squeeze
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Fig. 7. He i interferometric aperture synthesis images from the Feb. 2016 data. The maps are as described in Figure 6.

tion. Therefore, SQUEEZE applies a regularized minimization of
the form:

xML = argmin
x

[1/2χ2(x) +

n∑
i

µiR(x)i] , (3)

where χ2(x) is the likelihood of our data to a given imaging
model, R(x)i are the (prior) regularization functions used and µi
the weighting factors that trade-off between the likelihood and
priors. For η Car, we used a combination of the following three
different SQUEEZE regularizers:

1. To avoid spurious point-like sources in the field-of-view
(FOV), we applied a spatial L0-norm.

2. To enhance the extended structure expected in some of the
mapped spectral channels, a Laplacian was used.

3. To ensure spectral continuity all over the mapped emission
lines, a spectral L2-norm was applied.

For the minimization, SQUEEZE uses a Simulated Annealing
Monte-Carlo algorithm as the engine for the reconstruction. We
created 15 chains with 250 iterations each to find the most proba-
ble image that best-fit our interferometric data. We used a 67×67
pixel grid with a scale of 0.6 mas/pixel. As initial point for the re-
construction, we chose a Gaussian with a FWHM of 2 mas cen-
tered in the pixel grid, and containing 50% of the total flux. We
simultaneously fitted the V2, closure phases, and wavelength-
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lines correspond to the differential quantities extracted from the unconvolved reconstructed images. The vertical red-dotted line marks the systemic
velocity of Brγ. The horizontal red-dotted lines show the continuum baselines.

differential phases. The differential phase is defined in SQUEEZE
of the following form:

φ(λi) = φ0(λi) − φref . (4)

where φ0(λi) is the measured phase at channel i, and φref is
the reference phase. The SQUEEZE implementation of φ(λi) uses
the REFMAP table, of the OI_VIS extension in the OIFITS v2
files (Pauls et al. 2005; Duvert et al. 2015), to determine which
channels are used to define the reference phase φref . In our case,
we defined φref as the average of the measured phases over the
full spectral bandpass used for the reconstruction, with exception
of the working channel itself, in the following way:

φref = 〈φ0(λk)〉λk,λi (5)

With this definition, the reference phase varies from chan-
nel to channel but avoids quadratic bias terms (a similar defi-
nition of φ(λi) has been used before to analyze AMBER data;
see e.g., Millour et al. 2006, 2007; Petrov et al. 2007). While
the V2 data measure the flux contribution at different spatial
scales and the closure phases the asymmetry of the source, the
wavelength-differential phases give information about the rela-
tive flux-centroid displacement between a given wavelength and
the reference one.

For Brγ, 35 channels between 2.160 µm and 2.171 µm were
imaged, while for He i, 34 channels between 2.054 µm and 2.063
µm were used. The final mean images were created through the
following procedure:

1. We ranked the converged chains, assigning the highest score
to the one with the global χ2 closest to unity. From the ranked
chains, we select the best five of them to create the final im-
ages.

2. To align the selected cubes of images to a common refer-
ence pixel position, a mean centroid position of the contin-
uum was estimated. For this purpose, the first and last five
channels of each cube of images were used. The individual
centroid positions were computed using a mask of 5 pixels
around the maxima of the images at every channel used as
continuum reference. Then, their mean value was computed.
All the images in the cube were shifted, with sub-pixel accu-
racy (∼ 0.1 pixels), from this mean centroid position to the
center of the image defined at position [34,34] in the pixel
grid.

3. From the aligned cubes, we compute a mean image per wave-
length. Finally, since most of the spatial frequencies in the
u − v coverages correspond to 100 m baselines, each image
was smoothed with a 2D Gaussian with a FWHM equivalent
to λ0 / 2Bmax = 2.26 mas.
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For both lines, reconstruction tests with the s- and p-
polarization data were done independently, however, no signif-
icant morphological changes were observed. The images here
presented correspond to the p-polarization data. Figures 6 and 7
show the mean-reconstructed 2016 Brγ and He i images, respec-
tively. The 2017 images are shown in Figures D.1 and D.2 in
the Appendix. To inspect the quality of the reconstruction, Fig-
ures between E.1 and E.8 in the Appendix E display the V2 and
closure phases from the recovered images together with the data.

3.2.2. Effects of the u − v coverage on the reconstructed
images

Due to the interacting winds of the eccentric binary at the core
of η Car, we expect changes in the spatial distribution of the flux
at different orbital phases. This condition could explain the dif-
ferences in the observed morphologies between our two imag-
ing epochs. However, while the u − v coverage of the 2016 data
is homogeneous, the 2017 u − v coverage is more sparse. The
sparseness of the 2017 u − v coverage was caused, partially, be-
cause the target was observable above 35◦ over the horizon only
for a few hours at the beginning of the night.

Therefore, the long baselines of our interferometric array
could not properly sample north-south orientations of the u −
v space. This sparseness in the u − v coverage produced a
clumpy fine structure and a cross-like shape, superimposed on
the source’s emission, on the reconstructed images. This cross-
like structure is caused by the strong secondary lobes and the
elongation of the primary beam (see Fig. C.1). This effect could
mimic or mask real changes in the morphology associated with
the physics of the wind-wind interactions with the synthesized
beam and/or artifacts in the reconstruction process.

To detect the morphological changes between two epochs as-
sociated to the physical conditions of the source and not caused
by the u− v coverage, we searched for coincidental baselines (in
size and position angle) at both epochs, to compare the differen-
tial phases and visibilities between them. This test allows us to
monitor the flux centroid evolution between the continuum and
the lines together with the changes observed in the flux distribu-
tion. Three baselines, tracing the small, intermediate and large
angular scales were selected. Additionally, we compute the dif-
ferential observables from the reconstructed images to monitor
the goodness of the images recovering the possible morphologi-
cal changes.

