
HAL Id: hal-02055328
https://hal.science/hal-02055328

Preprint submitted on 3 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Does the operational model capture partition tolerance
in distributed systems? (Extended Version)

Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin

To cite this version:
Grégoire Bonin, Achour Mostefaoui, Matthieu Perrin. Does the operational model capture partition
tolerance in distributed systems? (Extended Version): Separating the operational model and the
wait-free model. 2019. �hal-02055328�

https://hal.science/hal-02055328
https://hal.archives-ouvertes.fr

Does the operational model capture partition
tolerance in distributed systems?

Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

LS2N, Université de Nantes
first.last@univ-nantes.fr

Abstract

In large scale distributed systems, replication is essential in order to provide
availability and partition tolerance. Such systems are abstracted by the wait-
free model, composed of asynchronous processes that communicate by sending
and receiving messages, and in which any process may crash. Complexity in local
memory has already been studied for several objects, including sets, databases
and collaborative editors. However, the literature has focused on a subclass of
algorithms, called the operational model, in which processes can only broadcast
one message per update operation and the read operation incurs no communi-
cation.

This paper tackles the following question: are the operational model and the
wait-free model equivalent from the complexity point of view?

We show that update consistency allows implementations in the wait-free
model that require strictly less local memory than their counterparts in the
operational model.

1 Introduction

In distributed systems, shared objects are used to simplify the implementation
of distributed applications, and provide fault tolerance by replication. Problems
arise with replication as consistency has to be maintained between the different
replicas.

The most natural and intuitive abstraction for the user would be to view
a distributed/replicated object as if it is a single physical object shared by all
the processes. This means that all the operations on the object, possibly con-
current or interleaving, appear as if they have been executed atomically and
sequentially. Such an abstraction has to respect a correctness condition called
strong consistency. Unfortunately, the CAP Theorem [5] states that this prop-
erty is unrealizable in most systems, as it is impossible to combine strong con-
sistency, availability and partition tolerance in asynchronous systems. Eventual
consistency was introduced to overcome this issue. It states that, after update
operations stop taking place, the different replicas will eventual converge to an
identical state.

2 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

In this context, Conflict-Free Replicated Data Types (CRDTs) [10] constitute
a family of objects designed to achieve eventual consistency. Those are based on a
theorem stating the equivalence between two kinds of objects: the Commutative
Replicated Data Types (CmRDTs), in which all update operations commute,
and Convergent Replicated Data Types (CvRDTs), whose states form a lattice.
For example, the G-set (grow-only set) provides two different operations: an
update operation that inserts an element and a query operation that reads if
a specific element is in the set. On the CmRDT viewpoint, inserting x and
inserting y commute. On the CvRDT viewpoint, the set inclusion is a lattice
order on the states of the set. The operational model has been proposed to
abstract the implementation of CRDTs. In the operational model, each replica
maintains a local state on which the operations are done. An update operation
is divided into two facets. First, the update operation is prepared locally by the
replica where the update operation is issued and then a message is broadcast to
inform all other replicas. Second, the local state of each replica is updated at
reception of the update message. By the commutative effect all replicas converge
to the same state when no update operation is in progress.

As only one message is broadcast per update operation, algorithms in the
operational model are, by design, optimal in terms of the number of used mes-
sages. The amount of metadata that must be stored on each replica to ensure
convergence is more problematic and has been widely studied for several objects
including sets, counters and registers [4], data stores [2] and collaborative editors
[1].

Despite the fact that algorithms from the operational model are naturally
partition tolerant and minimize the number of messages needed in their imple-
mentation, the operational model imposes limitations on the form of its admissi-
ble algorithms. It is for example impossible to acknowledge or forward messages,
to execute local steps without the reception of a message, or to propagate in-
formation during read operations. This prevents algorithms from using more
advanced techniques like the message schemes used by checkpointing [8, 3]. Such
algorithms are usually studied in the wait-free asynchronous message-passing dis-
tributed model, or simply the wait-free model, in which asynchronous processes
communicate by sending and receiving messages. Any number of processes may
crash, which also captures partition tolerance as it is impossible for a process
to wait for an acknowledgement from any other process since all other processes
may have crashed.

