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Introduction

Being able to monitor and forecast farm animals performances is a strategic problem in the agronomy industry: since several decades, endeavors have been made in this activity sector, with the aim to optimize the breedingrelated production, as for example meat, eggs, milk, etc. (See [START_REF] Filipe | Multiphasic individual growth models in random environments[END_REF].

Today, new technologies permit to monitor farm animals and collect a wide range of information as explained in [START_REF] Büchel | Short communication: Decrease in rumination time as an indicator of the onset of calving[END_REF][START_REF] Miekley | Detection of mastitis and lameness in dairy cows using wavelet analysis[END_REF][START_REF] Suganthi | A sensor-based forage monitoring of grazing cattle in dairy farming[END_REF][START_REF] Van Der Tol | Time series analysis of live weight as health indicator[END_REF][START_REF] Holman | Comparison of oestrus detection methods in dairy cattle[END_REF]. Yet, those tools are still expensive and their use still infrequent. Furthermore, biological data contain high variability (Noise, heterogeneity, missing and aberrant values, etc.) (See Locke et al. 2005Qi et al. 2006). Therefore, to treat most of biological issues we have to build precise predictive tools from few exploitable data.

Animals are complex living organisms in which intakes induce complex physico-chemical phenomena. Therefore to be able to link inputs and outputs concerning the evolution of some sensed biological factors, we need a mathematical model taking into account some aspects of the animal's body dynamics (See [START_REF] Renzullo | Multi-sensor model-data fusion for estimation of hydrologic and energy ux parameters[END_REF].

The main objective of this study is to build a tool which is able to predict outputs from inputs concerning farm animals and also able to manage the existence of underlying complex biological phenomena. In this paper we are going to present the construction of a Statistical Learning tool based on a dynamical mathematical model corresponding to a system of Ordinary Dierential Equations (ODE). The rst application of this Statistical Learning tool consisted to simulate and predict the growth of chickens.

Purpose

Growth simulation is a well-known problem, and some classical models -such as the Gompertz's and the Verhulst's models -are very well suited to t some growth data as it is showed in [START_REF] Birch | A new generalized logistic sigmoid growth equation compared with the richards growth equation[END_REF][START_REF] Roush | Comparison of gompertz and neural network models of broiler growth[END_REF]. Nevertheless those classical growth models do not permit to perform data assimilation. Indeed, almost no input data can be integrated in those kind of models.

On another hand, some works had already treated biological modeling issues by developing realistic and specic models as in Taghipoor 2012. But the construction of those realistic models is a costly task resulting in models containing a lot of equations and unknown parameters making them dicult to implement.

A model-free approach is also explored, as in [START_REF] Guardabasso | A model-free approach to estimation of relative potency in dose-response curve analysis[END_REF] for instance. Machine Learning tool based on Neural Networks were developed to simulate and predict the evolution of biological factors in Gorczyca et al. 2018. This approach, which are only based on data does not need knowledge about the link existing between the used inputs and outputs and permits to develop easier to handle models. But those models need a large amount of data to be tted and compensate the lack of taken into account knowledge (See Valletta et al. 2017).

In the light of the existing methods for predicting biological responses, we decided to explore an approach which can be dened as being half-way between model-free and full-model approaches: we explored the Model-Data Coupling theory to construct a tool integrating biological knowledge in a mathematical model, and using data, to optimize the model parameters. Model-Data Coupling is an expanding approach but primarily developed to treat issues in meteorology (See [START_REF] Simmons | Some aspects of the improvement in skill of numerical weather prediction[END_REF], hydrology (See [START_REF] Kim | Spacetime characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data[END_REF][START_REF] William | Assimilating remote sensing data in a surface uxsoil moisture model[END_REF][START_REF] Mackay | Multi-objective parameter estimation for simulating canopy transpiration in forested watersheds[END_REF]) and biogeochemistry (See [START_REF] Barrett | Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods[END_REF][START_REF] Barrett | Steady state turnover time of carbon in the australian terrestrial biosphere[END_REF][START_REF] Rayner | Two decades of terrestrial carbon uxes from a carbon cycle data assimilation system (ccdas)[END_REF][START_REF] Sacks | Modeldata synthesis of diurnal and seasonal co2 uxes at niwot ridge, colorado[END_REF].

We built our model by splitting the whole complex kinetic into several parsimonious sub-biomimetic-processes performed by a combination of successive compartments. All those compartments compute their respective behaviors, and then exchange messages, assimilable to uxes. To do that we built several Ordinary Dierential Equations integrating the mathematical expressions of biological phenomena (storage, saturation, etc.).