Figure 8 displays, as an example, the results of this compari-
son for Brγ. For the short (θ = 5.7 mas; 13.4 au) and intermediate
(θ = 3.8 mas; 8.4 au) baselines, the overall signatures of the cen-
troid and of the flux distribution are similar at both epochs, with
more prominent centroid changes at blue-shifted velocities than
at the red-shifted side. The long (θ =1.9 mas; 4.46 au) baseline
shows more drastic differences at blue-shifted velocities between
the two epochs. For example, while the differential phases of the
2017 data exhibit an upside-down double-peak profile at veloc-
ities between −420 km s−1 and −170 km s−1, the 2016 shows a
single and less prominent peak.

These changes in the observables for coincidental baselines
provide evidence of modifications in the brightness distribution
between the two epochs. However, despite the good fit of the
2017 images to the observables (see Figs. E.3, E.4, E.7, and
E.8), it is clear that the sparse u − v coverage of the second
epoch strongly detriments the quality of the reconstructed im-
ages. Therefore, they cannot be used for a proper (direct) com-
parison of the global morphology observed in the 2016 data.

Thus, the 2017 images were excluded for the following analy-
sis and discussion.

4. Discussion
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Fig. 9. Lower panel: GRAVITY spectrum from 2.0 µm to 2.2 µm (blue-
solid line) with a vertical scale that displays the complete line profiles.
Upper panel: magnification of the GRAVITY spectrum, where the fine
details of our best-fit CMFGEN model (red-dashed line) and of the ref-
erence spectrum derived with the stellar parameters from Groh et al.
(2012a) (black-dashed line) are appreciated. Notice that the He i 2s-2p
and He i 3p-4s are only matched by our hotter red model.

4.1. Spectroscopic analysis of η Car’s primary wind

To characterize the properties of ηA’s wind, we fitted the inte-
grated spectrum of our GRAVITY observations (Sect. 2.3) with
model spectra. The synthetic spectra were computed with the 1D
spherical non-LTE stellar atmosphere and radiative transfer code
CMFGEN (Hillier & Miller 1998). Our atomic model includes a
large number of ionization stages to cover a wide temperature
range in our stellar atmosphere grid without changing the atomic
model. The following ions were taken into account: H i, He i-ii,
C i-iv, N i-iv, O i-iv, Ne i-iv, Na i-iv, Mg i-iv, Ca i-iv, Al i-iv, Si i-
iv, P ii-v, S i-v, Ar i-iv, Fe i-v, and Ni ii-v; and the metallicity was
set to solar according to Asplund et al. (2005). For comparison,
we computed a reference spectrum with the stellar parameters
derived by Groh et al. (2012a) for the primary, which in turn is
based on previous estimates by Hillier et al. (2001, 2006). The
terminal velocity (3∞), beta-type velocity law (β) and volume-
filling factor ( fv) were taken from Groh et al. (2012a) and were
not varied for the grid computation. The luminosity was scaled
to match the K-band flux of the reference spectrum. The stellar
parameters of our best-fit model and the reference spectrum are
listed in Table 2.

While our best-fit model reproduces the spectral lines in the
GRAVITY spectrum between 2.0 µm and 2.2 µm, the reference
spectrum fails to reproduce the He i lines (Figure 9). Our best-fit
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Fig. 10. CMFGEN normalized line equivalent width (EW) as a function
of radius for our best-fit model and the reference one. Top and bottom
panels: line-forming region as a function of radius for He i 2s-2p and
Brγ, respectively. The red/blue dotted line corresponds the location of
the ηA’s photosphere. The black-solid line indicates the spatial resolu-
tion limit of GRAVITY and the black-dashed line shows the projected
position of ηB at apastron, according with the mean orbital solution pre-
sented by Teodoro et al. (2016).

model is about 4 000 K hotter than the reference spectrum, but
the mass-loss rate is decreased by a factor of two. There is a large
debate in the literature whether ηA’s mass-loss rate has decreased
by a factor between two to four over the last two decades (see
e.g., Corcoran et al. 2010; Mehner et al. 2010, 2012, 2014).
This could explain the change in the mass-loss estimate from the
2000 HST data used by Groh et al. (2012a) and our 2016–2017
GRAVITY observations, but not the increased temperature.

However, this scenario is not fully consistent with all the
observational evidence and theoretical predictions. The hydro-
dynamic simulations of the wind-wind collision zone, created
by Madura et al. (2013), suggest that, instead of an extreme de-
crease of the ηA mass-loss rate, changes in η Car’s ultra-violet,
optical, and X-ray light curves, as well as of the spectral fea-
tures, are due to slight changes in the wind-wind collision cav-
ity opening angle in combination with a moderate change in the
mass-loss rate.

Moreover, when comparing our CMFGEN model with our
complementary FEROS optical spectrum (λ4 200–7 100 Å), we

noticed that it is not able to reproduce the metallic [Fe ii] and
Si ii lines, while the cooler Groh model reproduces them (see
Fig. F.1). Similar behavior is observed for other previous models
that include low primary mass-loss rates close to ∼10−4 M� yr−1

(see e.g., Fig. 12 in Madura et al. 2013). This speaks against the
strong decrement in the mass-loss rate obtained by our CMFGEN
model, and highlights that ηB plays a major role in the formation
of the observed lines in the GRAVITY spectrum. The effects of
the secondary and the wind-wind collision zone on the formation
of Brγ and He i cannot be reflected by our 1D non-LTE single
star model. Nevertheless, they can be investigated with aperture-
synthesis images.

For a better understanding of the system’s geometry and how
ηB could change the parameters derived by our CMFGEN model,
we show in Fig.10 the line-forming regions of our best-fit model
and of the reference one as a function of radius for He i 2s-2p
(top panel) and Brγ (lower panel). The vertical black lines indi-
cate the following reference points: (a) the red-dotted line shows
the location of photosphere of ηA, which is not equal to the hy-
drostatic radius (because of its optically thick wind) but to the
point where the optical depth τ = 2/3; (b) the black-solid line
shows the mean angular resolution limit of the GRAVITY ob-
servations (∼ 2 mas); (c) and the black-dashed line marks the
expected projected position of ηB at the time of apastron.

