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Abstract The dynamics of a pendular cable with a special constitutive law subjected

to a time-dependent velocity is investigated. The Coulomb friction between the cable of

pendulum and its support taking into account the e�ects of the support are considered.

To predict system behaviors, the multiple scale method is endowed leading to spot the

evolution of the angle and the length of the pendulum. The study permits to enlighten

the e�ects of velocity, friction and the radius of the wheel support on the overall system

response and its stability.

Keywords Cable pendulum, Varying length, Coulomb friction, method of multiple

scales

1 Introduction

Cable structures have been used for years in civil engineering structures in a wide range

of domain such as bridges or transportation systems. Despite their interest for design,

no model is clearly de�ned to describe every engineering situation. To this purpose,

many investigations have been done in cable dynamics but the validity domain of each

result is highly related to a speci�c situation.

Planar behaviors of cables have been investigated by Irvine [1] and their developments

are still of practical interests. Some studies considered nonlinear responses of cables

under some e�ects such as temperature [2] or moving loads [3, 4]. Other e�ects for

instance aeroelastic provides rich dynamical behavior of cable systems [5].

In the speci�c domain of transportation system where the cable is subjected to a trans-

lating velocity, several approaches have been carried out to compute span modeshapes.

One of the �rst works in this domain, we can name �nding modeshapes of a string

model subjected to a velocity was carried out by Skutsch [6]. An analytical approach
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to �nd the frequencies of mobile elastic cable has been endowed by Simpson in [7] be-

fore Triantafyllou [8] traced modal characteristics of translating cables of a single span.

These works open to discussion the stability analysis of each span for full telepheric

installation. Studies about strings and in the domain of elevators, the response of a

translating string subjected to di�erent kinds of boundary conditions has been studied

by Gaiko and van Horssen [9].Various studies have already been made in the domain

periodic response of varying length pendulum. For example, Belyakov and al. [10] pro-

vided analytical and numerical approaches with possible applications to the swing of a

swing close to resonance. Other investigationsabout similar system includinganother

rheology for the cable have been carried out by Babaz et al. [11] which is adapted in our

paper to make further developments about the overall behavior of the system including

new consideration about the in�uence of the radius of the support and induced friction

on the behavior of the system, believed to be of practical interest for cable transporta-

tion systems.The sophisticated behavior of the sliding process of the cable along a

contact surface has been investigated by Betchel et al. in [12] for a torque-transmission

system and by Usabiaga et al. in [13] when the sliding of the cable occurs only on a

limited portion of the contact interface. Recently, interaction between a static pulley

and cable rope model has been investigated through a nodal formulation procedure by

Westin and Irani in [14]. Indeed, the authors believe that more investigations should

be carried out on the relationship between a pulling velocity, a sophisticated support

and the growth of oscillation amplitude. For this reason we propose here a formulation

which implies strong interaction between the support and the system in order to re-

open the debate on systems subjected to a translating velocity.

Organization of the paper is as it follows: in Sect. (2) the friction considerations are

presented, then in Sect. (3) the equations of motions are derived which take into ac-

count the e�ects of friction. Later on in Sect. (4) system equations are treated with

the method of multiple scale [15] to predict its response, and to describe the in�u-

ence of the friction and the radius of the support on the change of amplitude of the

oscillations. To illustrate results, Sect. (5) gathers comparisons between analytical pre-

dictions and numerical results obtained from numerical time integration to enlighten

the pros and the cons of this approach. Then, a representative application to developed

techniques in this paper is provided in Sect. (6) to illustrates the possibilities o�ered

by this resolution. Finally, the paper is concluded in Sect. (7).

2 System of interest and the friction consideration

We are looking for the dynamics of a extensible cable wrapped around a pulley with

radius R. This academic system is depicted in Fig.(1). The mass m is supposed to be

concentrated at the end of the cable with initial length and inclination are respectively

denoted as l0 and θ0. T is the tension applied on the mass m. θ is the angle between

the actual and rest (vertical axis) positions of the pendulum. l is the instantaneous

length of the cable. Moreover, the cable is subjected to the velocity v(t) and the wheel

is assumed to be undergoing a constant angular velocity ω̇. We will refer respectively

to the space or time di�erentiation of • with •′ and •̇. To compute accurately the

change of the length we need the internal elongation variable x. The latter allows to

express the instantaneous length of the cable as it follows:

l(t) = l0 + x(t)−
∫ t

0

v(h)dh (1)
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Fig. 1: (a) Varying length pendulum wrapped around a wheel support subjected to

velocity and friction - (b) Visualization of the local and global referentials

Now, we draw our focus on the tension rheology which we propose as an extension to

the formulation given by Babaz et al. in [11]. The latter links the tension at the end

of the cable T to the tension at the point the cable leave the contact area that we call

it as Tθ, see Fig.(1). The rheology is constructed under following considerations:

dσ = E dε (2)