Scope

In the scope of this study, we focus on meat poultry and specically two biological strains :

• Ross 308 (Aviagen)

• Cobb 500 (Cobb-Vantress) Some informations on those animals (an average individual of each strain) are publicly available (REF) and so we know, for each sex of those strains:

• their daily consumption of food, during 70 days • their daily growth, during 70 days As a rst step, we are going to consider the growth (mass gained each day) and the loss (ratio of food unmetabolized).

In this paper we are going to introduce in Section 1 the applied methodology. Then in Section 2 we will present the developed mathematical model and the results obtained by using this model to simulate the growth of chickens. The basis computational unit used in the following work is what we dened here as organ-like compartment.

We dene it as a tuple :

• input ∈ R in , in ∈ N • output ∈ R out , out ∈ N • f unction : R in → R out • state ∈ R states , states ∈ N
where input and output can be treated as vectors of xed dimensions in and out, which are each relative to a ux of a particular kind. There is a mapping between those vectors through function, which corresponds to a biological-like function. This function models a biological phenomenon in a synthesized way. Finally, state is a vector allowing these computational units to have a state, in other words a kind of memory, which can take part in the expression of the said function.

The dimensions of these input / output vectors therefore correspond to information exchanges in the form of messages between the organ-like compartments, the nature of which can be, for example, nutrients, drugs active principles, etc. These functions can for example try to mimic a phenomenon of xing, convection, diusion, etc.

Figure 1 shows how such a biological-like function can be summarized as a computational unit. 

Functions network

These deliberately simple functions are not complex enough to model an organism. However, by making the contact between them, it becomes possible to model a more complex structure. To do this, a communication is established from the output vector of a biomimetic function to the input vector of the following function (Figure 2). Since these functions have states, the network as a whole can be likened to a nite state machine.

Optimization steps

This network acting like a model containing several parameters to optimize. We can distinguish two groups of parameters. The rst step of optimization is at the level of biological-like functions. Most of the phenomena that we are trying to model involve parameters corresponding for example to the part of information exchanged between the compartments, saturation thresholds, etc. These are optimized in order to t as much as possible the data.

To determine these parameters we use an non-linear optimization algorithm implmented in Matlab (fmincon).

This algorithm allows us to nd the set of parameters minimizing the model error towards data used.

Network structure (organism level)

The nature of the links between these dierent functions also involves parameters (weighting link, preprocessing of the vector), and is therefore also subject to optimization.

In our study, these parameters essentially correspond to the amount of information exchanged between the compartments. Given the small number of computational units involved at this stage, and so a reasonable dimensionality of the problem, it is possible to use a conventional optimization by just including them in the above set of parameters, but potentially on a complex structure, a heuristic search method (genetic algorithm for example) could be preferred.

We could also favor separated processes of optimization, where each organ would be adjusted independently, before adjusting the whole network.

Main goals

The goal of the following work is to build a Statistical Learning tool that can be used to simulate the food consumption and mass gain of poultry, to obtain results close to what one would obtain with a growth law tting, with the singular dierence that this association of function will not only be a function of time but also of the food consumed, and thus would have an increased biological correspondence.

It therefore seeks to replicate stem growth data, but adjusting a network of biomimetic functions instead of a Gompertz logistic function. The latter will, however, be used as a reference point for the metrics considered (coecient of determination R 2 and root mean square error RMSE ).

Construction of the model

Growth requires substrate and complex physico-chemical phenomena to convert substrate into dry weight.

Weight formation can be inuenced by many factors such that substrate provision, assimilation, digestibility, storage, daily losses, environmental parameters, etc. Modeling of all those processes would lead to the construction of a huge model. Therefore we do not want to reproduce the digestion kinetic but just integrate into the mathematical model information exchanges, delay, xation, accumulation and saturation eects.

In the model, we use the Gompertz growth equation as in M. C. [START_REF] Even | The use of gompertz models in growth analyses, and new gompertz-model approach: An addition to the unied-richards family[END_REF] :

W (t) = A ln W f W (t) W (t), ( 1 
)
where W is the weight which varies in time t, W f is the maximum weight that can be reached with the available nutrients and A is a constant.

Assumptions

In our model, we assume that the organs participating in the food digestion are the stomach, the small intestine and the large intestine. We built our model under the following assumptions:

(A1) The ingested food is stored in the compartment named crop before moving to the compartment assimilable to the stomach.

