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Does the operational model capture partition tolerance in distributed systems?

In large scale distributed systems, replication is essential in order to provide availability and partition tolerance. Such systems are abstracted by the waitfree model, composed of asynchronous processes that communicate by sending and receiving messages, and in which any process may crash. Complexity in local memory has already been studied for several objects, including sets, databases and collaborative editors. However, the literature has focused on a subclass of algorithms, called the operational model, in which processes can only broadcast one message per update operation and the read operation incurs no communication.

This paper tackles the following question: are the operational model and the wait-free model equivalent from the complexity point of view?

We show that update consistency allows implementations in the wait-free model that require strictly less local memory than their counterparts in the operational model.

Introduction

In distributed systems, shared objects are used to simplify the implementation of distributed applications, and provide fault tolerance by replication. Problems arise with replication as consistency has to be maintained between the different replicas.

The most natural and intuitive abstraction for the user would be to view a distributed/replicated object as if it is a single physical object shared by all the processes. This means that all the operations on the object, possibly concurrent or interleaving, appear as if they have been executed atomically and sequentially. Such an abstraction has to respect a correctness condition called strong consistency. Unfortunately, the CAP Theorem [START_REF] Gilbert | Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services[END_REF] states that this property is unrealizable in most systems, as it is impossible to combine strong consistency, availability and partition tolerance in asynchronous systems. Eventual consistency was introduced to overcome this issue. It states that, after update operations stop taking place, the different replicas will eventual converge to an identical state.

In this context, Conflict-Free Replicated Data Types (CRDTs) [START_REF] Shapiro | Conflict-free replicated data types[END_REF] constitute a family of objects designed to achieve eventual consistency. Those are based on a theorem stating the equivalence between two kinds of objects: the Commutative Replicated Data Types (CmRDTs), in which all update operations commute, and Convergent Replicated Data Types (CvRDTs), whose states form a lattice. For example, the G-set (grow-only set) provides two different operations: an update operation that inserts an element and a query operation that reads if a specific element is in the set. On the CmRDT viewpoint, inserting x and inserting y commute. On the CvRDT viewpoint, the set inclusion is a lattice order on the states of the set. The operational model has been proposed to abstract the implementation of CRDTs. In the operational model, each replica maintains a local state on which the operations are done. An update operation is divided into two facets. First, the update operation is prepared locally by the replica where the update operation is issued and then a message is broadcast to inform all other replicas. Second, the local state of each replica is updated at reception of the update message. By the commutative effect all replicas converge to the same state when no update operation is in progress.

As only one message is broadcast per update operation, algorithms in the operational model are, by design, optimal in terms of the number of used messages. The amount of metadata that must be stored on each replica to ensure convergence is more problematic and has been widely studied for several objects including sets, counters and registers [START_REF] Burckhardt | Replicated data types: specification, verification, optimality[END_REF], data stores [START_REF] Attiya | Limitations of highly-available eventuallyconsistent data stores[END_REF] and collaborative editors [START_REF] Attiya | Specification and complexity of collaborative text editing[END_REF].

Despite the fact that algorithms from the operational model are naturally partition tolerant and minimize the number of messages needed in their implementation, the operational model imposes limitations on the form of its admissible algorithms. It is for example impossible to acknowledge or forward messages, to execute local steps without the reception of a message, or to propagate information during read operations. This prevents algorithms from using more advanced techniques like the message schemes used by checkpointing [START_REF] Randell | Reliability issues in computing system design[END_REF][START_REF] Baldoni | Characterization of consistent global checkpoints in large-scale distributed systems[END_REF]. Such algorithms are usually studied in the wait-free asynchronous message-passing distributed model, or simply the wait-free model, in which asynchronous processes communicate by sending and receiving messages. Any number of processes may crash, which also captures partition tolerance as it is impossible for a process to wait for an acknowledgement from any other process since all other processes may have crashed.

Problem statement

The wait-free model is strictly more general than the operational model, as any algorithm from the operational model can be naturally transformed into an algorithm in the wait-free model, but the converse does not hold. In particular, this means that the complexity results proven in the operational model may not hold in the wait-free model.

Therefore arises the following question: are the wait-free model and the operational model equivalent in terms of complexity ?

Approach In this paper, we consider objects specified by a sequential specification, that describes the behaviour of the object when processes access it sequentially, and a weak consistency criterion, namely update consistency [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF]. Update consistency strengthens eventual consistency by stating that the convergence state must be obtainable in a sequentially consistent execution. In other words, it can be obtained by a sequential ordering of the update operations. On a computability viewpoint, it is possible to implement any object with this criteria in both computing models [7, ?].

