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ABSTRACT. In this paper, we want to study the informative value of negative links in signed com-
plex networks. For this purpose, we extract and study a collection of signed networks represent-
ing voting sessions of the European Parliament (EP). We first process some data collected by
the VoteWatch Europe Website for the whole 7th term (2009-2014), by considering voting simi-
larities between Members of the EP to define weighted signed links. We then apply a selection of
community detection algorithms, designed to process only positive links, to these data. We also
apply Parallel Iterative Local Search (Parallel ILS), an algorithm recently proposed to identify
balanced partitions in signed networks. Our results show that, contrary to the conclusions of
a previous study focusing on other data, the partitions detected by ignoring or considering the
negative links are indeed remarkably different for these networks. The relevance of negative
links for graph partitioning therefore is an open question which should be further explored.

RÉSUMÉ. Dans cet article, nous étudions la valeur informative des liens négatifs propres aux
réseaux complexes signés. Pour ce faire, nous extrayons et analysons une collection de réseaux
signés représentant des sessions de vote au Parlement Européen (PE). Nous traitons d’abord
les données recueillies par le site VoteWatch pour la 7me législature (2009-2014), en utilisant la
similarité des votes entre députés pour déterminer les signes et poids des liens. Nous appliquons
ensuite à ces données une sélection d’algorithmes de détection de communautés, conçus pour
traiter seulement des liens positifs. Nous faisons de même avec Parallel ILS, un algorithme
récemment proposé pour identifier des partitions équilibrées dans des réseaux signés. Nos ré-
sultats montrent que, contrairement aux conclusions d’une étude précédente traitant d’autres
données, les partitions détectées dans nos réseaux varient remarquablement suivant qu’on con-
sidère ou ignore les liens négatifs. La pertinence des liens négatifs dans le contexte du parti-
tionnement de graphe est donc une question ouverte, qui mérite d’être explorée plus avant.
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1. Introduction

In signed graphs, each link is labeled with a positive or negative sign, which indi-
cates the nature of the relationship between the considered adjacent nodes. Compared
to unsigned graphs, the problem of partitioning the node set takes a specific form
when taking advantage of this additional information. For instance, the notion of
structural balance, coming from the social sciences (Heider, 1946), consists in find-
ing a partition such that all positive and negative links lie inside and in-between the
parts, respectively. However, it is very rare for a real-world network to have a per-
fectly balanced structure: the question is then to quantify how balanced it is. For this
purpose, one must first define a measure of balance, and then find the best partition
according to this measure. Calculating the graph balance can therefore be formulated
as an optimization problem, which was tackled in various works from the Operations
Research field (cf. Section 2). Alternatively, researchers from the Complex Networks
Analysis domain also tried to solve the problem, by adapting community detection
methods originally designed to treat unsigned graphs (see the same Section 2).

Other authors tried to study how informative the negative links really are in the
context of graph partitioning (Esmailian et al., 2014). In their work, Esmailian et al.
(2014) suggested that if one detects the communities based only on positive links (by
ignoring negative ones), most negative links are already placed between the communi-
ties, and that the few ones located inside do not significantly affect the communities.
The latter point is tested by checking that no additional division of the community
allows increasing the overall balance. Consequently, using algorithms that do not take
negative links into consideration, such as InfoMap (Rosvall, Bergstrom, 2008), it is
possible to obtain a reasonably well partitioned network. However, we see several
limitations to this work. First, in order to assess the significance of the negative links
located inside the communities, Esmailian et al. considered each community sepa-
rately, instead of the graph as a whole. Second, they only considered a single com-
munity detection method (InfoMap (Rosvall, Bergstrom, 2008)) and did not compare
their results to partitions detected by algorithms specifically designed to handle signed
graphs. Third, their observations were made only for two datasets, both representing
Social Networking Services, so they do not necessarily apply to all networks, or even
to all types of networks.