Where σ and ε are stress and strain in the cable. Then the tension increment, i.e. dT ,

along the free-hanging part of the cable is assumed to be linked only to the elongation

of the free-hanging part, then it reads:

dT = S dσ (3)

= ES dε (4)

= ES
d (x−Rθ)
l −Rθ (5)

Ṫ ≈ ES ẋ−Rθ̇
l −Rθ (6)

The approximation described in Eq.(6) holds true only if the strain rate is much smaller

than the celerity of the longitudinal waves propagating in the cable (see [11]).

We just derived the time derivative of the tension for the free hanging part of the

pendulum, it remains to express the link between the tension imposed at the top of the

wheel, T0, and the tension at the point where the cable leaves the contact interface,

Tθ.However in this paper, we assume the simple rheology presented in Eq.(2) taking into

account explained assumptions.Then the equilibrium of an in�nitesimal cable element

in contact with the wheel can be written as a belt friction problem assuming a Coulomb

friction associated to µ coe�cient. The intuitive physics underlying this equilibrium

are represented in Fig.(2). This reads:

−T ′(s)ds ∈ µ sgn
[
v(t)− ω̇( s

R
)R
]
T (s)dϕ (7)

Where the notation ∈ stands for di�erential inclusion [16]. This approach allows to

take into account variation of the reference tension due to the friction and variations
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Fig. 2: Concise illustration of the local equilibrium of the cable along the contact

interface. N(s) and τ(s) are normal and tangential components of the tension

of the wrapped angle of the wheel, ϕ. Then thanks to geometry, we can express vari-

ation of the tension as a function of θ. Since di�erential inclusion is not practical

for analytical treatments, we further assume the case is sliding over the wheel, i.e.

−T ′(s)ds = ±µT (s)dϕ. Then this tension variation can be computed as a function of

θ, θ0 et T0. Based on this assumption, the cable slides over a segment of the wheel

(or wrapped part of the wheel by the cable) which which instantaneous length reads

as R(θ − θ0). In another words, once the wheel starts to rotate, the cable begins to

(instantaneously) slide with respect to the support. For the rest of the paper, we stay

on this assumption about the e�ect of the friction for further developments. However,

formulations involving the full non-linear transition from an initial no-sliding state to

a full-sliding one could be essential for a better description of the frictional physics (see

e.g. [13]) which are beyond the scope ouf our analysis. As fatigue analysis are beyond

the scope of our analysis, a last simplifying assumptions is taken which is a full-sliding

con�guration which allows to get insight about theoretical worst possible evolution of

the tension, then of the amplitude oscillations.

A "positive" friction leads to subsequent developments:

dT

T
= −µdθ (8)

Then the following can be obtained through integration from the top of the wheel to

the point where contact is lost:

Tθ = T0e
−µ(θ−θ0) (9)

Whereas a "negative" friction produces:

Tθ = T0e
+µ(θ−θ0) (10)

Then the time evolution of tensionwhich is presented in Eq.(6) (valid for free hanging

part), is modi�ed in order to take into account the e�ect of the friction based on our

assumptions:
Ṫ =ES

ẋ−Rθ̇
l −Rθ ∓ θ̇µT0e

∓µ(θ−θ0))

− ; Pulling velocity is bigger than wheel velocity (v(t) > Rω̇)

+ ; Pulling velocity is smaller than wheel velocity (v(t) < Rω̇)

(11)
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It should be mentionned that the Eq.(11) simpli�es into the constitutive law given by

Babaz et al. in [11] when both friction and wheel radius e�ects are neglected. It is seen

that the friction modi�es dynamic variations of the tension around a reference tension.

Despite the approximations and assumptions underlying this approach, it opens the

path to discussions about �uctuations of tension linked to friction.

