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Abstract

We say that a given graph G = (V, E) has pathbreadth at most ρ, denoted pb(G) ≤ ρ, if there exists a
Robertson and Seymour’s path decomposition where every bag is contained in the ρ-neighbourhood of some
vertex. Similarly, we say that G has strong pathbreadth at most ρ, denoted spb(G) ≤ ρ, if there exists a
Robertson and Seymour’s path decomposition where every bag is the complete ρ-neighbourhood of some
vertex. It is straightforward that pb(G) ≤ spb(G) for any graph G. Inspired from a close conjecture in
[Leitert and Dragan, COCOA’16], we prove in this note that spb(G) ≤ 4 · pb(G).
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We refer to [1] for any undefined graph terminology. Graphs in this study will be finite, simple, connected
and unweighted. Our purpose in this note is to relate two pathlikeness invariants, first introduced in [3, 7].
Specifically, a (Robertson and Seymour’s) path decomposition of a given graph G = (V, E) is any sequence(
X1, X2, . . . , Xp

)
of subsets of V , called bags, that satisfies the following three properties:

1. Every vertex x ∈ V is contained in at least one bag;
2. Every edge xy ∈ E has its two ends contained in at least one common bag;
3. For every x ∈ V , the bags that contain x induce a consecutive subsequence.

The width of a path decomposition is equal to the largest size of its bags minus one. The pathwidth of a graph
G is the minimum possible width over its path decompositions. Pathwidth is often used in parameterized
complexity as it has many algorithmic applications. Motivated by the efficient resolution of routing and
distance-related problems on graphs [4], we rather focus in this note on the metric properties of the bags
instead of their size.

Given some non-negative r, the r-neighbourhood Nr
G[v] of a vertex v ∈ V is the set of vertices with

distance at most r to v, i.e., Nr
G[v] = { u ∈ V | dG(u, v) ≤ r }. – We will omit the subscript if the graph G is

clear from the context. – The breadth of a path decomposition is equal to the smallest integer ρ such that
every bag is contained in the ρ-neighbourhood of some vertex (this vertex may not be in the bag). The
pathbreadth of a graph G, denoted pb(G), is the minimum possible breadth over all its path decompositions.
We stress that bounded-pathbreadth graphs comprise the interval graphs and the convex bipartite graphs,
that are two important graph classes with unbounded pathwidth. However, computing the pathbreadth of a
given graph is an NP-hard problem [6].

A slightly more amenable parameter than pathbreadth – unfortunately still NP-hard to compute [5] – is
strong pathbreadth, defined as follows. The strong pathbreadth of a graph G, denoted spb(G), is the minimum
integer ρ such that there exists a path decomposition of G where all bags are the complete ρ-neighbourhood
of some vertex. Note that we clearly have pb(G) ≤ spb(G). It is natural to ask whether, conversely, there
exists a universal constant c such that spb(G) ≤ c · pb(G). In fact, a similar question was asked in [7] for
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the related parameters treebreadth and strong treebreadth (defined using the more general object of tree
decompositions). In this note, we answer positively to this question for pathbreadth and strong pathbreadth.
Namely, we prove the following result:

Theorem 1. For every graph G, we have pb(G) ≤ spb(G) ≤ 4 · pb(G).

In order to prove Theorem 1, we describe in Algorithm 1 below how to construct a path decomposition
with strong breadth at most 4 · pb(G) for a given graph G. The eccentricity of a shortest path P in G is
defined in what follows as the maximum distance between any vertex in V and a closest vertex in V (P ).

Algorithm 1 takes as input a path P with eccentricity λ. – Such a P can be extracted from any path
decomposition with breadth λ/2 [3]. – It then selects a set Q of vertices from P which will be the centers of
the bags in a path decomposition with strong breadth 2λ. These vertices are distributed evenly across P
such that consecutive vertices are at distance 2λ to each other.

Algorithm 1: Computes a path decomposition with strong breadth 2λ for a given graph and a given
shortest path with eccentricity λ.

Input: A graph G = (V, E) and a shortest path P = (v0, v1, . . . , vℓ) with eccentricity λ.
Output: A path decomposition Φ for G with strong breadth 2λ and the centers Q.

1 Let P = (v0, v1, . . . , vℓ), set L :=
⌊

ℓ

2λ

⌋
, and set δ :=

⌊
(ℓ mod 2λ)/2

⌋
.