In this paper, we want to explore further the informative value of negative links
in the context of graph partitioning. To this purpose, we present a method to extract
signed networks from voting data describing the activity of the Members of the Euro-
pean Parliament (MEPs). Based on this new data, we apply state-of-the-art tools in
order to partition the graph, on the one hand in terms of community structure, and on
the other hand according to the notion of structural balance. We then compare the ob-
tained partitions and show the presence of significant differences between them. Our
contributions are two-fold. First, we constitute a new dataset of signed networks and
make it publicly available to the community, with the scripts used to obtain it. We treat
the voting patterns using several parameters, leading to a collection of signed networks
describing the behavior of MEPs according to various modes (time, topic...). Second,
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based on these data, we experimentally show that negative links can be essential when
partitioning networks. We see our work as complementary to that of Esmailian et al.,
first because the use of a method taking negative links into account as a reference al-
lows us to avoid the issue regarding the assessment of intra-community negative links;
and second because we treat a different type of signed real-world networks, in which
the links represent vote similarity instead of self-declared social relationships.

The rest of this paper is organized as follows. Section 2 presents a review of
the literature regarding the graph partition task. Section 3 describe the method we
used to extract signed networks from the raw data constituted of the sequences of
MEPs votes. Section 4 summarizes the algorithms we selected to partition our signed
networks. In Section 5, we present and discuss our experimental results regarding
network extraction and network partition. Finally, we conclude by highlighting the
main points of the article, and identifying some possible perspectives.

2. Related Works

Signed graphs and structural balance were primarily introduced by Heider (1946),
with the objective of describing the relationship between people belonging to distinct
social groups. More generally, a signed graph can be used to model any system con-
taining two types of antithetical relationships, such as like/dislike, for/against, etc.
Later, Cartwright and Harary (1956) formalized Heider’s theory, stating that a bal-
anced social group could be partitioned into two mutually hostile subgroups, each
having internal solidarity. Observing that a social group may contain more than two
hostile subgroups, Davis (1967) proposed the notion of clusterable signed graph.

The Clustering problem consists in finding the most balanced partition of a signed
graph. Evaluating this balance according to the structural balance (SB) measure
amounts to solving an optimization problem called Correlation Clustering (CC) (Bansal
et al., 2002). This problem was addressed first by Doreian and Mrvar (1996), who
proposed an approximate solution and used it to analyze the structural balance of
real-world social networks. Yang et al. (2007) called the CC problem Community
Mining, and proposed an agent-based heuristic called FEC to find an approximate so-
lution. Elsner and Schudy (2009) performed a comparison of several strategies for
solving the CC problem, and applied them to document clustering and natural lan-
guage processing issues. In this context, these authors identified the best strategy as
a greedy algorithm able to quickly achieve good objective values with tight bounds.
The solution of the CC problem and of some of its variants has already been used as
a criterion to measure the balance of signed social networks (Doreian, Mrvar, 1996;
2009; Figueiredo, Moura, 2013; Levorato et al., 2015), and as a tool to identify rela-
tions contributing to their imbalance (Abell, Ludwig, 2009). Levorato et al. (2015)
provide an efficient solution of the CC problem, by the use of a ILS metaheuristic. The
proposed algorithm outperforms other methods from the literature on 3 huge signed
social networks. In this work, we will use this tool to evaluate the imbalance of the
MEPs networks.
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The Community Detection task treated in the Complex Networks Analaysis do-
main is close enough to the CC problem. It originally concerns unsigned graphs,
and consists in partitioning it in a way such that most links are located inside the
groups (aka. communities) and only few remains between them. By definition, an
unsigned graph focuses on a single type of relationships, say the positive ones. A
signed graph representing the same system can therefore be considered as more in-
formative, since it additionally contains the links of the other type (in our example,
the negative ones). For this reason, some authors tried to adapt existing community
detection methods, in order to take advantage of this additional information. Various
methods were proposed for this purpose: evolutionary approaches (Li et al., 2014),
agent-based systems (Yang et al., 2007), matrix transformation (Yang, Liu, 2007), ex-
tensions of the Modularity measure (Macon et al., 2012; Traag, Bruggeman, 2008),
simulated annealing (Bogdanov et al., 2010), spectral approaches (Anchuri, Magdon-
Ismail, 2012), particle swarm optimization (Cai et al., 2014; Gong et al., 2013), and
others. Some authors performed the same task on bipartite networks (Mrvar, Doreian,
2009), while others relaxed the CC problem in order to identify overlapping commu-
nities (Chen et al., 2014).