3 Equations of motion

Due to the wheel support, inertial forces will arise as additional dynamic terms. We

write the fundamental principle of dynamics for the mass m in a local referential coor-

dinates. The described dynamics are those offree hanging part of the cable pendulum

of length f = l−Rθ. The location of the mass (X and Y ) at each instant t yields to:{
X = f sin(θ)→ Ẍ = f̈ sin(θ) + 2ḟ θ̇ cos(θ) + fθ̈ cos(θ)− lθ̇2 sin(θ)

Y = −f cos(θ)→ Ÿ = −f̈ cos(θ) + 2ḟ θ̇ sin(θ) + fθ̈ sin(θ) + fθ̇2 cos(θ)
(12)

The local referential RL is subjected to a varying translation in the global referential

RG (see Fig. (1)): (
X

Y

)
RL

=

(
X∗

Y ∗

)
RG

+R

(
1− cos(θ)

− sin(θ)

)
(13)

Where X∗ and Y ∗ are �xed references coordinates along the wheel, see Fig.(1). This

leads to inertial forces (Fie) depending on the dynamics of the system coupled with

the wheel support as:

Fie = −mR
(
θ̈ sin(θ) + θ̇2 cos(θ)

−θ̈ cos(θ) + θ̇2 sin(θ)

)
(14)

Then, the equilibrium of the mass m reads:
mẌ = − sin(θ)T −mR

(
θ̈ sin(θ) + θ̇2 cos(θ)

)
mŸ = cos(θ)T −mg −mR

(
−θ̈ cos(θ) + θ̇2 sin(θ)

) (15)

From Eqs.(11),(12) and (15), we can obtain:

If vrel > 0 :


θ̈ = − 1

l −Rθ
(
2l̇θ̇ + g sin(θ)

)
+

Rθ̇2

l −Rθ
...
l = −ES

m

ẋ−Rθ̇
l −Rθ − 3

(
g sin(θ) + l̇θ̇

)
θ̇ +Rθ̇3 + θ̇

µ

m
T0e
−µ(θ−θ0)

If vrel < 0 :


θ̈ = − 1

l −Rθ
(
2l̇θ̇ + g sin(θ)

)
+

Rθ̇2

l −Rθ
...
l = −ES

m

ẋ−Rθ̇
l −Rθ − 3

(
g sin(θ) + l̇θ̇

)
θ̇ +Rθ̇3 − θ̇ µ

m
T0e

+µ(θ−θ0)

(16)

Where the following notation has been set vrel = v(t) − ω̇( sR )R. We clearly see the

coupling between x and θ in Eq. (16). Moreover, neglection of the friction and e�ects

of the radius of the support, i.e. setting (µ,R) = (0, 0), gives consistent model with

earlier developments [11]. Our goal is to achieve a prediction of the behavior of the
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system with the method of multiple scale in order to get insights about the in�uence of

each parameters on system behaviorsincluding worst possible scenarios due to friction

e�ects. The jerk (i.e. term
...
l in Eq. (16)) is interesting to catch growth of the oscillations

and to trace a varying tension.

4 Treating the system with the method of multiple scale

4.1 The context

Let us consider a case where the relative velocity is positive. That is to say that the

mass is pulled with velocity v(t) and the friction is opposed to the movement. In order

to avoid the integral sign in our further developments, we use the V to refer to a chosen

primitive of v. We choose this primitive to be:

V(t) = εv0t+ ε2a sin(Ωt) (17)

Let us de�ne following angular frequencies:

ω2
1 =

g

l0

ω2
2 =

ES

ml0

ω0 =
ω1
ω2

(18)

Considering an non-dimensionnalized time τ = ω2t, the dynamics of the system yields

to: 

θ̈ +
1

l0 + x− V −Rθ

(
l0
ω2
1

ω2
2

sin(θ) + 2ẋθ̇

)
− Rθ̇2

l0 + x− V −Rθ =
2V̇

l0 + x− V −Rθ θ̇

...
x + l0

ẋ−Rθ̇
l0 + x− V −Rθ + 3

(
l0
ω2
1

ω2
2

sin(θ) + ẋθ̇

)
θ̇

− θ̇ µ

mω2
2

T0e
−µ(θ−θ0) −Rθ̇3 =

(...
V + 3V̈ θ̇2

)
(19)

The notation •̇ has been kept for conciseness, i.e. we set •̇ = ∂
∂τ .