Problem statement The wait-free model is strictly more general than the oper-
ational model, as any algorithm from the operational model can be naturally
transformed into an algorithm in the wait-free model, but the converse does
not hold. In particular, this means that the complexity results proven in the
operational model may not hold in the wait-free model.

Therefore arises the following question: are the wait-free model and the op-
erational model equivalent in terms of complexity ?

Separating the operational model and the wait-free model 3

Approach In this paper, we consider objects specified by a sequential speci-
fication, that describes the behaviour of the object when processes access it
sequentially, and a weak consistency criterion, namely update consistency [7].
Update consistency strengthens eventual consistency by stating that the conver-
gence state must be obtainable in a sequentially consistent execution. In other
words, it can be obtained by a sequential ordering of the update operations.
On a computability viewpoint, it is possible to implement any object with this
criteria in both computing models [7, ?].

Contributions We prove that there exists an object whose implementation in the
wait-free model requires strictly less local memory than its operational model
counterpart.

In Section 2, we present the shared objects that we consider for our proofs,
and more particularly a new object, the Countdown-append, as well as the two
consistency criteria we use. In Section 3, we present the state of the art of the two
models and define our formalism to study the properties of the implementations
of the two models. In Section 4, we present the algorithm type and the complexity
that we use to compare the different models. In Section 5, we prove the difference
between the two models under update consistency. In Section ??, we prove the
equivalence of the two models under causal convergence.

2 Shared objects

In distributed systems, several kinds of shared objects have been proposed to
provide the processes with higher-level abstractions. There are two main kinds
of objects. On the one hand, one-shot objects like consensus and renaming are a
generalization of functions in sequential systems, where each process proposes an
input and decides an output. One-shot objects are specified by a binary relation
that relates input vectors to the admitted output vectors. On the other hand,
long-lived objects, such as registers and queues, are a generalization of data
structures in sequential programming, aiming at storing and organizing data in
memory. This paper only considers long-lived objects

Long-lived objects are defined by three components: a sequential specification
that describes its expected behaviour when operations are accessed sequentially
(e.g. a queue or a stack), a consistency criterion that describes how concurrency
affects the object (e.g. linearizability or eventual consistency), and a progress
condition that enforces termination guarantees. The only progress condition we
address in this paper is wait-freedom: all operations invoked by non-faulty pro-
cesses terminate.

2.1 Sequential specifications

In order to keep close enough to the CRDTs, we suppose that shared objects
are accessed by two distinct kinds of operations: updates, from a set U , modify
the local state of the object but do not return a value, and queries, from a set

4 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

Q, return a value in a set B that depends on the state of the object but do not
modify it1. The set of all operations is A = U ∪ (Q× B). A sequential history is
a (finite or infinite) sequence of symbols in A.

The sequential specification of an object is the set of all sequential histories
admitted by the object. It describes the behaviour of the object when it is used
by a single process.

As an example, we now define the l-countdown-append object, where l ∈
N, that will be especially useful in Section 5. The l-countdown-append object
exposes 4 update operations, a, b, c and d and one query operation, q. Figure 1
represents the behaviour of the object as an automaton. It is divided into two
phases: during the first phase, the object counts the number of update operations,
starting from l, down to 1, then ε (the empty word). In the second phase, the
operation is concatenated at the end of the state. Finally, the query operation
returns the local state of the objects each time it is executed.

l l − 1 2 1 ε∗ ∗ ∗ ∗

a
b
c
d

a

b

c

d

a
b
c
d

aa

ab

ac

ad
...

q

q

qq

q

q

q

qqqqq

...

q

Fig. 1. Representation of a l-countdown-append object as an automaton.