(A2) The ux rates are constant between compartments.

(A3) There exist some transmission delays between some compartments.

(A4) The small intestine emptying dynamic starts after some time τ .

Figure 3. Digestive system graph

Following those assumptions, we can draw the graph associated to our model and synthesizing the digestive system of a chicken as in Figure 3, where

• S d is the amount of food consumed each day;

• Q cp (resp. Q st , Q si , Q Li , Q w )
is the information inside the crop (resp. stomach, small intestine, large intestine, storage compartment);

• γ cp , (resp. γ st , γ si , γ abs ) is the rate of nutrients transferred from crop to stomach (rep. from stomach to small intestine, from small intestine to large intestine, from small intestine to storage compartment).

• γ o , corresponds to the non-metabolized part of the nutrients.

The dynamical system of the digestive functions at each day d are synthesized by the ODEs:

Q cp,d = -γ cp Q cp,d (2) 
Q st,d = γ cp (1 -exp(-β 1 t)) Q cp,d -γ st Q st,d (3) 
Q si,d = γ st Q st,d , t ≤ τ γ st Q st,d -(γ abs + γ si )Q si,d , t > τ (4) Q Li,d = γ si Q Li,d -γ Li Q Li,d , (5) 
with the initial conditions

Q cp,d (0) = S d ; (6) Q st,d (0) = 0; (7) Q si,d (0) = 0; (8) Q Li,d (0) = 0. (9) 
Note here that there is some delay in the procedure of information transmission from crop to stomach exponentially with rate β 1 . The storage compartment uses a proportion of nutrients going out from small intestine to gain weight and all the information left from the day before is kept to be used in the present day, that gives

Q w,d = γ abs Q si,d -αQ w,d ; (10) 
Q w,d (0) = Q w,d-1 . ( 11 
)
The quantity of the growth machinery is proportional to the amount of information transmitted to the storage compartment. However, there are some losses during the information transmission corresponding to the part of the nutrient used via physical activities, reproduction needs and the non-metabolizable nutrients. Those losses are proportional to the weight of the animal and nutrients produced from metabolism,

W d = κQ w,d -W max Q w,d K+Q w,d 1 K W d W d (0) = 0 .
The eectiveness of the machinery κ exponentially decays in time with the delay µ, κ = -µκ µ = β 2 (µ max -µ) .

(12) Equation ( 12) follows that

κ(t) = κ 0 exp -µ max t - 1 -exp(-β 2 t) β 2 . ( 13 
)
As a result, the nal weight is the total gain up to considering day,

W f = W 0 + N d d=1 W d (t f ), (14) 
where N d is the number of days and t f is the time at the end of a digestive cycle of a day.

Global optimization

The parameters contained into the dierent biological-like functions are initially unknown. Those parameters which can be learned by using data and optimization algorithms confer to the model a learning capability.

Therefore we used the function directL [START_REF] Johnson | The nlopt nonlinear-optimization package[END_REF]) existing in R (R Core [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF]), to learn the model parameters. To nd the values of the parameters permitting the model to t the data, this function minimize an objective function. In this application the objective function corresponds to the mean squared dierence between the initial and the predicted curves (15),

f Obj = 1 n n i=1 P redCurve(i) -InitCurve(i) 2 ( 15 
)
where P redCurve(i) and InitCurve(i) respectivelly correspond to the i th point of the predicted curve and the i th point of the initial curve, and n is the total number of point, that is 70 days.

In this application we xed τ and we tted β 1 , γ st , γ abs , γ si , γ o , µ max , β 2 , V max , K and γ cp .

Simulation results

After the tting we parametrized the model with the obtained values of the parameters (Table 1).

The dynamics of the model throughout one day and throughout two days (Figure 4) were simulated with the Female Model, that is the model simulated the growth of the female chiken. We also simulated the growth of the animals throughout the whole studied period (Figure 5). First of all, considering for the same strain males on one side, and females on the other, it is interesting to note that some parameters seem to be stable, while only a part of them vary signicantly among poultry's sex.

In that way, the adjusted model give us back some information, that could be confronted to some business expertise (here zootechnicians).

