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CONSTRUCTION OF A STATISTICAL LEARNING TOOL BASED ON

ORDINARY DIFFERENTIAL EQUATIONS TO MODEL THE DIGESTIVE

BEHAVIOUR OF ROSS CHIKENS

Nicolas Bloyet1, 2, Hélène Flourent2, Emmanuel Frénod2,1, Marouan Handa3,

Harold Moundoyi4 and Thuy Vo Thi Phuong5

Abstract. Being able to monitor and forecast farm animal performances is a strategic problem in

the agronomy industry. We use a Data-Model Coupling approach to build a biomimetic Statistical

Learning tool taking into account some aspects of the biological dynamics of the animal body. The

objective is to build a tool which is able to assimilate data about daily feed consumption and measured

performances.

The model encompasses several sub-models corresponding to compartments and permitting to mimic

a kinetic process divided into several steps. Each sub-model contains parameters which can be learnt

by using an optimization algorithm and data.

The goal of the �rst application of the model on �eld data was to simulate and predict the growth

of chickens. An experiment was performed during 70 days to collect every day the feed consumption

and the weight gain of a male and a female chickens. After the learning of the model parameters, the

model shows a very good approximation of the chicken's weight evolution over time.

Introduction

Being able to monitor and forecast farm animals performances is a strategic problem in the agronomy industry:
since several decades, endeavors have been made in this activity sector, with the aim to optimize the breeding-
related production, as for example meat, eggs, milk, etc. (See Filipe et al. 2012).
Today, new technologies permit to monitor farm animals and collect a wide range of information as explained

in Büchel and Sundrum 2014, Miekley et al. 2012, Suganthi Jemila and Suja Priyadharsini 2018, van der Tol and
van der Kamp 2010 and Holman et al. 2011. Yet, those tools are still expensive and their use still infrequent.
Furthermore, biological data contain high variability (Noise, heterogeneity, missing and aberrant values, etc.)
(See Locke et al. 2005Qi et al. 2006). Therefore, to treat most of biological issues we have to build precise
predictive tools from few exploitable data.
Animals are complex living organisms in which intakes induce complex physico-chemical phenomena. There-

fore to be able to link inputs and outputs concerning the evolution of some sensed biological factors, we need
a mathematical model taking into account some aspects of the animal's body dynamics (See Renzullo et al.
2008).
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The main objective of this study is to build a tool which is able to predict outputs from inputs concerning
farm animals and also able to manage the existence of underlying complex biological phenomena. In this paper
we are going to present the construction of a Statistical Learning tool based on a dynamical mathematical model
corresponding to a system of Ordinary Di�erential Equations (ODE). The �rst application of this Statistical
Learning tool consisted to simulate and predict the growth of chickens.

Purpose

Growth simulation is a well-known problem, and some classical models - such as the Gompertz's and the
Verhulst's models - are very well suited to �t some growth data as it is showed in Birch 1999 and Roush et al.
2006. Nevertheless those classical growth models do not permit to perform data assimilation. Indeed, almost
no input data can be integrated in those kind of models.
On another hand, some works had already treated biological modeling issues by developing realistic and

speci�c models as in Taghipoor 2012. But the construction of those realistic models is a costly task resulting
in models containing a lot of equations and unknown parameters making them di�cult to implement.
A model-free approach is also explored, as in Guardabasso et al. 1987 for instance. Machine Learning tool

based on Neural Networks were developed to simulate and predict the evolution of biological factors in Gorczyca
et al. 2018. This approach, which are only based on data does not need knowledge about the link existing between
the used inputs and outputs and permits to develop easier to handle models. But those models need a large
amount of data to be �tted and compensate the lack of taken into account knowledge (See Valletta et al. 2017).
In the light of the existing methods for predicting biological responses, we decided to explore an approach

which can be de�ned as being half-way between �model-free� and �full-model� approaches: we explored the
Model-Data Coupling theory to construct a tool integrating biological knowledge in a mathematical model, and
using data, to optimize the model parameters. Model-Data Coupling is an expanding approach but primarily
developed to treat issues in meteorology (See Simmons and Hollingsworth 2002), hydrology (See Kim and Barros
2002, L. Crosson et al. 2002 and Mackay et al. 2003) and biogeochemistry (See Barrett et al. 2005, Barrett 2002,
Rayner et al. 2005 and SACKS et al. 2006).
We built our model by splitting the whole complex kinetic into several parsimonious sub-biomimetic-processes

performed by a combination of successive compartments. All those compartments compute their respective be-
haviors, and then exchange messages, assimilable to �uxes. To do that we built several Ordinary Di�erential
Equations integrating the mathematical expressions of biological phenomena (storage, saturation, etc.).