2.2 Consistency criterion

A consistency criterion defines how concurrency affects the distributed behaviour
of an object. Formally, it identifies which distributed histories are admissible for
a given sequential specification.

A distributed history models a distributed executions of a program using a
shared object. It is defined by a tuple H = (A,E,L, 7→) ∈ H, where:

– A is the set of operations of the object (the same set as in sequential histo-
ries);

– E is a countable set of events;
– L : E 7→ A is a labelling function, that labels each event by an operation;
– 7→∈ E2 is the process order, a partial order such that e 7→ e′ if e precedes e′

on the same process.

1 This hypothesis is only done for the sake of clarity and can be easily removed, like
in [6].

Separating the operational model and the wait-free model 5

A sequential history is a linearization of a distributed history H if it contains
the same operations as H, and the order of appearance of the operations is
compatible with the process order between the events labelled by the operations.
We now define formally the consistency criterion used in this paper: update
consistency.

Update consistency :
A history is update consistent [7] for an object O if, when all the processes

stop executing update operations, they eventually converge towards a state re-
sulting from a linearization of the update operations. Formally, a history H is
update consistent if it is in one of the two following cases :

– The processes never stop updating, i.e. H contains an infinity of update
operations.

– It is possible to omit a finite number of query operations such that resulting
history has a linearization in the sequential specification of O.

3 Computing models

We now present the two computing models used in this paper: the wait-free
model and the operational model, as well as the definition of an execution in the
wait-free model.

3.1 Wait-free model

The wait-free asynchronous message-passing system model, or simply wait-free
model, is composed of n processes called p1, pn. The set of all processes is de-
noted by P . The number n of participating processes is bounded, although it
may not be known by each of them. Processes are asynchronous, in the sense
that there is no bound on their relative speed. Moreover, processes can fail by
crashing: a faulty process executes correctly until it crashes, at which point it
stops operating. A process that does not crash during an execution is called
correct.

Processes can communicate by sending and receiving messages. Communica-
tion channels are reliable, as all sent messages are eventually received by correct
processes. However, channels are asynchronous, in the sense that there is no
bound on the time it takes for one message to be delivered. We suppose that all
sent messages can be uniquely identified.

We assume that processes have access to the causal broadcast abstraction
that provides them with an operation broadcast (m) operation and a receive
(m) event, where m is a message, respecting the following properties.

– Validity: If a process delivers a message m, then m was broadcast by some
process.

– Uniformity: If a process delivers a message m, then all correct processes
deliver m.

6 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

– Termination: If a correct process pi attempts to broadcast m, then pi termi-
nates its broadcast invocation and eventually delivers m.

– Causal delivery: If a process delivers a message m and then broadcasts a
message m′, then all processes delivering m′ have previously delivered m

Note that causal broadcast can be easily implemented in the wait-free model [9].
However, this implementation has a cost in local memory. We choose to include
the primitive in the model to isolate the complexity needed to maintain consis-
tency of the shared objects from the complexity needed to ensure complexity,
and therefore reducing the noise of the complexity results we obtain in the next
sections.

3.2 Operational model

The operational model allows algorithms of form of Algorithm 1. Each process
maintains a local state. Query operations return a value that is locally computed
based on the local state. Update operations are separated into a prepare func-
tion and an effect function. The prepare function computes locally a piece of
information m based on the update function and the local state. Then, function
effect(m) is applied asynchronously on all processes.

1 object A
2 Payload
3 description of the local state

4 Query q
5 return δq(Payload)

6 Update u
7 prepare
8 m is an information to be passed

9 effect(m)
10 Payload← τu(m,Payload)

Algorithm 1: operational model algorithmic form

There is a canonical injection that maps any algorithm A in the operational
model into an algorithm op2wf(A) in the wait-free model, as illustrated by
Algorithm 2. The local states of op2wf(A) are the same as the payload of A and
the queries remain unchanged. In the update operations, the result of the prepare
function is transmitted to the effect function as a single message forwarded on
the network. Because of this, the operational model can be viewed as a restriction
of the wait-free model, where additional constraints on the use of the messages
have been added.