A mutiple scale method (MSM) [15] is now endowed to spot the di�erent time responses

of the system. We introduce a small parameter ε� 1 and we de�ne di�erent time scales,

fast and slow scales, coupled to each other via ε parameter :

tk = εkt , k = 0, 1, . . . (20)

We can derive new time-di�erentiation operators Dk = ∂
∂tk

, k = 0, 1, . . . so [15]:

d

dt
= D0 + εD1 + ε2D2 + . . .

d2

dt2
= D2

0 + ε (2D1D0) + ε2
(
D2

1 + 2D2D0

)
+ . . .

d3

dt3
= D3

0 + ε
(
3D1D

2
0

)
+ ε2

(
3D1D

2
0 + 3D2D

2
0

)
+ . . .

(21)
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We expand system variables as:

θ(t0, t1, ...) =

3∑
n=1

εnθn(t0, t1, ...) +O(ε4)

x(t0, t1, ...) =

3∑
n=2

εnxn(t0, t1, ...) +O(ε4)

(22)

and we assume that:
T0
mω2

eµθ0 = εT ∗

R = εR∗
(23)

In the following section, system equations will be considered at di�erent orders of ε to

evaluate temporal responses of system variables.

4.2 Time responses of the system

Let us inject Eqs.(21)-(23) in Eq. (19). Governing system equations at di�erent orders

of ε read :

ε1 : D2
0θ1 + ω2

0θ1 = 0 (24)

ε2 :


D2

0θ2 + ω2
0θ2 = 2

v0
l0
D0θ1 − 2

ω2
0v0t0
l0

θ1 − 2D1D0θ1

D3
0x2 +D0x2 =− aΩ3 cos (Ωt0)− 3ω2

0l0θ1D0θ1

+ µT ∗D0θ1 +R∗D0θ1

(25)

ε3 :



D2
0θ3 + ω2

0θ3 =− aω2
0 sin (Ωt0)

l0
θ1 +

2aΩ cos (Ωt0)

l0
D0θ1 +

ω2
0

l0
x2θ1

− ω2
0v

2
0t

2
0

l20
θ1 −

ω2
0v0t0
l0

θ2 +
2v20t0
l20

D0θ1 +
2v0
l0
D0θ2

− 2

l0
D0x2D0θ1 − 2D2D0θ1 − 2D1D0θ2 +

2v0
l0
D1θ1

− ω2
0θ

2
1

l0
R∗ +

(D0θ1)
2

l0
R∗ +

ω2
0

6
θ31 −D2

1θ1

D3
0x3 +D0x3 =

v0t0
l0

(
R∗D0θ1 −D0x2

)
− 3D1D

2
0x2 −D1x2

− 3ω2
0l0θ2D0θ1 − 3ω2

0l0θ1 (D1θ1 +D0θ2)

− µT ∗ [µθ1D0θ1 −D1θ1 −D0θ2]

+ 3v0 (D0θ1)
2 +R∗ (D1θ1 +D0θ2)

(26)
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Order ε3 is su�cient to predict overall evolution trend of the system and to get insight

about the way the parameters of the system in�uence the amplitude of each oscilla-

tion. We see that every time response can be obtained as the solution of an harmonic

oscillator with a non zero right hand side, except for the fast time response which

corresponds to a purely harmonic behavior. Resonant terms lead the system to un-

bounded solutions. However, we aim to catch the behavior of the system for �niteand

local durations [15]. In this particular case, secular terms are not removedin order to

get insight about parameters that would leads the systems to unbounded growth.Note

that we do not seek for a periodic solution in this case, indeed the system is only valid

for a �nite duration of time since the mass can be physically pulled out of the pulley

when t becomes too big. Moreover the pulling velocity injects intrinsic divergence to

the system, that makes the inference of the in�uence of every parameter, including

friction, very challenging. The goal is to predict the overall behavior of the system and

to measure the e�ects of each physics on the growth of the unknowns θ and x.

Every solutions can be written as:

θk = Θk,1 cos(ω0t0) +Θk,2 sin(ω0t0) +

N∑
l=0

(fθk,l − µgθk,l(µ,R
∗))tl0 (27)

xk = ξk,1 cos(t0) + ξk,2 sin(t0) + ξk,3 +

N∑
l=0

(fxk,l − µgxk,l(µ,R
∗))tl0 (28)

fθk,i refers to a coe�cient which is not depending on the T ∗ and R∗ coe�cients, i.e. it is

not function of the friction and the radius of the support. On the contrary gθk,i(µ,R
∗)

refers to a coe�cient which is only depending on the T ∗ and R∗ coe�cients. The

presented solutions in Eq. (27) and Eq. (28) refer to a very general case, imposing

very long expressions. In the next section, we treat a particular case, showing some

application of these results.