With our CMFGEN model, the wind of ηA could form the peak
of the Brγ emission only at 3 mas (7 au), which is clearly closer
than the extended emission observed in the reconstructed im-
ages. Furthermore, it can be seen that, with a single star, the
peak of the He i 2s-2p line is formed at an angular scale close
the resolution of our observations (in the reference model, the
He i line-formation region is at a scale smaller than the resolu-
tion of GRAVITY). Therefore, the extended emission in the He i
2s-2p images should be related to the UV ionization of ηB on the
wind-wind collision zone. Any modification to He i as a conse-
quence of the wind-wind interaction would require that (i) ηB’s
wind penetrates deeply into the denser regions of the primary
wind and/or (ii) that ηB ionizes part of the pre- and post-shock
primary wind near the apex of the wind-wind collision zone. In
this scenario, it is expected that the modification of the ionization
structure caused by the secondary largely changes the intensity
of Helium and Hydrogen lines depending on the orbital phase,
particularly at periastron (see e.g., Groh et al. 2010a; Richardson
et al. 2015, 2016).

We do not detect any significant differences in the line pro-
files between the 2016 and 2017 GRAVITY spectra. However,
when comparing the 2016 GRAVITY data and the 2004 AM-
BER data reported by Weigelt et al. (2007) (both of them ob-
tained at a similar orbital phase), we noticed that the He i 2s-2p
shows the P-Cygni profile, but the amplitudes of the valley and
peak are different for both data sets. This observation suggests
the presence of a dynamical wind-wind collision environment
with possible changes in the wind parameters over time (see e.g.,
Fig. 3 in Richardson et al. 2016, where the P-Cygni profile of
He i λ5876 is observed close to several periastron passages but
the profile of the line varies with time even for similar phases).
Therefore, this highlights the importance of monitoring the lines’
morphological changes through the reconstructed interferomet-
ric images.

4.2. The size of η Car’s continuum emission

The observed quiescent continuum emission in η Car is caused
by extended free-free and bound-free emission (Hillier et al.
2001), and it traces the dense, optically thick primary wind.
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Table 2. Stellar parameters of the CMFGEN models.

Parameter Groh et al. (2012) This work
Teff 9.4 kK 13.5 kK

log(L/L�)a 6.7 7.1
Yb 0.55% 0.50%

log(Ṁ/M�/year) −3.1 −3.4
βc 1.0 1.0
f d
v 0.1 0.1
3e∞ 420 km s−1 420 km s−1

a log(L/L�) is scaled to match the K-Band flux
b Helium abundance in mass fraction
c Exponent of the wind-velocity law
d Volume filling factor
e Stellar wind’s terminal velocity

* Note: β, fv, and 3∞ were fixed parameters in our grid of models. The
used values were taken from Groh et al. (2012a)

From our geometrical model to the Fringe Tracker data, we esti-
mated that ∼50% of the K-band total flux corresponds to θFWHM
= 2 mas (∼ 5 au) core (compact emission), with the rest of the
flux arising from a surrounding halo of at least θFWHM = 10 mas
(∼ 24 au; see Table 1). The size derived for the continuum ηA
wind is consistent with the size of the extended primary photo-
sphere, according with our CMFGEN model and previous spectro-
scopic and interferometric estimates (Hillier et al. 2001, 2006;
Kervella et al. 2002; van Boekel et al. 2003; Weigelt et al. 2007,
2016).

Previous interferometric studies suggested an elongated con-
tinuum primary wind along the PA of the Homunculus. From
our data modeling, we derived an elongation ratio of ε = 1.06 ±
0.05, a value that is consistent with the most recent interferomet-
ric measurements with AMBER, but it is 4-σ smaller than the
first VINCI estimate in 2003 (see Table. 3). It has been hypoth-
esized that the origin of this elongation could be (i) a latitude-
dependent wind caused by a rapid rotation of the primary and/or
(ii) a consequence of the wind-wind collision cavity. For exam-
ple, Mehner et al. (2014) suggest that the angular momentum
transfer between ηA and ηB at periastron could be affected by
tidal acceleration, resulting in a change of the rotation period of
ηA, which in turn may affect the shape of the continuum emis-
sion.

Additionally, Groh et al. (2010b) used radiative transfer
models applied to the VINCI and AMBER data to explore the
changes in the continuum associated with modifications in the
rotational velocity and with a “bore-hole” effect due to the pres-
ence of the wind-wind collision zone. These authors found that
both prolate or oblate rotational models reproduce the interfero-
metric signatures. Nevertheless, those models required large in-
clination angles in which ηA’s rotational axis is not aligned with
that of the Homunculus. Inclinations where the rotational axis is
aligned with the Homunculus would require a decrement in the
rotational velocity (and of the size) of ηA with time. However, the
cavity could also mimic the effects of the observed elongation.
Therefore, new radiative transfer models of interferometric data
(including GRAVITY and other wavelengths like PIONIER in
the H−band) are necessary to test these scenarios. Such models
are beyond the scope of the present work and are left for future
analysis.

Fig. 11. Schematic of η Car’s wind-wind collision scenario reported by
Madura et al. (2013). The wind-wind collision cavity carved by the sec-
ondary (green star) in the primary wind is depicted, with the different
elements of the primary (blue star) and secondary winds labeled. No-
tice how the LOS lies preferentially toward the lower cavity wall. The
angular scales (centered around ηA) traced with the shortest baselines
of the GRAVITY (∼40 m) and AMBER (∼10 m) data are shown with a
yellow-dashed and red-dotted rectangles, respectively.