By a slight abuse of language, from now on, we will use the term ”algorithm”
(without precision), to refer to algorithms in the wait-free model. Further notions

Separating the operational model and the wait-free model 7

defined on algorithms are extended to algorithms from the operational model
thanks to the canonical injection.

1 object A ∈ OM(T)
2 localA ← ζ0;
3 operation α is
4 if α ∈ UT then
5 Send(M(α));

6 Return δα(localA);

7 when a message M(α) is received from
8 localA ← τα(localA);

Algorithm 2: Wait-free model translation of the operational model algorith-
mic form

4 Complexity

We consider deterministic algorithms. This allows us to define a state by an
execution or a history. In order to compare the local complexity of algorithms in
the different models, we define the H-complexity that allows us to compare the
efficiency of two algorithms when executing the same history. As the algorithms
are deterministic, we can compare equivalent state in the two algorithms (if the
states are defined by the same sub-history, then they are equivalent).

Definition 1 (H-complexity). Let H be a history that contains a finite num-
ber of updates, and let Λ be an algorithm. Let S be the set of all local states
reachable by any process executing Λ during an execution that can be abstracted
by H.

We define the H-complexity of Λ as follows:

– if S = ∅ (i.e. if H is not admitted by Λ), the H-complexity is 0;
– if S is infinite (i.e. if S contains states of unbounded size), the H-complexity

is ∞;
– otherwise, the H-complexity is the maximal size of a state in S.

5 Update consistent countdown-append object

In this section, we prove that the two models are not equivalent under update
consistency. To do so, we study implementations of the l-Countdown-append
object in both models. More precisely, we compare the number of bits that can

8 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

be needed to encode the local state of some process after it executes l update
operations.

For all words v = u1...ul ∈ {U l} consisting of l update operations of the l-
countdown-append object, we denote by Hv = (U, {1, ..., l}, i→ ui, < |{1, ..., l})
the history in which one process performs all updates of v in their order of
appearance.

We prove the following results. On the one hand, the Hv-complexity of any
algorithm in the operational model is at least l

2−1 bits, for some v. On the other
hand, there exists an algorithm in the wait free model with an Hv-complexity
in O(n log(nl)) bits for all v.

Intuitively, the reason for this difference comes from the fact that the infor-
mation returned by the query operation changes between the countdown phase
and the append phase of the object. Because of message reordering, it happens
that the operations that form the return value in the second phase are already
known (and misinterpreted) by some processes during the first phase. In the
wait-free model, this information can be retrieved from other processes after-
wards. This is not possible in the operational model, so processes have to store
it locally.

5.1 Lower bound in the operational model

We now prove that any algorithm in the operational model has a Hv-complexity
of at least l

2 − 1 bits for some v. Our proof follows the scheme introduced in [4]:
we build a family of executions such that, at some point in the execution, pro-
cess pi performing the operations of v is unable to distinguish between all these
executions and an execution modeled by Hv. Then, in a later stage of the exe-
cution, pi must be able to distinguish between enough of them in order to keep
convergence possible.

P1

P2

u1,1u2,1 ul−1,1ul,1

u1,2u2,2 ul−1,2ul,2

q → ε

q → ε

q → sc

q → sc

U1

U2

Fig. 2. Typical execution in the proof of Theorem 1

Theorem 1. For any deterministic algorithm Λ that implements an update con-
sistent l-countdown-append object in the operational model, there exists v such
that the Hv-complexity of Λ is at least l

2 − 1 bits.

