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SIGNED NETWORKS

# G � (V ,E , s), with s : E → {+,−}

# Modeling of systems containing antithetical relationships
# Ex.: evolution of pre-WWI alliances between countries [AKR06]
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GRAPH PARTITIONING

# Correlation Clustering problem: minimize the imbalance

# Community Detection problem: identify dense clusters
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RELEVANCE OF NEGATIVE LINKS

# Negative links are costly→ relevance for graph partitioning?

# Work by Esmailian et al. [EAJ14]

◦ Community detection on positive links only
◦ Study the community-wise location of negative links
◦ → Most are between communities or non-significant

# Proposed method:
◦ Consider a different dataset, modeling a different type of

relationships
◦ Compare community detection and correlation clustering

algorithms
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DATA EXTRACTION

# Raw data:
◦ Nature: Voting activity at the European Parliament
◦ Source: VoteWatch Europe
◦ Period: 7th term (June 2009–June 2014)
◦ Size: 840 MEPs, 1426 documents, 21 topics

# Voting Agreement Index:
◦ Compares two MEPs
◦ Ranges from −1 to +1
◦ Document-wise agreement averaged over all documents

◦ Agreement: +1 (For vs. For, Against vs. Against)
◦ Disagreement: −1 (For vs. Against)
◦ Undetermined: 0 (Abstain/Absent vs. ∗)

# Networks:
◦ Nodes: Members of the European Parliament (MEPs)
◦ Weighted: voting agreement index values
◦ Modes: 264 (time × topics)
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PARTITIONING ALGORITHMS

# Correlation clustering (G)
◦ Parallel Iterated Local Search (pILS) [LDFF15]

# Community detection (G+ and G−)
◦ InfoMap [RB08]
◦ EdgeBetweenness [NG04]
◦ WalkTrap [PL05]
◦ FastGreedy [CNM04]
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EXTRACTED NETWORKS

# Same observations for all
topics/durations

# Positive side: bimodal
distribution
◦ Left peak: certain MEPs

are frequently absent
◦ Right peak: most MEPs

often vote similarly
# Negative side: less extreme

values
◦ Clear majority, in average

Agreement distribution for all years and topics
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CONCLUSION

# Considering negative links on our dataset leads to:
◦ Lower imbalance (at least 3 times better)
◦ Only InfoMap outputs CC-like results (imbalance)
◦ Different partitions (fewer clusters)

# Contradiction with Esmailian et al.’s conclusions
◦ (but not their results)

# Perspectives:
◦ Consider more data, different types of networks (collection)
◦ Exhaustive exploration of vote-based extraction methods
◦ Political interpretation of the VoteWatch results
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ONLINE RESOURCES

# Data available on Figshare:
◦ http://dx.doi.org/10.6084/m9.figshare.1545599

# R source code available on GitHub:
◦ https://github.com/CompNet/NetVotes

10

http://figshare.com
http://dx.doi.org/10.6084/m9.figshare.1545599
https://github.com
https://github.com/CompNet/NetVotes


REFERENCES

[AKR06] T. Antal, P. L. Krapivsky, and S. Redner.
Social balance on networks: The dynamics of friendship and enmity.
Physica D, 224(1-2):130–136, 2006.

[CNM04] A. Clauset, M. E. J. Newman, and C. Moore.
Finding community structure in very large networks.
Physical Review E, 70(6):066111, 2004.

[EAJ14] P. Esmailian, S. E. Abtahi, and M. Jalili.
Mesoscopic analysis of online social networks: The role of negative ties.
Physical Review E, 90(4):042817, 2014.

[LDFF15] M. Levorato, L. Drummond, Y. Frota, and R. Figueiredo.
An ils algorithm to evaluate structural balance in signed social networks.
In ACM Symposium on Applied Computing, pages 1117–1122, 2015.

[NG04] M. E. J. Newman and M. Girvan.
Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113, 2004.

[PL05] P. Pons and M. Latapy.
Computing communities in large networks using random walks.
Lecture Notes in Computer Science, 3733:284–293, 2005.

[RB08] M. Rosvall and C. T. Bergstrom.
Maps of random walks on complex networks reveal community structure.
Proceedings of the National Academy of Sciences, 105(4):1118, 2008.

1


	Problem
	Methods
	Results
	Conclusion
	Appendix
	References