4.3. The Brγ interferometric images in the context of the η
Car wind-wind collision cavity

Our 2016 GRAVITY Brγ aperture-synthesis images reveal the
morphology of η Car’s wind-wind collision cavity. Here, we dis-
cuss the principal wind components and their interpretation with
previous theoretical models and simulations. The Brγ maps re-
veal the following general structure as function of the radial ve-
locity:

(1) Continuum wind region. For radial velocities smaller
than −510 km s−1 and larger than +368 km s−1, the maps show a
compact emission where the optically thick continuum wind re-
gion is dominant. For velocities between −510 km s−1 and +368
km s−1, additional wind components are observed in the images,
however, the continuum emission is always present.

(2) Wind-wind collision region. 3D smoothed particle hydro-
dynamic models (Okazaki et al. 2008; Gull et al. 2009; Madura
et al. 2012, 2013; Teodoro et al. 2013, 2016) of η Car’s wind-
wind interaction suggest a density distribution that extends far
beyond the size of the primary wind. This wind-wind collision
zone is identified with a cavity created by the fast wind of ηB
that penetrates deep into the dense but slow wind of ηA as the
secondary changes its orbital phase. Following the orbital solu-
tion of Teodoro et al. (2016) presented in Fig. 1, ηB was close
to apastron (in front of ηA) at the time of our GRAVITY obser-
vations. Figure 11 displays a schematic view of this wind-wind
scenario according to Madura et al. (2013). The diagram repre-
sents the position of the system at apastron in a plane defined by
the LOS and the sky plane (i.e., called the xz plane in Madura
et al. 2013). The cavity opens with a LOS oriented preferably
toward the southern wall, along its walls the hot (T ∼ 106 K)
post-shock ηB wind is moving, and, in between, the cold (T ∼
104 K) pre-shock ηB wind is observed.

In the Brγ GRAVITY images at radial velocities > −364
km s−1, we observe an extended asymmetric emission increas-
ing in size and brightness as we approach the systemic veloc-
ity, and then it decreases toward positive ones. At velocities be-
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Table 3. Values of η Car’s continuum elongation ratio from different interferometric observations

Reference Instrument Elongation ratio PA
van Boekel et al. (2003) VINCI 1.25 ± 0.05 134◦± 7◦

Weigelt et al. (2007) AMBER 1.18 ± 0.10 120◦± 15◦
Weigelt et al. (2016) AMBER 1.07 ± 0.14 159◦± 47◦

This work GRAVITY 1.06 ± 0.05 130◦± 20◦

Fig. 12. Upper-middle panel: projected orbit of ηB around ηA, with the position of the periastron, apastron, and two imaging epochs labeled on
it. Upper-right panel: AMBER map at −277 km s−1, where the fan-shaped SE morphology is observed at φ ∼ 0.91. Upper-left panel: GRAVITY
image at −291 km s−1, the SE arc-like feature is observed at φ ∼ 1.28. The FOV of the images is of 36 mas, and they are oriented with the east
pointing toward the left and the north toward the top of frames. Lowermost panels: three orbital phases, φ=0.5 (lower-left), φ=1.0 (lower-middle)
and φ=1.1 (lower-right), of the wind-wind collision model created by Madura et al. (2013). The panels show the structure of the wind-wind cavity
in the orbital plane. The red lines indicate the contour where the density is 10−16 g/cm3 and they highlight the changes in the leading and trailing
arms of the wind-wind cavity. The positions of the primary and secondary for each phase are marked on the panels with blue and green dots,
respectively. The green, magenta, and yellow areas trace the hot (T ∼ 106 - 108 K) post-shock secondary wind bordering the cavity shells. The
vector of the observer’s line-of-sight is labeled on each panel, and it corresponds to ω =243◦ and Ω =47◦. The principal components of the wind-
wind cavity are also indicated in the panels. The lowermost panels were taken from Madura et al. (2013) and adapted to the discussion presented
in Sect. 4.3.

tween −364 km s−1 and −71 km s−1, the wind-wind collision
cavity presents an elongated and asymmetric cone-like mor-
phology with a bright arc-like feature in the southeast direc-
tion. The extended and bright southeast asymmetric emission
was first observed in the AMBER images reported by Weigelt
et al. (2016). In particular, for velocities between −140 km s−1

and −380 km s−1, those authors identified a SE fan-shaped mor-
phology. However, there are some changes between the AMBER
images and the maps recovered with GRAVITY. We infer that
some of those changes are associated with the dynamics of the

wind-wind collision zone (i.e., different orbital phases), how-
ever, some others are caused by the different spatial frequencies
sampled with the two observations.

The majority of the longest baselines of the AMBER data are
of 80 m, which limits the angular resolution up to λ /2Bmax = 3
mas, in contrast our GRAVITY data provide a mean maximum
angular resolution of 2.26 mas. However, the AMBER data in-
clude a better sampling of low spatial frequencies with baselines
as small as 10 m. In this respect, our GRAVITY data present a
clear limitation since most of our short baselines are above 40
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m. Those constraints allowed us to recover images of the small-
scale structure of η Car, at the cost of restricting the imaging
capabilities to map the most extended emission observed in the
AMBER images.