Proof. Let Λ be an algorithm in the operational model implementing an up-
date consistent l-countdown-append object. For each pair of words of update

Separating the operational model and the wait-free model 9

operations (v1, v2), where v1 ∈ {a, b}l and v2 ∈ {c, d}l, we define the execution
X(v1,v2), illustrated on Figure 2, as follows. Only two processes p1 and p2 take
steps in X(v1,v2). All other processes crash before the beginning of the execu-
tion. Initially, process p1 (resp. p2) executes sequentially, in order, the operations
forming v1 (resp. v2). In accordance to the operational model, they broadcast
a single message during each operation. In a later stage, they both receive the
others’ messages, respecting the FIFO ordering. Finally, both processes perform
a query operation. We denote by X = {X(v1,v2)|v1 ∈ {a, b}l ∧ v2 ∈ {c, d}l} the
set of all X(v1,v2) executions.

Let us first remark that update consistency imposes that both query opera-
tions returns the same value vc, that is a suffix of size l, of an interleaving of v1
and v2. Let f(v1, v2) be the number of c and d operations in vc. Note that f is
well defined because Λ is deterministic.

We now distinguish the executions depending on which process has a majority
of operations in the convergence state. We define
X1 = {X(v1,v2) ∈ X : f(v1, v2) ≥ l

2} and X2 = X \ X1. As X1 and X2 form

a partition of X which has a size 22l, we have |X1| ≥ 22l−1 or |X2| ≥ 22l−1.
Without loss of generality, we suppose that |X1| ≥ 22l−1.

We now partition X1 based on the value of v1. For each word v1 ∈ {a, b}l, let
X1(v1) = {X(v,v2) ∈ X1 : v = v1}. There exists a word v1 such that |X1(v1)| ≥
|X1|
|{a,b}l| = 22l−1

2l
= 2l−1. Let us fix such a v1.

Let v2 and v′2 such that X(v1,v2) and X(v1,v′2)
belong to X1(v1). By definition

of f , if X(v1,v2) and X(v1,v′2)
converge to the same state, then v2 and v′2 differ at

most by their l− f(v1, v2) ≤ l
2 first operations. Consequently, there are at least

2l−1

2
l
2

= 2
l
2−1 different values for v2 for whichX(v1,v2) lead to different convergence

states. Let X ′ be a subset of X1(v1) of size 2
l
2−1, in which all convergence states

are different.

In the operational model, the local state of process p2 at the end of the execu-
tion only depends on its local state after executing its own l update operations,
and the messages received from p1 afterwards. In all the executions of X ′, the
messages received by p2 are the same in all executions because v1 is fixed. More-
over, the local state of p2 at the end of all executions is different. This means
that the local state of p2 after doing its updates is also different in all executions.
Consequently, there is a word v2 such that, after executing all update operations
in v2 (execution X), the local state of p2 requires at least l

2 − 1 bits.

Finally, let us consider the execution X ′ in which only p2 takes steps, execut-
ing a the sequence of update operations of v2. Just after executing its updates, p2
cannot distinguish between executions X and X ′, so its local state in X ′ also re-
quires l

2−1 bits. Moreover, X ′ is modeled by Hv2 . Therefore, the Hv2 -complexity

of Λ is at least l
2 − 1 bits.

10 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

5.2 Upper bound in the wait-free model

We now prove there is an algorithm that implements an update consistent l-
Countdown-append in the wait-free model with a lower Hv-complexity, for any
v. Our proof is based on Algorithm 3, based on the algorithm UQ0 from [6].

Each process pi maintains four variables. Variables countdowni and appendi
represent the current local state at pi. If countdowni > 0, the l-countdown-
append object is in the countdown phase. Otherwise it is in the append phase
and its value is appendi. Variable clocki is the equivalent of a version vector,
such that clocki(j) that represents the number of operations done by pj that are
taken into account into the current state of pi. As pi does not know the number of
participants, it is encoded as an associative array, rather than a vector. Finally,
variable leaderi is the identifier of a process such that, clocki < clockleaderi or
pi and pleaderi are in the same local state.

When a process invokes the query operation q, it computes locally the state
of the object based on countdowni and appendi.