Indeed, it appears that organism's dierence of behavior is concentrated on parameters :

• β 2 , relative to the eectiveness of the organism 1

• γ abs , the link's strength between the small intestine and the storage compartment • γ si , the link's strength between the small and the large intestine • γ cp , the link's strength between the crop and the stomach

In particular, we observe that male's organism seem to stay highly ecient longer than female's (a fact that we observe in ground truth), characterized by a slightly better β 2 on the male. At the same time, we observe that on female's, the amount of material sent from the small intestine to the big intestine (which is going to be lost) is higher than male's, where a bigger part is sent to the storage compartment.

Those observations would need to be conrmed on other strains on to be confornted to a zootechnician expertise, but is by itself a rst step of knowledge feedback.

Accuracy

Figure 5 shows that the built model ts the data with a goodness of t close to our target. We chose to compare our model with two types of models : a Gompertz growth (17) law usually used to simulate growth phenomena, and a two order Polynomial Model ( 16) took as a basis with the same number of parameters. The latter one doesn't have a biological likelyhood, so the rst goal is to perform better.

W (t) = p 0 + p 1 t + p 2 t 2 (16) W (t) = g 0 exp -g 1 exp(-g 2 t) (17) 
We tted the parameters of the Polynomial Model (p 0 , p 1 , p 2 ) and the ones of the Gompertz's Model (g 0 , g 1 , g 2 ) on the data concerning the female and the male chikens. We calculated for each model the mean of the R 1 its ability to metabolize a high ratio of ingered food with respect of time 8 The developed approach allows us to stay very modular with regards to the nature of the simulated model, so it could adapt to a higher level of information for a few adaptations.

Fluxes multiplication

In the scope of this work, the model was only trained to deal with simple weightings data, and so not in a context where it could out-perform classic growth laws. The actual added value to those models would appear as soon as more ne data would be available.

Indeed, the objective at mid-term is to exploit an eventual higher level of knowledge (theoretical or measured) about modelized phenomenons, helping to dene in a more precise way what happens inside the organism, typically with data centered on an organ's input and output. Unlike classic growth laws based on temporal axis (Gompertz, Verhulst for example), this kind of model could handle data made of several dimensions (time, ingered proteins, drugs, etc.), and among everything, could pretend to follow a biological likelyhood.

Model reinterpretation

At a longer term, and in a context where the previous hypothesis about new data would be validated, the goal would be to optimize automatically the weigth parameters between biological-like functions.

Knowing the oragnism's structure to a sucient level of details, and having a sucient number of measures, it would be possible to rene the knowledge concerning the nature of the connections between these dierent virtual organs, by set of parameters optimization (genetical optimization for example).

As those parameters do have a relationship with actual phenomenon due to their biological likelyhood, it would be interesting to confront the nal set of optimized parameters to a business expertise.

Conclusion

We explored a Data-Model Coupling approach and built a biomimetic dynamic tool containing Ordinary Dierential Equations. Those Dierential Equations contain parameters conferring a learning capability to the developed tool. Therefore, our tool is a Statistical Learning tool able to learn the value of parameters from eld data.

An optimization process permits to learn the parameters and then parametrize the mathematical model by integrating input data concerning the feed consumption of the chikens. After the learning step we obtained a model able to model the growth of Ross chickens to a level of precision similar to a classic growth law.

The number of parameters to determine is important and only one structure of the model was tested. Therefore model selection methods should be used to determine the optimal structure of the model in terms of accuracy and the number of parameters to learn.
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 7 Figure 7. Comparison between the initial curve (Data) and the curve simulated via the Polynomial Model (Simulation) for the Female (left) and the Male Model (right).

  

Table 1 .

 1 Parameter values of the Male and Female Models.

	Parameters	Female Model	Male Model
	β 1	0.405	0.402
	γ st	0.601	0.650
	γ abs	0.650	1.00
	γ si	0.020	0.014
	γ o	0.424	0.512
	µmax	0.008	0.008
	β 2	0.016	0.048
	V max	0.051	0.050
	K	24.70	24.90
	γ cp	1.654	0.971

Table 2 .

 2 2 and the RM SE values associated the Female and the Male Models. Figures 5, 6 and 7 and the results contained in Table2show that the accuracy of those dierent models is globally equivalent. Therefore we built a model satisfying in terms of accuracy. But the real advantage of the Biomimetic Model is its capability to integrate biological knowledge and assimilate input data. Comparison of the models in terms of R 2 and RM SE values.

	Model	RM SE	R 2
	Gompertz's Model	94.2	0.997
	Order 2 Polynomial Model	147.4	0.992
	Biomimetic Model	102.1	0.996