Madura et al. (2013) suggested that the time-dependent
changes in the spectral lines are a consequence of changes in
the line-of-sight morphology of the wind-wind collision cavity.
Their hydrodynamical simulations predict that, at apastron, the
cavity maintains an axisymmetric conical shape with the lead-
ing and trailing arms clearly visible in the orbital plane 4. The
half-opening angle of the cavity depends on the ratio of the wind
momenta, which can be expressed in terms of mass-loss rate and
wind velocity (β = ṀηAνηA/ṀηBνηB ), of the two interacting stars.
Therefore, any modification to the mass-loss rates and/or wind
velocities would change the opening angle of the cavity. For ex-
ample, ṀηA = 8.5×10−4 M� yr−1 would produce a half-opening
angle close to 55◦. On the other hand, ṀηA = 1.6×10−4 M� yr−1

would create a half-opening angle close to 80◦.
As ηB moves from apastron (lower-left panel in Fig. 12) to-

ward the periastron, the wind-wind cavity is distorted, creat-
ing a spiral (lower-middle panel in Fig. 12). Interesting is the
phenomenology after the periastron passage, where the leading
arm of the cavity collides with the “old” trailing arm, forming
a dense, cold, and compressed “shell” of ηA’s wind (lower-right
panel in Fig. 12). Since the secondary wind is providing pres-
sure from the direction of the binary, but because of the very
high velocity, the shell is expanding outward through the low-
density region on the far (apastron) side, the expansion veloc-
ity could reach values larger than the terminal velocity of ηA’s
wind (ν∞=420 km s−1). The stability and size of the compressed
ηA shells are also dependent on the adopted ṀηA . Bordering the
compressed shell of primary wind, there is the hot post-shock
ηB wind. Due to the increment of orbital speed of ηB as it ap-
proaches the periastron, the post-shock ηB wind is heated to
higher temperatures ( T ∼ 106 K) than the gas in the trailing
arm (T ∼ 104 K), producing an asymmetric hot shock. After the
periastron, photo-ablation of the post shock ηA wind could stop
the ηB wind from heating the primary wind, enhancing the asym-
metric temperature in the inter-cavity between the secondary and
(bordering) the compressed shell of primary wind.

In this framework, the 2016 GRAVITY images reveal the
structure of the cavity at an orbital phase φ ∼ 1.35 (upper-left
panel in Figure 12), where the arc-like feature could be inter-
preted as the inner-most hot post-shock gas flowing along the
cavity walls that border the compressed ηA wind shell in our line-
of-sight. The fact that we observe material preferentially along
the SE cavity walls, suggests that the half-opening angle is quite
similar to the inclination angle of the system.

Madura et al. (2013) shows detailed model snap-shots that
illustrate the dependence of the opening angle on the mass-loss
rate. However, a straight-forward estimate following the two-
wind interaction solution of Canto et al. (1996), keeping constant
the secondary mass-loss rate and wind velocities, suggests that a
primary mass-loss rate between 5.8 × 10−4 and 1.2 × 10−3 M�
yr−1 is necessary to produce a half-opening angle in the cavity of
40◦–60◦. Smaller mass-loss rates would produce bigger angles,
which would prevent the wall of the wind-wind collision cavity
4 For a complete description of the changes in the wind-wind collision
cavity and their 3D orientation at scales relevant to the interferometric
images, we refer the reader to Fig. 1, 2, B1, B2, B3 and B4 in Madura
et al. (2013).
5 Here, we adopted the 2009 periastron passage, T0 =2454851.7 JD,
as reference for the orbital phases labeled on the reconstructed images
and diagrams of the wind-wind cavity structure.

from intercepting the LOS. The orientation of the extended emis-
sion is also consistent with a prograde motion of the secondary
(i.e., i > 90◦, ω > 180◦), with a leading arm projected motion
from east to west.

Our analysis of the Brγ arc-like feature’s peak in the 2016
images suggests that not all the material is moving at the same
speed, Figure 13 displays the centroid position (flux centroid of
the 90% emission peak) of the arc-like feature versus radial ve-
locity. As it is observed, the centroid distribution varies between
3.0 and 4.0 mas (7 to 9 au) and between −1.5 and −3.0 mas (3.5
to 7 au) in R.A. and Dec., respectively. This indicates that the
observed material has a clumpy structure that is not expanding
at the same speed. It is also consistent with the hydrodynamic
simulations which suggest that the stability of the shells depends
on the shock thickness and that fragmentation begins later the
higher the value of the primary’s mass-loss rate.

Furthermore, it also provides a plausible explanation for
the structures observed in the 2014 AMBER images (Weigelt
et al. 2016), which correspond to a later orbital phase previous
to the periastron passage (upper-right panel in Fig. 12), where
the shells are disrupted and the hot ηB wind has already mixed
with some portions of the compressed ηA wind. In this scenario
the bar, observed in the AMBER data between −414 and −352
km s−1, could be part of the highest velocity component of the
hot gas around the distorted shell, while the two antennas of the
fan-like structure (from −339 to −227 km s−1) could trace por-
tions of the shell that are not yet fragmented. The SE extended
emission at lower negative velocities could be interpreted as part
of the material bordering the disrupted shell. The observed ex-
tended SW emission at positive velocities could be identified as
the material flowing along the leading arm’s wall which is mov-
ing away from the observer at the orbital phase of the AMBER
images.

This scenario agrees with observations of the fossil shells on
larger spatial scales. Teodoro et al. (2013) observed three pro-
gressive shells using HST [Fe ii] and [Ni ii] spectroimages. Since
the emission of the forbidden lines is optically thin, the observed
shells in the [Fe ii] and [Ni ii] images support a future radio map-
ping with ALMA in Hα lines at an angular resolution better than
0.1” to properly constrain their emmitting regions. The positions
of the arcs are consistent with the SE extended emission ob-
served in the interferometric images, but the HST arcs extend
up to 0.5”. Those authors derived a time difference between the
arcs of the order of the orbital period (∼5.54 years), suggesting
that each one was created during a periastron passage. Assuming
a constant shell velocity, Teodoro et al. (2013) derived a travel-
ing speed of the fossil shells of +475 km s−1, with the closest arc
to ηA located, in projection, at ∼0.1” (235 au). Notice that the
innermost arc presented in Fig. 2 of Teodoro et al. (2013) resem-
bles the fan-like structure observed in the AMBER images.

It is important to highlight that, while the HST images are
tracing the compressed ηA wind in the fossil shells, our Brγ im-
ages are tracing the hot gas, bordering them, along the cavity
walls. A monitoring of the arc-like features with GRAVITY (us-
ing short baselines) will be fundamental to characterize the pri-
mary’s mass-los rate and the effect of ηB over the primary wind
shells over future orbital phases.