5 Comparisons for a special situation

5.1 Analytical application

We consider a �awless pull of the mass so that a = 0 and that the mass is inclined with

θ = θ0 at the initial time. The mass is released without any velocity nor acceleration.

As a summary, we consider following initial conditions relevant to elongation, x(t), and

the angle, θ(t):

t = 0→
(
ẍ(0), ẋ(0), x(0), θ̇(0), θ(0)

)
= (0, 0, 0, 0, θ0) (29)

We can evaluate every time response in this particular case. We choose the �rst non zero

time responses to be carrying the initial condition. After developments, components of

Eq. (27) and Eq. (28) can be obtained (see Eq. (34) and (35) in App. (A) for detailed

expressions).

From Eq. (34) and (35), it is seen that the friction (via µ parameter) and the support

(via R∗ parameter), in�uence the system behavior. As a consequence, neglecting those
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phenomena can be carried out by setting µ = 0 and R̃ = 0. When injected in the

general solutions, the time responses read as:

θ1(t0) = θ0 cos(ω0t0)

θ2(t0) = −
3θ0v0 sin(ω0t0)

4ω0l0
− θ0ω0v0 sin(ω0t0)

4l0
t20 +

3θ0v0 cos(ω0t0)

4l0
t0

θ3(t0) =−
θ30
(
1152

(
ω2
0 − 1

)
ω5
0 sin(t0) sin(ω0t0) +

(
196ω4

0 − 53ω2
0 + 1

)
cos(3ω0t0)

)
192

(
1− 4ω2

0

)2
+
θ30
(
1728ω6

0 cos(t0)− 1728ω6
0 + 196ω4

0 − 53ω2
0 + 1

)
cos(ω0t0)

192
(
1− 4ω2

0

)2
+ µ

θ20T
∗ ((−3ω4

0 cos(t0) + 3ω4
0 − 4ω2

0 + 1
)
cos(ω0t0)

)
(ω0 − 1)(ω0 + 1)(2ω0 − 1)(2ω0 + 1)l0

+ µ
θ20T
∗ ((4ω2

0 − 1
)
cos2(ω0t0) + 2

(
ω2
0 − 1

)
ω3
0 sin(t0) sin(ω0t0)

)
(ω0 − 1)(ω0 + 1)(2ω0 − 1)(2ω0 + 1)l0

− θ0ω
2
0v

2
0 cos(ω0t0)

32l20
t40 −

5θ0ω0v
2
0 sin(ω0t0)

16l20
t30 +

15θ0v
2
0 cos(ω0t0)

32l20
t20

+ c1(t0)R
∗ + c2(t0)t0

(30)



x2(t0) =−
3θ20l0

(
ω2
0 − 1

)
ω2
0

4
(
4ω4

0 − 5ω2
0 + 1

) (4ω2
0 cos(t0)− cos(2ω0t0)− 4ω2

0 + 1
)

−
θ0
(
4ω2

0 − 1
)
(R∗ + µT ∗)(

4ω4
0 − 5ω2

0 + 1
) (

−ω2
0 cos(t0) + cos(ω0t0) + ω2

0 − 1
)

x3(t0) =c3(t0)t
2
0 −

15θ20v0ω
3
0

(
ω0
(
4ω2

0 − 3
)
sin(t0) + sin(2ω0t0)

)
4
(
1− 4ω2

0

)2
+

1

8
θ0v0

(
2(µT ∗ − 3R∗) cos(ω0t0)− 6ω2

0 cos(t0)(R
∗ + µT ∗)

l0
(
ω2
0 − 1

) )
t0

+
1

8
θ0v0

(
3θ0ω

2
0

(
6ω2

0 cos(t0) + cos(2ω0t0) + 4ω2
0 − 1

)
4ω2

0 − 1

)
t0

+
θ20µ

2T ∗
(
−4ω2

0 cos(t0) + cos(2ω0t0) + 4ω2
0 − 1

)
16ω2

0 − 4

+
θ0v0ω

2
0 sin(t0)

(
3R∗

(
ω2
0 − 5

)
+ µT ∗

(
3ω2

0 − 7
))

4l0
(
ω2
0 − 1

)2
+
θ0v0 sin(ω0t0)

(
3R∗

(
5ω2

0 − 1
)
+ µT ∗

(
3ω2

0 + 1
))

4l0ω0
(
ω2
0 − 1

)2

(31)

where c1, c2 and c3 are scalar functions detailed in App. (A).