3. Network Extraction

In order to conduct our experiments, we were looking for data allowing to extract
some form of signed network of interactions. Moreover, in future works, we want
to study how the network and the structural balance evolve, so the data had to be
longitudinal, with stable nodes (nodes should not change too much through time).
The best data we could find relatively to these criteria are those describing the activity
of the European Parliament1. More precisely, we focused on the votes of the Members
of the European Parliament (MEPs).

VoteWatch Europe2 is an independent non-governmental organization whose Web-
site provides easy access to the votes and other activities of the European parliament
(among other European institutions). Each MEP is described through his name, coun-
try and political group, as well as each vote he cast at the EP. For a given document,
a MEP can express his vote in one of the three following ways: FOR (the MEP wants
the document to be accepted), AGAINST (he wants the document to be rejected) and
ABSTAIN (he wants to express his neutrality). Besides these expressed votes, it is also
possible for the MEP not to vote at all, leading to the following possibilities: ABSENT
(the MEP was not present during the vote), DID NOT VOTE (he was there, but did
not cast his vote), and DOCUMENTED ABSENCE (he was not there but justified his
absence). For each document, we also have access to the category it belongs to, called
Policy. It corresponds roughly to the main theme treated in the considered document:
Agriculture, Budgetary Control, Social Affairs, etc.

1. http://www.europarl.europa.eu/
2. http://www.votewatch.eu/

http://www.europarl.europa.eu/
http://www.votewatch.eu/
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In this article, we focused on the 7th term of the EP (from June 2009 to June 2014),
which involved 840 MEPs and 1426 documents. Based on the raw data provided by
VoteWatch, our extraction process is two-stepped. We first filter these data depending
on temporal and topical criteria. In other terms, if required, it is possible to focus only
on the documents related to a specific policy and/or a specific period of the term, for
instance a given year. The second step consists in comparing individually all MEPs
in terms of similarity of their voting behaviors. The result of this process is what we
call the agreement matrix M . Each numerical value muv that the matrix contains
represents the average agreement between two MEPs u and v, i.e. how similarly they
vote over all considered documents.

The filtering step is straightforward, however the agreement processing constitutes
a major methodological point: depending on how it is conducted, it can strongly affect
the resulting network. For a pair of MEPs u and v and a given document di, we define
the document-wise agreement score muv(di) by comparing the votes of both consid-
ered MEPs. It ranges from −1 if the MEPs fully disagree, i.e. one voted FOR and the
other AGAINST, to +1 if they fully agree, i.e. they both voted FOR or AGAINST.

However, as we mentioned previously, a vote can take other values than just FOR
and AGAINST, and those must also be handled. Let us consider first the non-expressed
votes: ABSENT, DID NOT VOTE and DOCUMENTED ABSENCE. The EU distin-
guishes these different forms of absence not for political, but rather for administrative
reasons, so we decided to consider them all simply as absences. The common ap-
proach when treating this type of vote data (Porter et al., 2005; Maso et al., 2014)
is to ignore all documents di for which at least one of the considered MEPs was ab-
sent. However, certain MEPs are absent very often, which mean they would share a
very small number of documents with others. This approach could therefore artifi-
cially produce extremely strong agreement or disagreement scores. To avoid this, for
a given document, we use a neutral vote similarity of 0 between two MEPs when at
least one was absent during the vote.

Handling the abstentions is a bit trickier, because such a behavior can mean dif-
ferent things: personal disagreement with the MEP’s own political group, neutral po-
sition, etc. There is no consensus in the literature regarding how to treat abstention
(Macon et al., 2012; Porter et al., 2005; Maso et al., 2014). We experimented with
different scoring schemes, but they did not result in significant differences in terms
of the network structure. In the rest of the article, we consequently focus only on
the simplest approach. It considers that if both MEPs abstain, they fully agree (+1),
whereas if exactly one abstains, there is not enough information to determine whether
they agree or disagree, and we therefore use a 0 score.