4.4. Ionization effect of ηB’s wind observed through the He i
2s-2p line

Helium lines are one of the most intriguing spectral features
in η Car’s spectrum. For example, the discovery of the binary
was in part based on spectroscopic variations of the H-band
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Fig. 13. The image displays the centroid position of the 2016 arc-like feature vs velocity. Left panel: centroid changes in R.A vs velocity. Middle
panel: centroid changes in Dec. vs velocity. Right panel: 2D centroid position relative to the ηA’s continuum marked at origin with a blue star.

Fig. 14. Different He ionized regions: He0+ (blue), He+ (purple), He2+

(yellow). The sketch is oriented in a plane parallel to the line-of-sight
and the sky plane. Different regions in the wind-wind collision scenario
are labeled. Region 1 represents the He0+ zone in the primary wind.
Region 2 shows the hot post-shock secondary wind composed by He2+.
Regions 3, 4, 5, and 6 correspond to the zones composed by He+ in
the primary and secondary winds. Region 7 displays the borders of the
cavity walls.

He i lines (Damineli 1996; Damineli et al. 1997). Since then,
several authors have studied the variations in the helium pro-
files as a consequence of a binary signature (Groh & Damineli
2004; Nielsen et al. 2007; Humphreys et al. 2008; Damineli et al.
2008b; Mehner et al. 2010, 2012). The different CMFGEN models
support that the helium lines could be originated in the densest
wind of ηA. Depending on the Ṁ used, the line-emitting region
could be extended from a few au to several hundred au (Hillier
et al. 2001, 2006; Groh et al. 2012a, see also Sec.,4.1).

However, these models do not fully reproduce the observed
evolution of the He i lines without considering the role of ηB
(see e.g., Nielsen et al. 2007; Damineli et al. 2008b). It is still
not clear where and how the Helium lines are formed in the
wind-wind collision scenario. Humphreys et al. (2008), based on
HST observations, suggested that the He i lines originate at spa-
tial scales smaller than 100–200 au (∼40–80 mas), but still the
structure of the line-formation region was not indicated. The re-
cent 3D hydrodynamic simulations of Clementel et al. (2015b,a)
presented maps of the different ionization regions (He0+, He+,

He2+) at the innermost 155 au of η Car’s core. These simulations
take into account the ionization structure of ηA’s wind and the
effect of ηB’s wind on the collision region for the three different
mass-loss rates studied in Madura et al. (2013). These models
show that there are several regions composed by He+ that might
be responsible for the changes observed in the He i profiles.

The GRAVITY observations presented in this study allowed
us to obtain the first milliarcsecond resolution images of the in-
ner 20 mas (50 au) He i 2s-2p line-emitting region. In contrast to
Brγ, which is observed purely in emission, He i 2s-2p shows a
P-Cygni profile with the absorption side blue-shifted. This pro-
file is similar to the helium lines observed at other wavelengths
(see e.g., Nielsen et al. 2007). In our images, at velocities be-
tween −403 and −326 km s−1, which correspond to the valley of
the line, the extended emission is brighter than at other wave-
lengths. As we move from the valley to the peak of the line,
the brightness of the extended emission decreases, slightly in-
creasing again at velocities around the line’s peak (between −95
and −18 km s−1). At the red-shifted velocities, the continuum is
dominant and the extended component is marginally observed at
low-velocities. At the valley of the line, the 2016 images show an
elongated emission that is oriented at a PA ∼ 130◦ and it extends
on both sides of the continuum, with the southeast side slightly
more extended.

To compare the morphological changes observed in the im-
ages with the model developed by Clementel et al. (2015a,b),
we use an adapted version of the helium distribution presented
in Fig. 8 by Clementel et al. (2015b). The schematic diagram, in
Fig. 14 displays the distribution of helium, in the inner 155 au of
η Car. Region 1 corresponds to the zone in the primary wind that
is composed mostly by He0+. Region 2 shows the hot post-shock
ηB’s wind composed mostly by fully ionized He2+. Regions 3, 4,
5, and 6 correspond to the zones composed by He+ and region 7
displays the borders of the cavity walls where compressed post-
shock ηA’s wind is found.

From the distribution of He+, four main regions are observed
at different morphological scales. The first of them (region 3)
corresponds to the pre-shock primary wind that is partially ion-
ized only by ηA. The second zone (region 4) is created by the
He0+-ionizing photons from ηB’s wind that penetrate the pre-
shock primary wind. This region varies in size, being more com-
pact along the azimuthal plane than in the orbital one. Clementel
et al. (2015b) argued as possible cause for these differences the
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less turbulent nature of the wind-wind interaction region in the
azimuthal plane. Region 5 shows the He+, of the post-shock
wind of ηA, trapped in the walls of the cavity. Finally, region
6 displays the section of the pre-shock ηB wind with He+. It is
important to highlight that regions 3, 4, and 5 are expected to be
around three orders of magnitude denser than region 6.

The fact that we observe the absorption side of the He i 2s-2p
blue-shifted implies that it is formed by material in front of ηA.
It means that regions 4, 5, and 6 are in the LOS. Therefore, the
He i 2s-2p structure observed in the GRAVITY images is formed
by the different contribution of those regions. By analyzing the
images, we hypothesized that the elongated structure, at velocity
channels near the valley of the line, appears to be formed by the
emission coming mainly from regions 4 and 5. This idea is con-
sistent with the flow of the He+ pre-shock primary wind, coming
toward us at a velocity of ∼ −400 km s−1, near the apex of the
wind-wind collision zone.