Scope

In the scope of this study, we focus on meat poultry and speci�cally two biological strains :

• Ross 308 (Aviagen)
• Cobb 500 (Cobb-Vantress)

Some informations on those animals (an average individual of each strain) are publicly available (REF) and
so we know, for each sex of those strains:

• their daily consumption of food, during 70 days
• their daily growth, during 70 days

As a �rst step, we are going to consider the growth (mass gained each day) and the loss (ratio of food unme-
tabolized).

In this paper we are going to introduce in Section 1 the applied methodology. Then in Section 2 we will
present the developed mathematical model and the results obtained by using this model to simulate the growth
of chickens.
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1. Methodology

1.1. Biological-like function

The basis computational unit used in the following work is what we de�ned here as organ-like compartment.
We de�ne it as a tuple :

• input ∈ Rin, in ∈ N
• output ∈ Rout, out ∈ N
• function : Rin → Rout

• state ∈ Rstates, states ∈ N
where input and output can be treated as vectors of �xed dimensions in and out, which are each relative to a
�ux of a particular kind. There is a mapping between those vectors through function, which corresponds to a
biological-like function. This function models a biological phenomenon in a synthesized way. Finally, state is
a vector allowing these computational units to have a state, in other words a kind of memory, which can take
part in the expression of the said function.
The dimensions of these input / output vectors therefore correspond to information exchanges in the form of

messages between the organ-like compartments, the nature of which can be, for example, nutrients, drugs active
principles, etc. These functions can for example try to mimic a phenomenon of �xing, convection, di�usion, etc.
Figure 1 shows how such a biological-like function can be summarized as a computational unit.

Figure 1. A biological-like function

1.2. Functions network

These deliberately simple functions are not complex enough to model an organism. However, by making the
contact between them, it becomes possible to model a more complex structure. To do this, a communication is
established from the output vector of a biomimetic function to the input vector of the following function (Figure
2). Since these functions have states, the network as a whole can be likened to a �nite state machine.

1.3. Optimization steps

This network acting like a model containing several parameters to optimize. We can distinguish two groups
of parameters.
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Figure 2. Example of a graph-model

1.3.1. Biological-like functions (organ-level)

The �rst step of optimization is at the level of biological-like functions. Most of the phenomena that we are
trying to model involve parameters corresponding for example to the part of information exchanged between
the compartments, saturation thresholds, etc. These are optimized in order to �t as much as possible the data.
To determine these parameters we use an non-linear optimization algorithm implmented in Matlab (fmincon).

This algorithm allows us to �nd the set of parameters minimizing the model error towards data used.

1.3.2. Network structure (organism level)

The nature of the links between these di�erent functions also involves parameters (weighting link, pre-
processing of the vector), and is therefore also subject to optimization.
In our study, these parameters essentially correspond to the amount of information exchanged between the

compartments. Given the small number of computational units involved at this stage, and so a reasonable
dimensionality of the problem, it is possible to use a conventional optimization by just including them in the
above set of parameters, but potentially on a complex structure, a heuristic search method (genetic algorithm
for example) could be preferred.
We could also favor separated processes of optimization, where each organ would be adjusted independently,

before adjusting the whole network.

1.4. Main goals

The goal of the following work is to build a Statistical Learning tool that can be used to simulate the food
consumption and mass gain of poultry, to obtain results close to what one would obtain with a growth law
�tting, with the singular di�erence that this association of function will not only be a function of time but also
of the food consumed, and thus would have an increased biological correspondence.
It therefore seeks to replicate stem growth data, but adjusting a network of biomimetic functions instead of

a Gompertz logistic function. The latter will, however, be used as a reference point for the metrics considered
(coe�cient of determination R2 and root mean square error RMSE ).
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2. Construction of the model

Growth requires substrate and complex physico-chemical phenomena to convert substrate into dry weight.
Weight formation can be in�uenced by many factors such that substrate provision, assimilation, digestibility,
storage, daily losses, environmental parameters, etc. Modeling of all those processes would lead to the construc-
tion of a huge model. Therefore we do not want to reproduce the digestion kinetic but just integrate into the
mathematical model information exchanges, delay, �xation, accumulation and saturation e�ects.
In the model, we use the Gompertz growth equation as in M. C. Kathleen [2017] :

W ′(t) = A ln

(
Wf

W (t)

)
W (t), (1)

whereW is the weight which varies in time t, Wf is the maximum weight that can be reached with the available
nutrients and A is a constant.

2.1. Assumptions

In our model, we assume that the organs participating in the food digestion are the stomach, the small
intestine and the large intestine. We built our model under the following assumptions:
(A1) The ingested food is stored in the compartment named �crop� before moving to the compartment

assimilable to the stomach.
(A2) The �ux rates are constant between compartments.
(A3) There exist some transmission delays between some compartments.
(A4) The small intestine emptying dynamic starts after some time τ .