The average agreement is finally obtained by averaging the document-wise agree-
ment score over all considered documents. More formally, let us consider two users
u and v and note d1, ..., d` the documents remaining after the filtering step, and for
which u and v both cast their votes. The average agreement muv between these two
MEPs is: muv = 1

`

∑`
i=1 muv(di).
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4. Partition Methods

In this section, we present the methods used to partition the signed network ex-
tracted from the VoteWatch data. We first introduce the community detection ap-
proaches we selected for our experiment. Then we formally define the Correlation
Clustering problem and describe the algorithm we used in this article to estimate its
solutions.

4.1. Community Detection

In the literature, the problem of community detection is usually defined in an in-
formal way. It consists in finding a partition of the node set of a graph, such that many
links lie inside the parts (communities) and few lie in-between them. An other way of
putting it is that we look for groups of densely interconnected nodes, relatively to the
rest of the network (Fortunato, 2010). The problem can naturally be generalized to
weighted networks, by considering weight sums instead of link counts. It is difficult
to find a formal definition of this problem, or rather, to find a unique formal definition:
many authors present and solve their own variant. Because of this, the algorithms pre-
sented in the literature do not necessarily solve the exact same problem, although it
is still named community detection. To account for this variance, we selected several
methods for our experiments, all of them able to process weighted unsigned networks.
Because they are all well known, we present them very briefly here.

In InfoMap (Rosvall, Bergstrom, 2008), the community detection is seen as a com-
pression problem, consisting in finding the network partition allowing the most com-
pact representation of a random walk. The authors optimize their information-based
criterion using simulated annealing. EdgeBetweenness (Newman, Girvan, 2003) is
based on a completely different principle. It is a divisive hierarchical algorithm which
recursively splits the network into smaller and smaller communities, by removing the
most central links. The criterion used to select the link is the edge-betweenness cen-
trality, which is related to the number of shortest paths running through the link of
interest. WalkTrap (Pons, Latapy, 2005) is an agglomerative hierarchical algorithm,
which means it uses a bottom-up approach to merge communities into larger and larger
groups, starting from singletons. To select which communities to merge, WalkTrap
uses a random walk-based distance. Finally, FastGreedy (Clauset et al., 2004) is an-
other agglomerative hierarchical approach, but this one merges by locally optimizing
the well-known objective function called Modularity (Newman, 2006), instead of re-
lying on a distance measure like WalkTrap.

4.2. Correlation Clustering

Before formally describing the CC problem, we need to introduce some notations
and definitions first. Let G = (V,E, s, w) be a weighted undirected signed graph. The
sets V and E correspond to the nodes and links constituting the graph. The functions
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s : E → {+,−} and w : E →]0; +1] assign a sign and a positive weight to each link
in E, respectively. Note that weights cannot be zero, which is the case for our data.

A link e ∈ E is called negative if s(e) = − and positive if s(e) = +. Let E− ⊆ E
and E+ ⊆ E denote the sets of negative and positive links in G, respectively. Notice
that, according to the above definitions, E = E− ∪ E+. We define the positive
and negative subgraphs of G as G− = (V,E−) and G+ = (V,E+), respectively.
The complementary negative graph is G− = (V,E−), where E− = P2(V ) \ E−
and P2(V ) is the set of all unordered pairs from V . In other words, all pairs of
nodes connected by negative links in G are disconnected in G−, and all pairs of nodes
connected by positive links, or disconnected in G, are connected in G−.

Let us consider a partition P of V such that P = {V1, ..., Vk}. A link is said to be
cut if it connects nodes from two different parts. We note E[Vi : Vj ] ⊂ E the set of
links connecting two nodes from Vi and Vj (cut links), and E[Vi] ⊂ E the set of links
connecting two nodes from Vi (so, E[Vi] = E[Vi : Vi]) (uncut links).

As mentioned before, negative links located inside parts (uncut negative links) and
positive links located between parts (cut positive links) are considered to lower the
graph balance. For Vi, the total weight of uncut negative links Ω− is:

Ω−(Vi) =
∑

e∈E−∩E[Vi]

we (1)

And for two parts Vi and Vj , the total weight of cut positive links Ω+ is:

Ω+(Vi, Vj) =
∑

e∈E+∩E[Vi:Vj ]

we (2)

The Imbalance I(P ) of a partition P can be defined as the sum of uncut negative and
cut positive links over the whole graph:

I(P ) =
∑

1≤i≤k

Ω−(Vi) +
∑

1≤i<j≤k

Ω+(Vi, Vj) (3)

All three functions are positive (or 0). Finally, the Correlation Clustering problem is
the problem of finding a partition P of V such that the imbalance I(P ) is minimized.