Contributions We prove that there exists an object whose implementation in the wait-free model requires strictly less local memory than its operational model counterpart.

In Section 2, we present the shared objects that we consider for our proofs, and more particularly a new object, the Countdown-append, as well as the two consistency criteria we use. In Section 3, we present the state of the art of the two models and define our formalism to study the properties of the implementations of the two models. In Section 4, we present the algorithm type and the complexity that we use to compare the different models. In Section 5, we prove the difference between the two models under update consistency. In Section ??, we prove the equivalence of the two models under causal convergence.

Shared objects

In distributed systems, several kinds of shared objects have been proposed to provide the processes with higher-level abstractions. There are two main kinds of objects. On the one hand, one-shot objects like consensus and renaming are a generalization of functions in sequential systems, where each process proposes an input and decides an output. One-shot objects are specified by a binary relation that relates input vectors to the admitted output vectors. On the other hand, long-lived objects, such as registers and queues, are a generalization of data structures in sequential programming, aiming at storing and organizing data in memory. This paper only considers long-lived objects Long-lived objects are defined by three components: a sequential specification that describes its expected behaviour when operations are accessed sequentially (e.g. a queue or a stack), a consistency criterion that describes how concurrency affects the object (e.g. linearizability or eventual consistency), and a progress condition that enforces termination guarantees. The only progress condition we address in this paper is wait-freedom: all operations invoked by non-faulty processes terminate.

Sequential specifications

In order to keep close enough to the CRDTs, we suppose that shared objects are accessed by two distinct kinds of operations: updates, from a set U , modify the local state of the object but do not return a value, and queries, from a set Q, return a value in a set B that depends on the state of the object but do not modify it1 . The set of all operations is A = U ∪ (Q × B). A sequential history is a (finite or infinite) sequence of symbols in A.

The sequential specification of an object is the set of all sequential histories admitted by the object. It describes the behaviour of the object when it is used by a single process.

As an example, we now define the l-countdown-append object, where l ∈ N, that will be especially useful in Section 5. The l-countdown-append object exposes 4 update operations, a, b, c and d and one query operation, q. Figure 1 represents the behaviour of the object as an automaton. It is divided into two phases: during the first phase, the object counts the number of update operations, starting from l, down to 1, then ε (the empty word). In the second phase, the operation is concatenated at the end of the state. Finally, the query operation returns the local state of the objects each time it is executed.
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aa ab ac ad . . . q q q q q q q q q q q q . . . q Fig. 1. Representation of a l-countdown-append object as an automaton.

Consistency criterion

A consistency criterion defines how concurrency affects the distributed behaviour of an object. Formally, it identifies which distributed histories are admissible for a given sequential specification.

A distributed history models a distributed executions of a program using a shared object. It is defined by a tuple H = (A, E, L, →) ∈ H, where:

-A is the set of operations of the object (the same set as in sequential histories); -E is a countable set of events; -L : E → A is a labelling function, that labels each event by an operation; -→∈ E 2 is the process order, a partial order such that e → e if e precedes e on the same process.

A sequential history is a linearization of a distributed history H if it contains the same operations as H, and the order of appearance of the operations is compatible with the process order between the events labelled by the operations. We now define formally the consistency criterion used in this paper: update consistency.

Update consistency: A history is update consistent [START_REF] Perrin | Update consistency for wait-free concurrent objects[END_REF] for an object O if, when all the processes stop executing update operations, they eventually converge towards a state resulting from a linearization of the update operations. Formally, a history H is update consistent if it is in one of the two following cases :

-The processes never stop updating, i.e. H contains an infinity of update operations. -It is possible to omit a finite number of query operations such that resulting history has a linearization in the sequential specification of O.

Computing models

We now present the two computing models used in this paper: the wait-free model and the operational model, as well as the definition of an execution in the wait-free model.

Wait-free model

The wait-free asynchronous message-passing system model, or simply wait-free model, is composed of n processes called p 1 , p n . The set of all processes is denoted by P . The number n of participating processes is bounded, although it may not be known by each of them. Processes are asynchronous, in the sense that there is no bound on their relative speed. Moreover, processes can fail by crashing: a faulty process executes correctly until it crashes, at which point it stops operating. A process that does not crash during an execution is called correct.

Processes can communicate by sending and receiving messages. Communication channels are reliable, as all sent messages are eventually received by correct processes. However, channels are asynchronous, in the sense that there is no bound on the time it takes for one message to be delivered. We suppose that all sent messages can be uniquely identified.

We assume that processes have access to the causal broadcast abstraction that provides them with an operation broadcast (m) operation and a receive (m) event, where m is a message, respecting the following properties.