When process pi invokes an update operation a, b, c or d, it increments its
local clock clocki[i] and broadcasts a message mUpdate (Line 9). At reception of
such a message, pi executes the operation (decrements countdowni if the count-
down is not finished, or append the operation to appendi), and answers with a
mUpdate message containing its version of the state and its current vector clock.

When receiving a correction message, the process checks if the message re-
ceived is more recent according to the vector clock, and if that is the case, it
replaces its own data with the received one.

In order to keep the paper as readable as possible, we only give a sketch of
the correctness proof here. A more formal proof can be found in [6].

Lemma 1 (Update consistency). All distributed histories admitted by Algo-
rithm 3 are update consistent for the l-countdown-append object.

Proof. Let H a history admitted by Algorithm 3. If H contains a finite number
of queries or an infinite number of updates, it is update consistent by defini-
tion. Otherwise, at least the process performing updates is correct. Let us sup-
pose that each process pi performs a finite number mi of updates. Let us pose
m =

∑n
i=1mi. After some finite time t1, all correct processes have received all

messages mUpdate sent during the execution, and after some finite time t2, all
correct processes have received all messages mCorrect sent during the execution.

If m ≤ l, after t1, all read operations return l−m (or ε when l = m), which
is correct for update consistency. If m > l, all correct processes broadcast m− l
messages mCorrect. Let us consider the process pj that broadcast m−l messages
mCorrect, with the smallest identifier (it exists because at least one process is
correct), and let mC = mCorrect(clj , j, aj) be its last message. Because of the
causal broadcast, no process can receive a message mUpdate after mC. Moreover,
the clock clj is maximal and j is minimal, so by the condition of lines 18-19, all
processes will adopt state aj at reception of mC and keep it afterwards. Finally,
aj is corresponds to a state accessible by a linearization of the updates in H:
the clock mechanism of lines 11 and 18-19 ensures that each update is applied

Separating the operational model and the wait-free model 11

1 var clocki ∈ Array(N,N)← [i 7→ 0];
2 var leaderi ∈ N← i;
3 var countdowni ∈ {0, ..., l} ← l;
4 var appendi ∈ U? ← ε;
5 operation q()
6 if countdowni = 0 then return appendi;
7 else return countdowni;

8 operation u() // u ∈ U
9 broadcast mUpdate (clocki[i] + 1, i, u);

10 receive mUpdate (tj ∈ N, j ∈ N, u ∈ U)
11 if clocki[j] < tj then
12 clocki[j]← tj ; leaderi ← i;
13 if countdowni = 0 then
14 appendi ← appendi · u;
15 broadcast mCorrect (clocki, i, appendi);

16 else countdowni ← countdowni − 1;

17 receive mCorrect (clj ∈ Array(N,N), j ∈ N, aj ∈ U?)
18 if (∀k, clocki[k] ≤ clj [k])∧
19 (j ≤ leaderi ∨ ∃k, clocki[k] < clj [k]) then
20 appendi ← aj ; clocki ← clj ; leaderi ← j;

Algorithm 3: The countdown-append object in the wait-free model

exactly once, and causal delivery ensures that the order between the updates is
respected.

Lemma 2 (Wait-freedom). Algorithm 3 is wait-free.

Proof. This comes from the fact that it contains no loop.

Lemma 3 (Complexity). For all l ∈ N and v ∈ U l, Algorithm 3 has an Hv-
complexity of O(log(nl)) bits.

Proof. Let l ∈ N and v ∈ U l. In any execution abstracted by Hv, there is a
process pi that performs all l update operations, and sends all messages mUpdate.
At reception of any of these messages by any process pj , the condition of Line 13
is false, so no message mUpdate is ever sent.

For all processes pj and pk 6= pi, clockj [k] = 0 and clockj [i] ≤ l. If we
encode clocki by a set of pairs 〈j, clocki[j]〉, the encoding takes less than log(n)+
log(l) = log(nl) bits; The process identifier leaderi can be encoded in log(n) bits;
countdowni can take at most l different values, so it can be encoded in log(l)
bits; finally appendi = ε is a constant value, so it has an encoding of constant
size c.