In this work we will solve the CC problem using the Parallel ILS algorithm pre-
sented in (Levorato et al., 2015), which was designed to solve the CC problem in
large real-world networks. ILS is itself a metaheuristic approach allowing to obtain
good quality solutions by applying iteratively greedy search methods (Lourenço et al.,
2010). Starting from an initial solution estimated through a greedy method, the gen-
eral principle is two-stepped: first, some perturbations are introduced to modify the
current best solution; second, some local searches are performed to find better solu-
tions within the neighborhood. This iterative process is stopped when some condition
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is meet (minimal quality, time limit, etc.). This specific implementation is parallelized,
in order to improve speed.

Considering that the networks extracted from the VoteWatch data are very dense,
we had to perform some minor modifications on the original Parallel ILS algorithm,
so that the processing time was acceptable. First, the search space used in the local
search was reduced by adding a probably (0.7) of visiting a neighbor solution. In other
terms, in average we limit the search to only a part of the neighborhood. Second, the
perturbation level had to be reduced to 15, half the maximum number of runs in the
original work.

5. Results and Discussion

In order to process the VoteWatch data, we developed a tool called NetVotes, which
takes the form of a collection of R scripts. It implements the method described in sec-
tion 3, and additionally calculates some metrics describing the studied networks and
their partitions. It is generic enough to treat any type of data of the same form. To per-
form the community detection, we used the igraph R package, which contains all the
algorithms we selected. For the CC problem, we used the authors’ version of Parallel
ILS, which we modified as explained in section 4.2. All our source code, as well as
the data it outputs, are publicly available on GitHub3 and FigShare4, respectively.

As described in section 3, our extraction method takes three parameters: the table
used to process the agreement scores, the policy and the time period. We proposed 2
different tables, there are 21 policies and we also considered all documents indepen-
dently from their policies, and we considered each year separately as well as the whole
5-year long 7th term (2009-2014). This amounts to a total of 264 different modalities.
However, in certain cases, the filtering step led to less than 2 documents, so we were
not able to extract networks for all combinations of policies and time periods.

Parallel ILS can directly be applied to signed network, however this is not the
case of the community detection methods, since these can only take one type of links
into account (positive or negative). To solve this issue, we proposed to consider two
subgraphs of the original signed networks: the signed graph and the complementary
negative graph, noted G+ and G− in Section 4.2, respectively. The former is a version
of the original graph retaining only its positive links. The latter contains all possible
links but the ones labeled negative in the original graph. In both cases, the result is
a graph with only one type of unlabeled links, representing a part of the information
originally conveyed by the original graph. This is very consistent with our objective,
since we want to study if the information loss translates in terms of detected partitions.

We applied all the selected community detection algorithms to both types of graphs,
for all the modalities described in the previous subsection. For space matters, it is not

3. https://github.com/CompNet/NetVotes/
4. http://dx.doi.org/10.6084/m9.figshare.1456268

https://github.com/CompNet/NetVotes/
http://dx.doi.org/10.6084/m9.figshare.1456268
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possible to display and comment all of them, so we decided to focus on the Foreign &
Security Affairs because it is the most frequent, with 191 documents discussed during
the 7th term. The obtained results are shown in Figure 1. Each group of bars repre-
sents the results obtained by one algorithm for each year taken independently, and for
the whole term (see the legend). The bar heights are proportional to the imbalance of
the estimated partitions, as described in equation (3), only they are here expressed in
terms of percents relatively to |E|. The numbers on top of the bars indicate how many
parts (communities) the corresponding partitions contain. Note the displayed results
are representative of all the other policies.

images/clusters-policy-foreign.pdf

Figure 1. Imbalance of the partitions (bars) and numbers of detected clusters (blue
values), obtained through Parallel ILS (left bar group) and community detection

methods (other bar groups), for each year and the whole term (see legend), processed
for the Foreign & Security policy