-Validity: If a process delivers a message m, then m was broadcast by some process.

-Uniformity: If a process delivers a message m, then all correct processes deliver m.

-Termination: If a correct process p i attempts to broadcast m, then p i terminates its broadcast invocation and eventually delivers m. -Causal delivery: If a process delivers a message m and then broadcasts a message m , then all processes delivering m have previously delivered m

Note that causal broadcast can be easily implemented in the wait-free model [START_REF] Raynal | The causal ordering abstraction and a simple way to implement it[END_REF]. However, this implementation has a cost in local memory. We choose to include the primitive in the model to isolate the complexity needed to maintain consistency of the shared objects from the complexity needed to ensure complexity, and therefore reducing the noise of the complexity results we obtain in the next sections.

Operational model

The operational model allows algorithms of form of Algorithm 1. Each process maintains a local state. Query operations return a value that is locally computed based on the local state. Update operations are separated into a prepare function and an effect function. The prepare function computes locally a piece of information m based on the update function and the local state. Then, function ef f ect(m) is applied asynchronously on all processes. 

Algorithm 1: operational model algorithmic form

There is a canonical injection that maps any algorithm A in the operational model into an algorithm op2wf (A) in the wait-free model, as illustrated by Algorithm 2. The local states of op2wf (A) are the same as the payload of A and the queries remain unchanged. In the update operations, the result of the prepare function is transmitted to the effect function as a single message forwarded on the network. Because of this, the operational model can be viewed as a restriction of the wait-free model, where additional constraints on the use of the messages have been added.

By a slight abuse of language, from now on, we will use the term "algorithm" (without precision), to refer to algorithms in the wait-free model. Further notions defined on algorithms are extended to algorithms from the operational model thanks to the canonical injection. 
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Complexity

We consider deterministic algorithms. This allows us to define a state by an execution or a history. In order to compare the local complexity of algorithms in the different models, we define the H-complexity that allows us to compare the efficiency of two algorithms when executing the same history. As the algorithms are deterministic, we can compare equivalent state in the two algorithms (if the states are defined by the same sub-history, then they are equivalent).

Definition 1 (H-complexity).

Let H be a history that contains a finite number of updates, and let Λ be an algorithm. Let S be the set of all local states reachable by any process executing Λ during an execution that can be abstracted by H.

We define the H-complexity of Λ as follows:

if S = ∅ (i.e. if H is not admitted by Λ), the H-complexity is 0; if S is infinite (i.e. if S contains states of unbounded size), the H-complexity is ∞; otherwise, the H-complexity is the maximal size of a state in S.

Update consistent countdown-append object

In this section, we prove that the two models are not equivalent under update consistency. To do so, we study implementations of the l-Countdown-append object in both models. More precisely, we compare the number of bits that can be needed to encode the local state of some process after it executes l update operations.

For all words v = u 1 ...u l ∈ {U l } consisting of l update operations of the lcountdown-append object, we denote by H v = (U, {1, ..., l}, i → u i , < |{1, ..., l}) the history in which one process performs all updates of v in their order of appearance.

We prove the following results. On the one hand, the H v -complexity of any algorithm in the operational model is at least l 2 -1 bits, for some v. On the other hand, there exists an algorithm in the wait free model with an H v -complexity in O(n log(nl)) bits for all v.

Intuitively, the reason for this difference comes from the fact that the information returned by the query operation changes between the countdown phase and the append phase of the object. Because of message reordering, it happens that the operations that form the return value in the second phase are already known (and misinterpreted) by some processes during the first phase. In the wait-free model, this information can be retrieved from other processes afterwards. This is not possible in the operational model, so processes have to store it locally.

Lower bound in the operational model

We now prove that any algorithm in the operational model has a H v -complexity of at least l 2 -1 bits for some v. Our proof follows the scheme introduced in [4]: we build a family of executions such that, at some point in the execution, process p i performing the operations of v is unable to distinguish between all these executions and an execution modeled by H v . Then, in a later stage of the execution, p i must be able to distinguish between enough of them in order to keep convergence possible.
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Typical execution in the proof of Theorem 1 Theorem 1. For any deterministic algorithm Λ that implements an update consistent l-countdown-append object in the operational model, there exists v such that the H v -complexity of Λ is at least l 2 -1 bits. Proof. Let Λ be an algorithm in the operational model implementing an update consistent l-countdown-append object. For each pair of words of update operations (v 1 , v 2 ), where v 1 ∈ {a, b} l and v 2 ∈ {c, d} l , we define the execution X (v1,v2) , illustrated on Figure 2, as follows. Only two processes p 1 and p 2 take steps in X (v1,v2) . All other processes crash before the beginning of the execution. Initially, process p 1 (resp. p 2 ) executes sequentially, in order, the operations forming v 1 (resp. v 2 ). In accordance to the operational model, they broadcast a single message during each operation. In a later stage, they both receive the others' messages, respecting the FIFO ordering. Finally, both processes perform a query operation. We denote by X = {X (v1,v2) |v 1 ∈ {a, b} l ∧ v 2 ∈ {c, d} l } the set of all X (v1,v2) executions.