This effect could explain why we observe the most promi-
nent emission at large velocity channels between −403 and −326
km s−1. Given the PA of the observer’s LOS and the orbital plane,
we expect to observe emission coming from region 4 at the top
and bottom of the continuum. This scenario is also consistent
with the emission observed in the GRAVITY images. Since the
system near apastron is preferentially oriented toward the mate-
rial in region 4 that borders the lower wall of the cavity, we also
expect to observe an asymmetric emission as the one detected in
the images.

As we move toward the systemic velocity of the line, we
notice that the extended emission decreases in brightness and
size, but it increases again at velocity channels near the emis-
sion peak. We suspect that this effect is caused by the material
in region 5. The post-shock primary wind in the thin walls of the
cavity experiences a turbulent environment, particularly at the
apex, that causes some of the material to have zero or positive
radial velocities. Notice, however, that for velocities larger than
+98 km s−1, the main source of the emission is within the size
of the primary beam. This suggests that the origin of large red-
shifted velocities is the pre-shock ionized wind from ηA (region
3). Hence, similar to Brγ, the observed spatial distribution of
He i is in agreement with Clementel et al. (2015a) models with
ṀηA close to 10−3M� yr−1. However, future, new hydrodynamic
models of the He i 2s-2p line in addition to a GRAVITY mon-
itoring of the line’s morphology are necessary to provide solid
constraints on the mass-loss rate of the system.

5. Conclusions

– We present GRAVITY interferometric data of η Car’s core.
Our observations trace the inner 20 mas (50 au) of the source
at a resolution of 2.26 mas. The spectro-interferometric capa-
bilities of GRAVITY allowed us to chromatically image Brγ
and He i 2s-2p emission regions with a spectral resolution of
R = 4000, while the analysis of the Fringe Tracker data al-
lowed us to measure the size of the continuum emission, and
the integrated spectrum to characterize the parameters of the
primary star.

– From our geometrical model of the Fringe Tracker squared
visibilities, we constrained the size of the continuum emis-
sion. We derived a mean FWHM angular scale of 2 mas (∼
5 au) and an elongation ratio ε = 1.06 ± 0.5 for the com-
pact continuum emission of ηA, together with an extended
over-resolved emission with an angular size of at least 10
mas. These estimates are in agreement with previous inter-
ferometric measurements. Some of the plausible hypotheses

to explain the observed elongation of the continuum compact
emission are the fast rotation of the primary and/or the effect
of the wind-wind collision cavity. A future monitoring of the
continuum size and elongation with GRAVITY and other in-
terferometric facilities at different wavelengths, in combina-
tion with radiative transfer models, would serve to test these
scenarios.

– To characterize the properties of ηA’s wind, we applied a
CMFGEN 1D non-LTE model to the GRAVITY spectrum. Our
model reproduces the He i 2s-2p and He i 3p-4s lines, which
could not be formed with the parameters used in previous
models in the literature. However, the line-emitting regions
of the best-fit model are quite small compared to the structure
observed in the reconstructed images. These results imply
that single-star models are not enough to reproduce all the
observational data. Therefore, the role of ηB should be taken
into account when modeling the η Car spectrum. Further-
more, when comparing our model with the η Car spectrum
in the visible, we could not reproduce the observed metallic
features. We suspect that this is caused because many of the
metallic lines are forbidden lines with critical electron densi-
ties of 107−8 cm−3. With the FEROS aperture, this emission
is originating in the fossil wind shells and hence not repro-
duced in the stellar model.

– Our aperture-synthesis images allowed us to observe the in-
ner wind-wind collision structure of η Car. Previous AM-
BER interferometric images of Brγ revealed the wind-wind
collision cavity produced by the shock of the fast ηB’s wind
with the slow and dense ηA’s wind. Our new 2016 GRAV-
ITY Brγ images show the structure of such cavity at a differ-
ent orbital phase with a 2.26 mas resolution. The observed
morphologies in the images are (qualitatively) in agreement
with the theoretical hydrodynamical models of Madura et al.
(2013). Particularly interesting is the bright SE arc-like fea-
ture, which could be interpreted as the hot post-shock gas
flowing along the cavity wall (oriented toward the observer)
that border the innermost shell of compressed primary wind,
which is formed by the shock of the cavity’s trailing arm with
the leading arm after the most recent periastron passage.

– Due to the sparseness of the 2017 GRAVITY data the qual-
ity of the reconstructed images from this epoch is clearly af-
fected. Therefore, those images could not be used for a direct
comparison with the 2016 ones. Nevertheless, our analysis of
the interferometric observables, in coincidental baselines, re-
veals changes in the cavity structure. The ulterior character-
ization of those changes is subject to future imaging epochs
with a less limited u − v coverage than the 2017 data.

– We presented, the first images of the He i 2s-2p line. They
were qualitatively interpreted using the model of Clementel
et al. (2015a,b). We hypothesized that the observed emis-
sion is coming mainly from the He+ at the cavity walls and
from a portion of the pre-shock primary wind ionized by the
secondary. From the size of the observed emission and the
theoretical models, we suspect that the mass-loss rate of the
primary is close to 10−3 M� yr−1. The emission observed re-
quire an active role of ηB to ionize the material near the apex
of the wind-wind collision cavity.