Let us compare the effectiveness of the algorithms. EdgeBetweenness, FastGreedy
and WalkTrap are far from finding optimal results when processing the positive sub-
graphs: they obtain scores ranging from 20% to more than 60% imbalance, and gen-
erally find a high number of clusters. The multitude of clusters is certainly the cause
for these large imbalance values. Note this observation is not inconsistent with be-
ing effective at detecting communities, since this task implies taking link density into
account. The behavior of the same algorithms is very different when applied to the
complementary negative subgraph. The number of detected clusters is much smaller
(generally around 2–5), and the imbalance is smaller, but still around 20%. The rea-
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son for that is certainly that these graphs being much denser, it becomes harder to
distinguish dense subroups, i.e. communities.

The InfoMap algorithm is much more successful at detecting balanced partitions,
and reaches much smaller imbalance than the other community detection algorithms
(always less than 20%, often less than 5%). However, on the negative complementary
graphs, InfoMap simply puts all the nodes in the same cluster, so these results cannot
be considered as relevant. On the positive graphs, the imbalance is very low (with the
exception of the year 2013), close to 1%, and the algorithm finds 4–14 clusters. The
results obtained with Parallel ILS are even better, in terms of imbalance, since they
consistently get close to 0%. Moreover, the number of clusters is relatively low (2–3),
which corresponds to what we were expecting a priori. Indeed, the EP is known to
be split in two major political sides (EPP and S&P), with some punctual alliances of
smaller parties, leading to the formation of third or fourth groups. It is worth noticing
that the imbalance is more marked for both algorithms for the year 2013. Moreover,
we made the same observation on the other policies. This might be due to this year
being the last in the 7th term, and therefore coinciding with the negotiation of the 8th

term budgets and changes in the policies orientation. Such changes lead to stronger
discussions in the EP, and may challenge the balance of certain political groups.

In average, InfoMap identifies partitions 3 times more imbalanced than Parallel
ILS and also tends to partition the graph in more clusters. We compared the InfoMap
and Parallel ILS partitions in terms of Normalized Mutual Information, which is now
the standard measure to perform such a task (Fred, Jain, 2003). This measures ranges
from −1 (completely different) to +1 (completely identical), whereas 0 represents
statistical independence. The values obtained for both considered policies, and for
all the time periods, are extremely close to zero (< 0.05). This means the partitions
detected by the two algorithms have little in common, even though their numbers of
clusters and/or imbalance levels are sometimes similar.

We can conclude by stating that, on these data, our results do not confirm the
findings of Esmailian et al. (2014) regarding the low informative value of negative
links. Taking negative links into account leads to a lower imbalance and a different
partition, containing larger clusters. Moreover, among our selection of community
detection algorithms, InfoMap is the only one to exhibit a behavior comparable to that
of Parallel ILS. This means the notion of community implemented in this algorithm,
which relies on an information compression-based approach, can be considered as
compatible enough with the concept of structural balance. However, this is not the
case for the other considered methods, based on link centrality, node distance and
modularity. Therefore, discussing collectively the different methods proposed to solve
the community detection problem does not seem be relevant, since the notions of
community they rely upon are different (despite a common name).
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6. Conclusion

In this article, we have investigated some of the aspects inherent to the partition
of signed networks, using data from the European Parliament (EP). We first extracted
a collection of networks using the voting patterns of the Members of the EP. Then,
we applied a selection of community detection methods to these networks, as well as
Parallel ILS, an algorithm specifically designed to treat signed graphs. Among the
former, the best results in terms of structural balance are obtained, by far, by InfoMap.
However, in average, Parallel ILS detected partitions three times more balanced. This
seems to be due to the fact community detection methods ignore negative links and
focus instead on link density. Independently from the balance aspect, the number of
clusters detected by ILS is lower, which is more consistent with the studied system.

These results are in opposition with the finding of Esmailian et al. (2014), however
they do not invalidate them. Indeed, in both case, the experiments were performed on a
very limited number of networks. The process should be conducted on a large number
of different datasets in order to draw more reliable conclusions. In our future work,
we plan to constitute a collection of real-world signed networks in order to perform
this task. We also want to continue studying the MEPs voting data in further details,
focusing on the interpretation of the identified balanced clusters.
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