Let us first remark that update consistency imposes that both query operations returns the same value v c , that is a suffix of size l, of an interleaving of v 1 and v 2 . Let f (v 1 , v 2 ) be the number of c and d operations in v c . Note that f is well defined because Λ is deterministic.

We now distinguish the executions depending on which process has a majority of operations in the convergence state. We define

X 1 = {X (v1,v2) ∈ X : f (v 1 , v 2 ) ≥ l 2 } and X 2 = X \ X 1 .
As X 1 and X 2 form a partition of X which has a size 2 2l , we have

|X 1 | ≥ 2 2l-1 or |X 2 | ≥ 2 2l-1 . Without loss of generality, we suppose that |X 1 | ≥ 2 2l-1 .
We now partition X 1 based on the value of v 1 . For each word v 1 ∈ {a, b} l , let

X 1 (v 1 ) = {X (v,v2) ∈ X 1 : v = v 1 }. There exists a word v 1 such that |X 1 (v 1 )| ≥ |X1| |{a,b} l | = 2 2l-1 2 l = 2 l-1 . Let us fix such a v 1 .
Let v 2 and v 2 such that X (v1,v2) and X (v1,v 2 ) belong to X 1 (v 1 ). By definition of f , if X (v1,v2) and X (v1,v 2 ) converge to the same state, then v 2 and v 2 differ at most by their l -f (v 1 , v 2 ) ≤ l 2 first operations. Consequently, there are at least

2 l-1 2 l 2 = 2 l 2 -1 different values for v 2 for which X (v1,v2) lead to different convergence states. Let X be a subset of X 1 (v 1 ) of size 2 l 2 -1
, in which all convergence states are different.

In the operational model, the local state of process p 2 at the end of the execution only depends on its local state after executing its own l update operations, and the messages received from p 1 afterwards. In all the executions of X , the messages received by p 2 are the same in all executions because v 1 is fixed. Moreover, the local state of p 2 at the end of all executions is different. This means that the local state of p 2 after doing its updates is also different in all executions. Consequently, there is a word v 2 such that, after executing all update operations in v 2 (execution X), the local state of p 2 requires at least l 2 -1 bits.

Finally, let us consider the execution X in which only p 2 takes steps, executing a the sequence of update operations of v 2 . Just after executing its updates, p 2 cannot distinguish between executions X and X , so its local state in X also requires l 2 -1 bits. Moreover, X is modeled by H v2 . Therefore, the H v2 -complexity of Λ is at least l 2 -1 bits.

Upper bound in the wait-free model

We now prove there is an algorithm that implements an update consistent l-Countdown-append in the wait-free model with a lower H v -complexity, for any v. Our proof is based on Algorithm 3, based on the algorithm UQ 0 from [START_REF] Perrin | Distributed Systems: Concurrency and Consistency[END_REF]. Each process p i maintains four variables. Variables countdown i and append i represent the current local state at p i . If countdown i > 0, the l-countdownappend object is in the countdown phase. Otherwise it is in the append phase and its value is append i . Variable clock i is the equivalent of a version vector, such that clock i (j) that represents the number of operations done by p j that are taken into account into the current state of p i . As p i does not know the number of participants, it is encoded as an associative array, rather than a vector. Finally, variable leader i is the identifier of a process such that, clock i < clock leaderi or p i and p leaderi are in the same local state.

When a process invokes the query operation q, it computes locally the state of the object based on countdown i and append i .

When process p i invokes an update operation a, b, c or d, it increments its local clock clock i [i] and broadcasts a message mUpdate (Line 9). At reception of such a message, p i executes the operation (decrements countdown i if the countdown is not finished, or append the operation to append i ), and answers with a mUpdate message containing its version of the state and its current vector clock.

When receiving a correction message, the process checks if the message received is more recent according to the vector clock, and if that is the case, it replaces its own data with the received one.

In order to keep the paper as readable as possible, we only give a sketch of the correctness proof here. A more formal proof can be found in [START_REF] Perrin | Distributed Systems: Concurrency and Consistency[END_REF].