– Spectro-interferometric imaging cubes offer us unique infor-
mation to constrain the wind parameters of η Car, not acces-
sible by other techniques. In this study, we have shown the
imaging capabilities of GRAVITY to carry out this task. A
future monitoring of η Car over the orbital period (particu-
larly at the periastron passage), in combination with dedi-
cated hydrodynamical models of the imaged K-band lines,
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will provide a unique opportunity to constrain the stellar and
wind parameters of the target, and, ultimately, to predict its
evolution and fate.
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Table A.1. η Car’s 2016 GRAVITY observations

Date Source MJD Type DIT NDIT Airmass Seeing
24-02-2016 η Car 57443.0859 SCI 10 30 1.479 0.83

η Car 57443.0951 SCI 10 30 1.440 0.89
HD 89 682 57443.1119 CAL 10 30 1.267 0.82
η Car 57443.1342 SCI 10 30 1.315 1.09
η Car 57443.1427 SCI 10 30 1.295 0.85
HD 89 682 57443.1646 CAL 10 30 1.175 0.87
HD 89 682 57443.1780 CAL 10 30 1.165 0.99
HD 89 682 57443.1890 CAL 10 30 1.161 0.95
η Car 57443.2026 SCI 10 30 1.224 0.78
η Car 57443.2142 SCI 10 30 1.222 1.05
HD 89 682 57443.2315 CAL 10 30 1.331 1.03
η Car 57443.2689 SCI 10 30 1.263 0.77
η Car 57443.2855 SCI 10 30 1.293 0.98
HD 89 682 57443.3078 CAL 10 30 1.350 1.16
HD 89 682 57443.3692 CAL 10 30 1.706 -
η Car 57443.3878 SCI 10 30 1.746 -
η Car 57443.3962 SCI 10 30 1.814 -
HD 89 682 57443.4103 CAL 10 30 2.170 -

27-02-2016 HD 89 682 57446.2508 CAL 10 30 1.367 1.38
HD 89 682 57446.2576 CAL 10 30 1.379 1.03
η Car 57446.2740 SCI 10 30 1.286 1.01
η Car 57446.2822 SCI 10 30 1.303 0.90
η Car 57446.2911 SCI 10 30 1.325 1.06
η Car 57446.2995 SCI 10 30 1.348 0.94

Table A.2. η Car’s 2017 GRAVITY observations

Date Source MJD Type DIT NDIT Airmass Seeing
30-05-2017 HD 89 682 57903.9623 CAL 10 30 1.170 0.77

HD 89 682 57903.9704 CAL 10 30 1.177 1.08
η Car 57903.9823 SCI 10 30 1.234 0.85
η Car 57903.9905 SCI 10 30 1.241 0.80
η Car 57903.9945 SCI 10 30 1.246 0.79

01-06-2017 η Car 57906.0526 SCI 10 30 1.385 0.55
η Car 57906.0607 SCI 10 30 1.413 0.56
η Car 57906.0647 SCI 10 30 1.429 0.46
η Car 57906.0728 SCI 10 30 1.462 0.61
η Car 57906.0772 SCI 10 30 1.482 0.55
η Car 57906.0854 SCI 10 30 1.521 0.68
η Car 57906.0894 SCI 10 30 1.542 0.58
HD 89 682 57906.1007 CAL 10 30 1.693 0.56
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Fig. B.1. Posterior distributions of the best-fit parameters of the geometrical model presented in Sec. 3.1. The left panel shows the posterior
distributions for the model applied to the V2 data at PA⊥ = 40◦± 20◦, while the right panel displays the posterior distributions for the model at PA‖
= 130◦± 20◦. The 2D distributions show 1 and 2 standard deviations encircled with a black contour. The mean of each distribution is displayed
with a blue square. The 1D histograms show the expected value (mean) and ±1σ with vertical dashed lines, together with their corresponding
values at the top.
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coverage of the second epoch.
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Fig. D.1. Brγ interferometric aperture synthesis images from the May-June 2017 data. The Doppler velocity of each frame is labeled in the images.
For all the panels, east is to the left and north to the top and the displayed FOV corresponds to 36×36 mas. The small white ellipse shown in the
lowermost-left panel corresponds to the synthesized beam (the detailed PSF is shown in Fig. D.1). Above all the images, the GRAVITY spectrum
is shown and the different positions where the images are reconstructed across the line are labeled with a colored square, which is also plotted in
the images for an easy identification. Due to the sparseness of the u − v coverage, the quality of these reconstructed images is limited, creating a
clumpy fine structure and a cross-like shape superimposed on the source’s brightness distribution. Therefore, they cannot be properly compared
with the GRAVITY 2016 data presented in this work.
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Fig. D.2. He i interferometric aperture synthesis images from the May-June 2017 data. The maps are as described in Figure D.1.
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Fig. E.1. Fit to the observed V2 from the interferometric aperture synthesis images across the Brγ line (2016). The colored dots correspond to the
synthetic V2 extracted from the unconvolved reconstructed images, while the observational data are represented with gray dots with 1σ error-bars.
The Doppler velocity is labeled in each panel. All the panels share the same horizontal and vertical scales.
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Fig. E.2. Fit to the observed closure phases from the interferometric aperture synthesis images across the Brγ line (2016). The panels are as
described in Figure E.1.
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Fig. E.3. Fit to the observed V2 from the interferometric aperture synthesis images across the Brγ line (2017). The panels are as described in
Figure E.1.
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Fig. E.4. Fit to the observed closure phases from the interferometric aperture synthesis images across the Brγ line (2017). The panels are as
described in Figure E.1.
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Fig. E.5. Fit to the observed V2 from the interferometric aperture synthesis images across the He i line (2016). The panels are as described in
Figure E.1.
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Fig. E.6. Fit to the observed closure phases from the interferometric aperture synthesis images across the He i line (2016). The panels are as
described in Figure E.1.
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Fig. E.7. Fit to the observed V2 from the interferometric aperture synthesis images across the He i line (2017). The panels are as described in
Figure E.1.
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Fig. E.8. Fit to the observed closure phases from the interferometric aperture synthesis images across the He i line (2017). The panels are as
described in Figure E.1.
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Fig. F.1. 2016 η Car’s FEROS spectrum (blue-solid line). The image displays our best-fit CMFGENmodel (red-dashed line) and the model described
in Groh et al. (2012a) (black-dashed line). The Balmer lines of the FEROS spectrum are too strong. They include large contributions of the
circumstellar emission as a result of the bad seeing of ∼2” at the time of the observation. The black synthetic spectrum matches the Fe ii and Si
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been already observed and discussed in detail by Hillier et al. (2001). The hotter red model can hardly fit the spectral lines observed at FEROS’
wavelengths.
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