Figure 3. Digestive system graph

Following those assumptions, we can draw the graph associated to our model and synthesizing the digestive
system of a chicken as in Figure 3, where

• Sd is the amount of food consumed each day;
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• Qcp (resp. Qst, Qsi, QLi, Qw) is the information inside the crop (resp. stomach, small intestine, large
intestine, storage compartment);

• γcp, (resp. γst, γsi, γabs) is the rate of nutrients transferred from crop to stomach (rep. from stomach to
small intestine, from small intestine to large intestine, from small intestine to storage compartment).

• γo, corresponds to the non-metabolized part of the nutrients.

The dynamical system of the digestive functions at each day d are synthesized by the ODEs:

Q′cp,d = −γcpQcp,d (2)

Q′st,d = γcp (1− exp(−β1t))Qcp,d − γstQst,d (3)

Q′si,d =

{
γstQst,d, t ≤ τ
γstQst,d − (γabs + γsi)Qsi,d, t > τ

(4)

Q′Li,d = γsiQLi,d − γLiQLi,d, (5)

with the initial conditions

Qcp,d(0) = Sd; (6)

Qst,d(0) = 0; (7)

Qsi,d(0) = 0; (8)

QLi,d(0) = 0. (9)

Note here that there is some delay in the procedure of information transmission from crop to stomach exponen-
tially with rate β1. The storage compartment uses a proportion of nutrients going out from small intestine to
gain weight and all the information left from the day before is kept to be used in the present day, that gives

Q′w,d = γabsQsi,d − αQw,d; (10)

Qw,d(0) = Qw,d−1. (11)

The quantity of the growth machinery is proportional to the amount of information transmitted to the storage
compartment. However, there are some losses during the information transmission corresponding to the part of
the nutrient used via physical activities, reproduction needs and the non-metabolizable nutrients. Those losses
are proportional to the weight of the animal and nutrients produced from metabolism,{

W ′d = κQw,d −
(
Wmax

Qw,d

K+Qw,d

)
1
KWd

Wd(0) = 0
.

The e�ectiveness of the machinery κ exponentially decays in time with the delay µ,{
κ′ = −µκ
µ′ = β2(µmax − µ)

. (12)

Equation (12) follows that

κ(t) = κ0 exp

[
−µmax

(
t− 1− exp(−β2t)

β2

)]
. (13)

As a result, the �nal weight is the total gain up to considering day,

Wf =W0 +

Nd∑
d=1

Wd(tf ), (14)

where Nd is the number of days and tf is the time at the end of a digestive cycle of a day.
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2.2. Global optimization

The parameters contained into the di�erent biological-like functions are initially unknown. Those parameters
which can be learned by using data and optimization algorithms confer to the model a learning capability.
Therefore we used the function directL (Johnson [2008]) existing in R (R Core Team [2018]), to learn the model
parameters. To �nd the values of the parameters permitting the model to �t the data, this function minimize
an objective function. In this application the objective function corresponds to the mean squared di�erence
between the initial and the predicted curves (15),

fObj =
1

n

n∑
i=1

(
PredCurve(i)− InitCurve(i)

)2
(15)

where PredCurve(i) and InitCurve(i) respectivelly correspond to the ith point of the predicted curve and
the ith point of the initial curve, and n is the total number of point, that is 70 days.
In this application we �xed τ and we �tted β1, γst, γabs, γsi, γo, µmax, β2, Vmax, K and γcp.

2.3. Simulation results

After the �tting we parametrized the model with the obtained values of the parameters (Table 1).
The dynamics of the model throughout one day and throughout two days (Figure 4) were simulated with the

Female Model, that is the model simulated the growth of the female chiken. We also simulated the growth of
the animals throughout the whole studied period (Figure 5).

Figure 4. Dynamics of the model throughout one day (left) and throughout two days (right).