We see that the friction has an e�ect on the unbounded responses of the system,

however the friction and the radius (contact area) are too small in reality to play
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l0 (m) g (m.s−2) ES (GN) m (kg) T0 (kN) v0 (m.s−1) R (m) µ

100 9.81 108 1000 8.495 1 2 0.4

Table 1: System parameters

ω1 (rad.s−1) f1 (s−1) ω2 (rad.s−1) f2 (s−1)

0.313 0.049 32.7 5.21

Table 2: System frequencies

enormous roles in reducing the growth of the oscillations. From Eq. (30) and (31), we

notice that the amplitude of every components of the motion are functions of the initial

angle, θ0. We also see that intrinsic diverging terms arise at slow time scales for θ as a

direct consequence of the pulling velocity and the initial angle. Also the divergence is

spotted to be quadratic in time during slow time scale. From these observations, e�ect

of the friction/support can not be used for control purposes because we cannot change

these parameters for each engineering situations. From Eq.(30) it can be seen that the

θ is oscillating with two frequencies namely 1 and ω0 which are linked to the cable and

the pendulum frequencies, respectively. Equation (31) illustrates that the elongation

of the cable, in addition to the frequencies 1 and ω0, is carried out with frequency 2ω0
(see Eq.(18)). However, the frequency ω0 is always linked to the e�ects of the friction

and the radius of the wheel.

However, the e�ect of the friction and the wheel on elongation (and then tension)

seems to be way more visible. Our study also enlights the major role played by the

e�ects of the support in the elongation amplitude compared to the friction. Indeed,

these phenomena are seen not to be comparable because of the di�erence between the

dimension of the radius for the wheel and induced elongation due to the e�ect of the

friction.

5.2 Numerical comparisons

Here, results obtained via the direct numerical integration of the system equations

Eq. (19) are compared with these which are obtained via MSM as de�ned in Eq. (30)

and Eq. (31). Let us consider the system parameters collected in Tab. (1). System

frequencies obtained from Eqs.(18) are collected in Tab.(2). Time integration is done

over a time period of 35s via the ode45 function of MatlabR© with following criteria:

h = 7.5× 10−4 ; (time step)

RelTol = 10−14

AbsTol = 10−14

NormControl = 10−14

(32)

We plot simultaneously every variables over a time interval of 35s with a chosen

ε = 2%.The choice of ε permits to evaluate the rescaled parameters T ∗ and R∗ which
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Fig. 3: Time histories of the elongation x; (solid line ), obtained from Eq. (31);

(dashed line ) evaluated from numerical integration of Eq. (19). The e�ects of

friction and the radius of the support are ignored i.e. (µ,R) = (0, 0)

are directly related to physics of the system (see Eq.(23)). Note that choosing ε pa-

rameter value is doable since it allows to compute rescaled parameters and check the

compatibility of designed system parameters for the time period studied. Further con-

siderations about the precision of such methodologies are discussed in [17]. Moreover,

the choice of ε parameter permits to have an idea about "starts" of the in�nity of

each time scale, as shown by Lamarque et al. [18]. This leads to stay within the time

t ∈ [0,O
(
1
ε

)
] for being sure that we cover at least the transient response. The over-

all trend of the motion is well restituted by obtained results with MSM. Obtained

results with MSM and those obtained via direct numerical integration of the system

equations and depicted in Figs.(3)-(5). Moreover, we see that the observations done

about frequencies (see Tab.(2) are in good agreement with numerical results. Indeed,

the change of instantaneous frequency due to the dynamics and the varying length are

not caught precisely when the considered time t is too big. Eventually, the amplitude

of the prediction stays acceptable only for small duration. This can be explained by

the unbounded growth of some motion components and that our solutions consist of

successive approximations. Referring to Figs.(3)-(5), the reader may observe that the

growth of oscillations, friction induced elongations and overall instantaneous frequency

is well approximated under our assumptions and developments. The trajectory of the

mass and the tension can also be derived analytically from Eqs.(30) and (31) to give

insights about the in�uence of friction and support on the motion. Figures (7) and (8)

show the tajectories obtained from direct numerical integration of Eq. (19). As ana-

lytical predictions were very close to numerical ones until t = 35s, we did not include

them in �gures. We present the plots for the time integration also to validate our as-

sumptions on tension change due to friction and the in�uence of the wheel. Figure (8)

shows that the relative di�erence between tensions at �nal step, for the systems with

and without inclusion of the e�ect of friction, ∆T is very small providing ∆T
T0
≈ 10−3

so that putting the e�ect of the friction at order ε for analytical developments was
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Fig. 4: Time histories of the elongation x; (solid line ), obtained from Eq. (31);

