INFORMATIVE VALUE OF NEGATIVE LINKS FOR GRAPH PARTITIONING

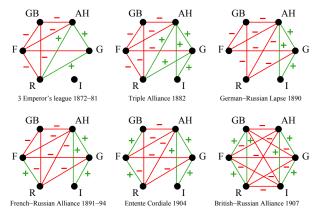
With an application to European Parliament Votes

Modèles et analyse des réseaux : approches mathématiques et informatiques (MARAMI) 14 Octobre 2015

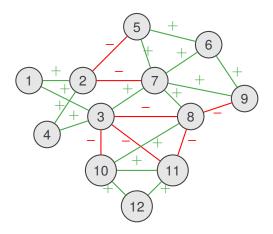
Israel Mendonça, Rosa Figueiredo, Vincent Labatut & Philippe Michelon

LIA EA 4128 - Université d'Avignon

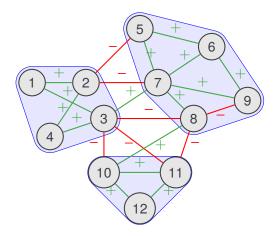
SIGNED NETWORKS

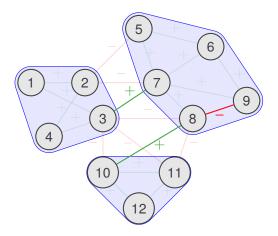

$$\bigcirc$$
 $G = (V, E, s)$, with $s : E \rightarrow \{+, -\}$

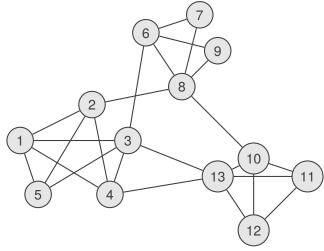
SIGNED NETWORKS

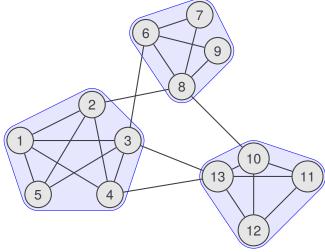

- \bigcirc G = (V, E, s), with $s : E \rightarrow \{+, -\}$
- Modeling of systems containing antithetical relationships

SIGNED NETWORKS


- \bigcirc G = (V, E, s), with $s : E \rightarrow \{+, -\}$
- Modeling of systems containing antithetical relationships
- Ex.: evolution of pre-WWI alliances between countries [AKR06]

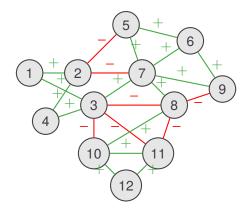

O Correlation Clustering problem: minimize the imbalance


O Correlation Clustering problem: minimize the imbalance

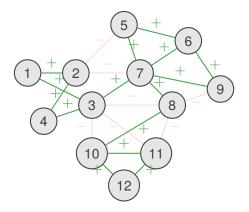

O Correlation Clustering problem: minimize the imbalance

- O Correlation Clustering problem: minimize the imbalance
- O Community Detection problem: identify dense clusters

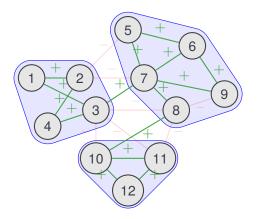
- O Correlation Clustering problem: minimize the imbalance
- O Community Detection problem: identify dense clusters

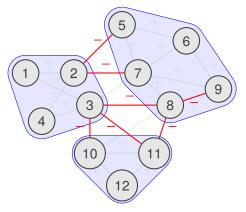

 \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?

 \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?


○ Work by Esmailian *et al*. [EAJ14]

 \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?


Work by Esmailian et al. [EAJ14]


- \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?
- Work by Esmailian et al. [EAJ14]
 - Community detection on positive links only

- \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?
- Work by Esmailian et al. [EAJ14]
 - Community detection on positive links only

- \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?
- Work by Esmailian et al. [EAJ14]
 - Community detection on positive links only
 - Study the community-wise location of negative links
 - $\circ \rightarrow$ Most are between communities or non-significant

- \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?
- Work by Esmailian *et al*. [EAJ14]
 - Community detection on positive links only
 - Study the community-wise location of negative links
 - $\circ \rightarrow$ Most are between communities or non-significant
- Limitations:
 - Only 2 datasets, both social networking services
 - Imbalance assessed only locally

- \bigcirc Negative links are costly \rightarrow relevance for graph partitioning?
- Work by Esmailian *et al*. [EAJ14]
 - Community detection on positive links only
 - Study the community-wise location of negative links
 - $\circ \rightarrow$ Most are between communities or non-significant
- Limitations:
 - Only 2 datasets, both social networking services
 - Imbalance assessed only locally
- O Proposed method:
 - Consider a different dataset, modeling a different type of relationships
 - Compare community detection and correlation clustering algorithms

DATA EXTRACTION

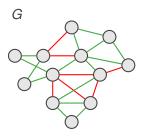
Raw data:

- Nature: Voting activity at the European Parliament
- Source: VoteWatch Europe
- Period: 7th term (June 2009–June 2014)
- Size: 840 MEPs, 1426 documents, 21 topics

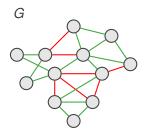
DATA EXTRACTION

Raw data:

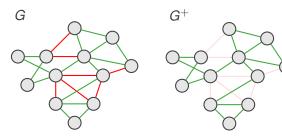
- Nature: Voting activity at the European Parliament
- Source: VoteWatch Europe
- Period: 7th term (June 2009–June 2014)
- Size: 840 MEPs, 1426 documents, 21 topics
- Voting Agreement Index:
 - Compares two MEPs
 - Ranges from -1 to +1
 - Document-wise agreement averaged over all documents
 - Agreement: +1 (For vs. For, Against vs. Against)
 - Disagreement: -1 (FOR vs. AGAINST)
 - Undetermined: 0 (ABSTAIN/ABSENT vs. *)

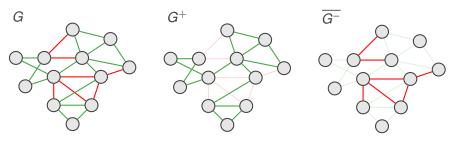

DATA EXTRACTION

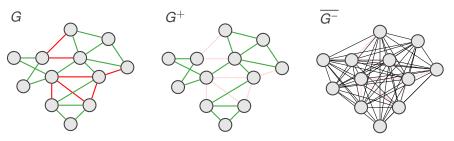
Raw data:


- Nature: Voting activity at the European Parliament
- Source: VoteWatch Europe
- Period: 7th term (June 2009–June 2014)
- Size: 840 MEPs, 1426 documents, 21 topics
- Voting Agreement Index:
 - Compares two MEPs
 - Ranges from -1 to +1
 - Document-wise agreement averaged over all documents
 - Agreement: +1 (For vs. For, Against vs. Against)
 - Disagreement: -1 (FOR vs. AGAINST)
 - Undetermined: 0 (ABSTAIN/ABSENT VS. *)
- Networks:
 - Nodes: Members of the European Parliament (MEPs)
 - Weighted: voting agreement index values
 - Modes: 264 (time × topics)

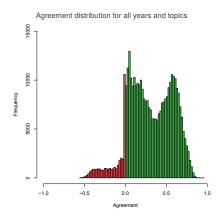
- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]


- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]

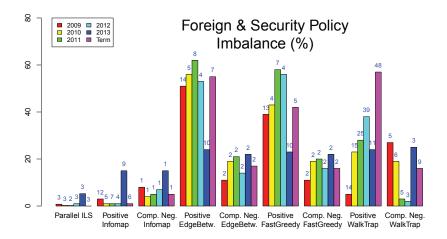

- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]
- \bigcirc Community detection (G^+ and $\overline{G^-}$)
 - InfoMap [RB08]
 - EdgeBetweenness [NG04]
 - WalkTrap [PL05]
 - FastGreedy [CNM04]


- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]
- \bigcirc Community detection (G^+ and $\overline{G^-}$)
 - InfoMap [RB08]
 - EdgeBetweenness [NG04]
 - WalkTrap [PL05]
 - FastGreedy [CNM04]

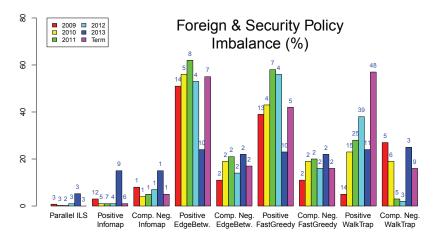
- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]
- \bigcirc Community detection (G^+ and $\overline{G^-}$)
 - InfoMap [RB08]
 - EdgeBetweenness [NG04]
 - WalkTrap [PL05]
 - FastGreedy [CNM04]



- \bigcirc Correlation clustering (G)
 - Parallel Iterated Local Search (pILS) [LDFF15]
- \bigcirc Community detection (G^+ and $\overline{G^-}$)
 - InfoMap [RB08]
 - EdgeBetweenness [NG04]
 - WalkTrap [PL05]
 - FastGreedy [CNM04]



EXTRACTED NETWORKS


- Same observations for all topics/durations
- Positive side: bimodal distribution
 - Left peak: certain MEPs are frequently absent
 - Right peak: most MEPs often vote similarly
- Negative side: less extreme values
 - Clear majority, in average

PARTITION COMPARISON

PARTITION COMPARISON

Partition comparison: near-zero NMI

CONCLUSION

- Considering negative links on our dataset leads to:
 - Lower imbalance (at least 3 times better)
 - Only InfoMap outputs CC-like results (imbalance)
 - Different partitions (fewer clusters)
- O Contradiction with Esmailian et al.'s conclusions
 - (but not their results)
- Perspectives:
 - Consider more data, different types of networks (collection)
 - Exhaustive exploration of vote-based extraction methods
 - Political interpretation of the VoteWatch results

○ Data available on Figshare:

o http://dx.doi.org/10.6084/m9.figshare.1545599

R source code available on GitHub:

o https://github.com/CompNet/NetVotes

REFERENCES

[AKR06]	T. Antal, P. L. Krapivsky, and S. Redner. Social balance on networks: The dynamics of friendship and enmity. <i>Physica D</i> , 224(1-2):130–136, 2006.
[CNM04]	A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large networks. <i>Physical Review E</i> , 70(6):066111, 2004.
[EAJ14]	P. Esmailian, S. E. Abtahi, and M. Jalili. Mesoscopic analysis of online social networks: The role of negative ties. <i>Physical Review E</i> , 90(4):042817, 2014.
[LDFF15]	M. Levorato, L. Drummond, Y. Frota, and R. Figueiredo. An ils algorithm to evaluate structural balance in signed social networks. In ACM Symposium on Applied Computing, pages 1117–1122, 2015.
[NG04]	M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks. <i>Physical Review E</i> , 69(2):026113, 2004.
[PL05]	P. Pons and M. Latapy. Computing communities in large networks using random walks. Lecture Notes in Computer Science, 3733:284–293, 2005.
[RB08]	M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences, 105(4):1118, 2008.