Parameters Female Model Male Model
β1 0.405 0.402
γst 0.601 0.650
γabs 0.650 1.00
γsi 0.020 0.014
γo 0.424 0.512

µmax 0.008 0.008
β2 0.016 0.048
Vmax 0.051 0.050
K 24.70 24.90
γcp 1.654 0.971

Table 1. Parameter values of the Male and Female Models.
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3. Discussions

3.1. Knowledge feedback

First of all, considering for the same strain males on one side, and females on the other, it is interesting to
note that some parameters seem to be stable, while only a part of them vary signi�cantly among poultry's sex.
In that way, the adjusted model give us back some information, that could be confronted to some business
expertise (here zootechnicians).
Indeed, it appears that organism's di�erence of behavior is concentrated on parameters :

• β2, relative to the e�ectiveness of the organism 1

• γabs, the link's strength between the small intestine and the storage compartment
• γsi, the link's strength between the small and the large intestine
• γcp, the link's strength between the crop and the stomach

In particular, we observe that male's organism seem to stay highly e�cient longer than female's (a fact that
we observe in ground truth), characterized by a slightly better β2 on the male. At the same time, we observe
that on female's, the amount of material sent from the small intestine to the big intestine (which is going to be
lost) is higher than male's, where a bigger part is sent to the storage compartment.
Those observations would need to be con�rmed on other strains on to be confornted to a zootechnician

expertise, but is by itself a �rst step of knowledge feedback.

3.2. Accuracy

Figure 5 shows that the built model �ts the data with a goodness of �t close to our target. We chose to
compare our model with two types of models : a Gompertz growth (17) law usually used to simulate growth
phenomena, and a two order Polynomial Model (16) took as a basis with the same number of parameters. The
latter one doesn't have a biological likelyhood, so the �rst goal is to perform better.

W (t) = p0 + p1t+ p2t
2 (16)

W (t) = g0 exp
(
−g1 exp(−g2t)

)
(17)

We �tted the parameters of the Polynomial Model (p0, p1, p2) and the ones of the Gompertz's Model (g0, g1,
g2) on the data concerning the female and the male chikens.
We calculated for each model the mean of the R2 and the RMSE values associated the Female and the Male

Models. Figures 5, 6 and 7 and the results contained in Table 2 show that the accuracy of those di�erent models
is globally equivalent. Therefore we built a model satisfying in terms of accuracy. But the real advantage of
the Biomimetic Model is its capability to integrate biological knowledge and assimilate input data.

Model RMSE R2

Gompertz's Model 94.2 0.997
Order 2 Polynomial Model 147.4 0.992

Biomimetic Model 102.1 0.996

Table 2. Comparison of the models in terms of R2 and RMSE values.

1its ability to metabolize a high ratio of ingered food with respect of time
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Figure 5. Comparison between the initial curve (Data) and the curve simulated via the
Biomimetic Model (Simulation) for the Female (left) and the Male Model (right).

Figure 6. Comparison between the initial curve (Data) and the curve simulated via the Gom-
pertz's Model (Simulation) for the Female (left) and the Male Model (right).

Figure 7. Comparison between the initial curve (Data) and the curve simulated via the Poly-
nomial Model (Simulation) for the Female (left) and the Male Model (right).

9



4. Perspectives and conclusion

4.1. Perspectives

The developed approach allows us to stay very modular with regards to the nature of the simulated model,
so it could adapt to a higher level of information for a few adaptations.

4.1.1. Fluxes multiplication

In the scope of this work, the model was only trained to deal with simple weightings data, and so not in a
context where it could out-perform classic growth laws. The actual added value to those models would appear
as soon as more �ne data would be available.
Indeed, the objective at mid-term is to exploit an eventual higher level of knowledge (theoretical or measured)

about modelized phenomenons, helping to de�ne in a more precise way what happens inside the organism,
typically with data centered on an organ's input and output. Unlike classic growth laws based on temporal
axis (Gompertz, Verhulst for example), this kind of model could handle data made of several dimensions (time,
ingered proteins, drugs, etc.), and among everything, could pretend to follow a biological likelyhood.

4.1.2. Model reinterpretation

At a longer term, and in a context where the previous hypothesis about new data would be validated, the
goal would be to optimize automatically the weigth parameters between biological-like functions.
Knowing the oragnism's structure to a su�cient level of details, and having a su�cient number of measures,

it would be possible to re�ne the knowledge concerning the nature of the connections between these di�erent
virtual organs, by set of parameters optimization (genetical optimization for example).
As those parameters do have a relationship with actual phenomenon due to their biological likelyhood, it

would be interesting to confront the �nal set of optimized parameters to a business expertise.

4.2. Conclusion

We explored a Data-Model Coupling approach and built a biomimetic dynamic tool containing Ordinary
Di�erential Equations. Those Di�erential Equations contain parameters conferring a learning capability to the
developed tool. Therefore, our tool is a Statistical Learning tool able to learn the value of parameters from �eld
data.
An optimization process permits to learn the parameters and then parametrize the mathematical model by

integrating input data concerning the feed consumption of the chikens. After the learning step we obtained a
model able to model the growth of Ross chickens to a level of precision similar to a classic growth law.
The number of parameters to determine is important and only one structure of the model was tested. Therefore

model selection methods should be used to determine the optimal structure of the model in terms of accuracy
and the number of parameters to learn.
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