Lemma 1 (Update consistency). All distributed histories admitted by Algorithm 3 are update consistent for the l-countdown-append object.

Proof. Let H a history admitted by Algorithm 3. If H contains a finite number of queries or an infinite number of updates, it is update consistent by definition. Otherwise, at least the process performing updates is correct. Let us suppose that each process p i performs a finite number m i of updates. Let us pose m = n i=1 m i . After some finite time t 1 , all correct processes have received all messages mUpdate sent during the execution, and after some finite time t 2 , all correct processes have received all messages mCorrect sent during the execution.

If m ≤ l, after t 1 , all read operations return l -m (or ε when l = m), which is correct for update consistency. If m > l, all correct processes broadcast m -l messages mCorrect. Let us consider the process p j that broadcast m-l messages mCorrect, with the smallest identifier (it exists because at least one process is correct), and let mC = mCorrect(cl j , j, a j ) be its last message. Because of the causal broadcast, no process can receive a message mUpdate after mC. Moreover, the clock cl j is maximal and j is minimal, so by the condition of lines 18-19, all processes will adopt state a j at reception of mC and keep it afterwards. Finally, a j is corresponds to a state accessible by a linearization of the updates in H: the clock mechanism of lines 11 and 18-19 ensures that each update is applied Proof. By Lemmas 1, 2 and 3, Algorithm 3 is an example.

We can finally conclude on the non-equivalence between the two computing model in the implementation of update consistency.

Corollary 1. There exists an object O and an algorithm Λ wf implementing an update consistent O in the wait-free model, such that, for any algorithm Λ om implementing an update consistent O object in the operational model, there is a history H such that Λ wf has a strictly lower H-complexity than Λ om .

Proof. By Lemma 3, there exists a constant x > 1 such that, for any v, the H v complexity of Algorithm 3 is strictly lower than x log(nl) bits. Let l > 2 -1+x log n x . We have x log(nl) < l 2 -1. Let O be the l-countdown-append object, and let Λ om implementing an update consistent O in the operational model. By Theorem 1, there exists v such that the H v -complexity of Λ om is at least l 2 -1 bits. Therefore, Algorithm 3 has a strictly lower H v -complexity than Λ om .

Conclusion

In this paper we answered the following question: are the wait-free model and the operational model equivalent in terms of local complexity? We proved that the response to this question is no in the case of update consistency: we proved that there exists an object that has a different complexity in the two models: the lcountdown-append object. In the wait-free model, there is an algorithm for which the complexity required to encode a special state of the object is upper bounded by O(log(nl)) bits, whereas in the operational model, any algorithm requires at least l 2 -1 bits to encode the same state. This means that the operational model does not allow the optimal implementation for update consistency.

The result proposed in this papers shows that the question of whether the operational model is well suited to represent partition tolerance is not simple, especially in the context of determining the complexity in local memory required to implement shared objects. An interesting open question is whether the lower bounds proved for several objects in the operational model can be extended to the wait-free model.
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This hypothesis is only done for the sake of clarity and can be easily removed, like in[START_REF] Perrin | Distributed Systems: Concurrency and Consistency[END_REF].

1 var clocki ∈ Array(N, N) ← [i → 0]; 2 var leaderi ∈ N ← i; 3 var countdowni ∈ {0, ..., l} ← l; 4 var append i ∈ U ← ε; 5 operation q() 6 if countdowni = 0 then return append i ; 7 else return countdowni;

Algorithm 3: The countdown-append object in the wait-free model exactly once, and causal delivery ensures that the order between the updates is respected.

Lemma 2 (Wait-freedom). Algorithm 3 is wait-free.

Proof. This comes from the fact that it contains no loop.

Lemma 3 (Complexity). For all l ∈ N and v ∈ U l , Algorithm 3 has an H vcomplexity of O(log(nl)) bits.

Proof. Let l ∈ N and v ∈ U l . In any execution abstracted by H v , there is a process p i that performs all l update operations, and sends all messages mUpdate. At reception of any of these messages by any process p j , the condition of Line 13 is false, so no message mUpdate is ever sent.

For all processes p j and p k = p i , clock j [k] = 0 and clock j [i] ≤ l. If we encode clock i by a set of pairs j, clock i [j] , the encoding takes less than log(n) + log(l) = log(nl) bits; The process identifier leader i can be encoded in log(n) bits; countdown i can take at most l different values, so it can be encoded in log(l) bits; finally append i = ε is a constant value, so it has an encoding of constant size c. Theorem 2. There exists an algorithm Λ implementing an update consistent l-countdown-append object in the wait-free model such that, for all v ∈ U l , Λ has an H v -complexity of O(log(nl)) bits.