(dashed line ) evaluated from numerical integration of Eq. (19) with the friction

coe�cient µ > 0 and ignoring the e�ects of the radius of the support R = 0
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Fig. 5: Time histories of the angle θ; (solid line ), obtained from Eq. (30); (dashed

line ) evaluated from numerical integration of Eq. (19). The e�ects of friction and

the radius of the support are ignored i.e. (µ,R) = (0, 0)

relevant (see Eqs.(23)). Looking at Figs.(4), (6) and (8) we see that the radius of the

support plays an important role in the dynamics of the overall system while the e�ect

of the friction (in the limits of its physical parameters [19]) can be neglected.

The frequency content variations of the system and also the main trend of frequency

can also be caught via the Hilbert transform. Within the range of engineering pa-

rameters, frequency consists of variations around a main frequency as depicted in
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Fig. 6: Analyticaly obtained results for elongation x (solid line ), obtained from

Eq. (31) ignoring the e�ect of the friction (µ = 0) and considerating the e�ects of the

wheel (R = 2m)
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Fig. 7: Mass trajectory for di�erent friction and support parameters: µ = 0, R = 0

(dashed line ) ; µ = 0.4, R = 0 (solid line ) ; µ = 0.4, R = 2 m (solid line )

. Results are obtained from direct numerical integration of Eq. (19)
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Fig. 8: Tension for di�erent friction and support parameters: µ = 0, R = 0 (dashed

line ) ; µ = 0.4, R = 0 (solid line ) ; µ = 0.4, R = 2 m (solid line ) Results

are obtained from direct numerical integration of Eq. (19)

Figs.(9)-(12). The same behavior can be spotted with MSM and can be compared

with the signal obtained from time integration. These �gures show that the traced

instantaneous frequencies obtained from the results of numerical integration of system

equations are in reasonable agreements with those which are obtained from analytical

developments, see Eqs.(30) and (31) (the error is at the order of ε).

6 An application

Let us consider a situation where a drive pulley is used to pull a mass m out of an

encased space. The considered system is depicted in Fig.(13). The mass should not hit

the surrounding barriers located at a distance d from the its rest position. We denote

the limit angle which causes the mass to hit the wall as θd. The methodology consists

of �nding the roots of |X(t)| − d, where the time t corresponds to the real physical

time:

X(t) = (l0 + x(t)− v0t−Rθ(t)) sin(θ(t))−R (1− cos(θ(t))) (33)

θ(t) and x(t) can be obtained from Eqs.(30) and (31) where the rescaled time t0 is set

to ω2t.

If numerical roots can be found within the range t ∈ [0, l0v0 ], then the surrounding

barriers will not be touched by the mass. Due to the competition between ω1 and ω2,

several behaviors for the system are expected. As numerical examples, we consider two

cases with di�erent system parameters which are collected in Tab.(3). It is seen that

the system of the case 1 never hits the barriers while the system of the case 2
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Fig. 9: Instantaneous frequency of x(t) obtained from analytical prediction (see

Eq. (31) (solid line ) and from direct integration of Eq. (19) (solid line ) for

t ∈ [0, 35]s

11 12 13 14 15 16 17

t (s)

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

f i(x
,t)

Fig. 10: Instantaneous frequency of x(t) obtained from analytical prediction (see

Eq. (31) (solid line ) and from direct integration of Eq. (19) (solid line ) for

t ∈ [11, 17]s (zoomed area of Fig.(9))

hits the barrier. Moreover, the impact time can be obtained numerically from Eq.(33)

which is presented in Fig.(14).

7 Conclusions

Nonlinear oscillations of a cable pendulum with a special rheology subjected to a time

dependent velocity taking into account the e�ects of the radius of the wheel support
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Fig. 11: Instantaneous frequency of θ(t) obtained from analytical prediction (see

Eq. (31) (solid line ) and from direct integration of Eq. (19) (solid line ) for

t ∈ [0, 35]s
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Fig. 12: Instantaneous frequency of θ(t) obtained from analytical prediction (see