Theorem 2. There exists an algorithm Λ implementing an update consistent
l-countdown-append object in the wait-free model such that, for all v ∈ U l, Λ has
an Hv-complexity of O(log(nl)) bits.

12 Grégoire Bonin, Achour Mostéfaoui, and Matthieu Perrin

Proof. By Lemmas 1, 2 and 3, Algorithm 3 is an example.

We can finally conclude on the non-equivalence between the two computing
model in the implementation of update consistency.

Corollary 1. There exists an object O and an algorithm Λwf implementing an
update consistent O in the wait-free model, such that, for any algorithm Λom

implementing an update consistent O object in the operational model, there is a
history H such that Λwf has a strictly lower H-complexity than Λom.

Proof. By Lemma 3, there exists a constant x > 1 such that, for any v, the Hv

complexity of Algorithm 3 is strictly lower than x log(nl) bits. Let l > 2−
1+x log n

x .
We have x log(nl) < l

2 − 1.
Let O be the l-countdown-append object, and let Λom implementing an up-

date consistent O in the operational model. By Theorem 1, there exists v such
that the Hv-complexity of Λom is at least l

2 − 1 bits. Therefore, Algorithm 3 has
a strictly lower Hv-complexity than Λom.

6 Conclusion

In this paper we answered the following question: are the wait-free model and the
operational model equivalent in terms of local complexity? We proved that the
response to this question is no in the case of update consistency: we proved that
there exists an object that has a different complexity in the two models: the l-
countdown-append object. In the wait-free model, there is an algorithm for which
the complexity required to encode a special state of the object is upper bounded
by O(log(nl)) bits, whereas in the operational model, any algorithm requires at
least l

2 −1 bits to encode the same state. This means that the operational model
does not allow the optimal implementation for update consistency.

The result proposed in this papers shows that the question of whether the
operational model is well suited to represent partition tolerance is not simple,
especially in the context of determining the complexity in local memory required
to implement shared objects. An interesting open question is whether the lower
bounds proved for several objects in the operational model can be extended to
the wait-free model.

References

1. Attiya, H., Burckhardt, S., Gotsman, A., Morrison, A., Yang, H., Zawirski, M.:
Specification and complexity of collaborative text editing. In: Symposium on Prin-
ciples of Distributed Computing. pp. 259–268. ACM (2016)

2. Attiya, H., Ellen, F., Morrison, A.: Limitations of highly-available eventually-
consistent data stores. IEEE Trans. Parallel Distrib. Syst. 28(1), 141–155 (2017)

3. Baldoni, R., Brzezinski, J., Hélary, J.M., Mostefaoui, A., Raynal, M.: Characteri-
zation of consistent global checkpoints in large-scale distributed systems. In: Work-
shop on Future Trends of Dist. Computing Systems. pp. 314–323. IEEE (1995)

Separating the operational model and the wait-free model 13

4. Burckhardt, S., Gotsman, A., Yang, H., Zawirski, M.: Replicated data types: spec-
ification, verification, optimality. In: ACM Sigplan Notices. vol. 49, pp. 271–284.
ACM (2014)

5. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. Acm Sigact News (2002)

6. Perrin, M.: Distributed Systems: Concurrency and Consistency. Elsevier (2017)
7. Perrin, M., Mostefaoui, A., Jard, C.: Update consistency for wait-free concurrent

objects. In: International Parallel and Distributed Processing Symposium. pp. 219–
228. IEEE (2015)

8. Randell, B., Lee, P., Treleaven, P.C.: Reliability issues in computing system design.
ACM Computing Surveys (CSUR) 10(2), 123–165 (1978)

9. Raynal, M., Schiper, A., Toueg, S.: The causal ordering abstraction and a simple
way to implement it. Information processing letters 39(6), 343–350 (1991)

10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: Symposium on Self-Stabilizing Systems. pp. 386–400. Springer (2011)