Eq. (31) (solid line ) and from direct integration of Eq. (19) (solid line ) for

t ∈ [5, 35]s (zoomed area of Fig.(11))

l0 g ES m T0 v0 R µ θ0 d

Case 1 100 9.81 108 1000 8.4971 2 2 0.4 20 35

Case 2 100 9.81 108 250 2.3045 2 2 0.4 20 35

Table 3: System parameters for the two cases ; Units are the same as in Tab.(1)



17

θd

d

v(t)

m

X
Y

Fig. 13: The schematic of a drive pulley in an encased zone

and the induced friction is studied. Governing system equations are treated by the

method of multiple scale without eliminating the diverging terms. It is found that the

radius of the support and the induced friction a�ect system behaviors. However, the

in�uence of the wheel is deeper with respect to the one of the friction. Moreover, the

oscillations of the pendulum in terms of angle are increased due to the inclusion of

the e�ects of the support. These e�ects change the direction of the elongation from

positive to negative (and vice versa) while ignoring the friction and the in�uence of the

support, the elongation of the cable due to the oscillations does not change its sign.

We spotted also that the pulling velocity for the system under given initial angle has

a diverging e�ect (see Sect. (6)).

As an application of developed solutions, we considered a system of pulley which is

encased in a space (for instance a tube). Via developed techniques, we show the pos-

sibility of impact of the system with surrounding walls and the possible time of the

contact.

The developed method provides some tools for designing cable pendulums and their

supports via taking into account the e�ect of velocity of the translation and the friction.
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Fig. 14: Trajectories of the system within an encased zone for two cases:

Case 1 (solid line ); Case 2 Before impact:(dashed line ), After impact:

(dotted line ); Final position without impact ( )
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Appendices

A Expression of functions



Θ1,1 =θ0

Θ1,2 =0

Θ2,1 =0

Θ2,2 =−
7v0θ0

8ω0l0

Θ3,1 =
1

192
θ0

(
45v20
l20ω

2
0

−
θ20
(
2880ω6

0 − 1012ω4
0 + 137ω2

0 + 11
)(

1− 4ω2
0

)2
)

+ µ
θ20
(
10ω2

0 − 3
)

2l0
(
4ω2

0 − 1
) T ∗ +

θ20
(
22ω2

0 − 7
)

6l0
(
4ω2

0 − 1
) R∗

Θ3,2 =0

(34)



ξ2,1 =−
3ω4

0θ
2
0l0

4ω2
0 − 1

+ µ
ω2
0θ0

ω2
0 − 1

T ∗ +
ω2
0θ0

ω2
0 − 1

R∗

ξ2,2 =0

ξ2,3 =
3θ20l0ω

2
0

(
16ω2

0 − 2ω0 − 7
)

64ω2
0 − 16

−Rθ0 − µθ0T
∗

ξ3,1 = µ2
θ20ω

2
0

1− 4ω2
0

T ∗

ξ3,2 = −
3θ20v0ω

4
0

(
12ω2

0 − 23
)

8
(
1− 4ω2

0

)2 − µ
θ0v0ω2

0

(
ω2
0 + 7

)
8l0
(
ω2
0 − 1

)2 T ∗

−
θ0v0ω2

0

(
ω2
0 + 23

)
8l0
(
ω2
0 − 1

)2 R∗

ξ3,3 = µ2
θ20
4
T ∗

(35)

c1(t0) =
θ20
((
−9ω4

0 cos(t0) + 5ω4
0 − 7ω2

0 + 2
)
cos(ω0t0)

)
3l0(ω0 − 1)(ω0 + 1)

(
4ω2

0 − 1
)

+
θ20
((
2ω2

0 + 1
)
cos(2ω0t0) + 3

)
6l0(ω0 − 1)(ω0 + 1)

+
θ20
(
6
(
ω2
0 − 1

)
ω3
0 sin(t0) sin(ω0t0)

)
3l0(ω0 − 1)(ω0 + 1)

(
4ω2

0 − 1
) (36)

c2(t0) =
θ0 sin(ω0t0)

32ω0

(
4ω2

0 − 1
)
l20

(
2θ20ω

2
0

(
24ω4

0 − 11ω2
0 − 1

)
l20 +

(
15− 60ω2

0

)
v20
)

− (µT ∗ +R∗)
θ20ω0 sin(ω0t0)

2l0

(37)

c3(t0) =
1

8
θ0v0ω0


2(R∗ + µT ∗)(sin(ω0t0)− ω0 sin(t0))

l0
(
ω2
0 − 1

)
−

3θ0ω2
0(sin(2ω0t0)− 2ω0 sin(t0))

4ω2
0 − 1

 (38)
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