2 for i := 0 to L do
3 Let j = 2λ · i + δ and set qi := vj .
4 Compute the bag Bi := N2λ[qi] by performing a BFS which starts at qi and is limited to

distance 2λ.
5 Output Q = {q0, q1, . . . , qL} and Φ = (B0, B1, . . . , BL).

Lemma 2. Algorithm 1 constructs a path decomposition Φ for G with strong breadth 2λ in linear time.

Proof. For the first part of the proof, we show that the sequence

Φ =
(

N2λ[q0], N2λ[q1], . . . , N2λ[qL]
)

constructed by the algorithm is a path decomposition for G. In order to prove this claim, it suffices to prove
that Φ satisfies all the properties of a path decomposition. Clearly, in that case, Φ has strong breadth 2λ.

• We first show that each vertex is contained in a bag. Observe that, by construction of Q, d(qi, qi+1) = 2λ
for all i < L and min

{
d(v0, q0), d(qL, vℓ)

}
≤ λ. It follows from this observation that Q is a λ-dominating

set of P . Since P is a λ-dominating path for G, we obtain that
L⋃

i=0
N2λ[qi] ⊇

ℓ⋃
i=0

Nλ[vi] = V . Hence,

every vertex is contained in a bag.

• Next, we show that each edge is contained in a bag of Φ. Let xy be an arbitrary edge. Suppose for
the sake of contradiction that, for every qi ∈ Q, we have {x, y} ⊈ N2λ[qi]. Since P λ-dominates G, P
contains two vertices x′ and y′ with d(x, x′) ≤ λ and d(y, y′) ≤ λ. Note that x′ ̸= y′ (otherwise, since
x′ ∈ Nλ[qi] for some i, we would get x, y ∈ N2λ[qi], a contradiction).
Furthermore, we claim that d(x, x′) = d(y, y′) = λ, and that d(qi, x′) and d(qi, y′) are at least λ for
each qi ∈ Q. Indeed, suppose by contradiction d(x, x′) < λ, and let qi ∈ Q be such that d(qi, x′) ≤ λ
(such a qi always exists because Q is a λ-dominating set of P ). Then, d(qi, y) ≤ d(qi, x′) + d(x, x′) + 1 <
2λ + 1 and, hence, {x, y} ⊆ N2λ[qi]. A contradiction. In the same way, suppose by contradiction that
there is a vertex qi ∈ Q with d(qi, x′) < λ. Then, we also obtain d(qi, y) ≤ d(qi, x′)+d(x, x′)+1 < 2λ+1
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and, hence, {x, y} ⊆ N2λ[qi]. It follows as claimed that d(x, x′) = d(y, y′) = λ, and that d(qi, x′) and
d(qi, y′) are at least λ for each qi ∈ Q.
Recall that the distance between two consecutive vertices in Q is exactly 2λ. Hence, x′ and y′ are
respectively in the middle of two consecutive vertices in Q with equal distance λ to them. Note that
d(x′, y′) ≤ d(x, x′) + 1 + d(y, y′) ≤ 2λ + 1. Therefore, since P is a shortest path, there is a vertex qi ∈ Q
such that d(x′, qi) = d(qi, y′) = λ, and d(x′, y′) = 2λ (otherwise, d(x′, y′) would be larger than 2λ + 1 or
x′ and y′ would be equal). But then, d(qi, x) ≤ d(qi, x′)+d(x, x′) ≤ 2λ, d(qi, y) ≤ d(qi, y′)+d(y, y′) ≤ 2λ,
and, therefore, {x, y} ⊆ N2λ[qi]. This contradicts with our assumption that no such qi exists. Altogether
combined, it follows that every edge is contained in a bag.

• It remains to show that, for each vertex, the bags containing it are consecutive. Let x be an arbitrary
vertex of G. Suppose for the sake of contradiction that there exist two vertices qj , qk ∈ Q with
j < k − 1 such that x ∈ N2λ[qj ] ∩ N2λ[qk] and x /∈ N2λ[qi] for every i ∈ {j + 1, . . . , k − 1}. Observe
that d(qj , qk) ≤ d(qj , x) + d(x, qk) ≤ 4λ. Since P is a shortest path and j < k − 1, we deduce that
d(qj , x) = d(qk, x) = 2λ and, hence, that there is a vertex qi ∈ Q with d(qj , qi) = d(qk, qi) = 2λ, i.e.,
qi is between qj and qk. However, since P is a λ-dominating path for G, P contains a vertex x′ with
d(x, x′) ≤ λ. By the triangle inequality, we have d(qj , x′) ≤ d(qj , x) + d(x, x′) ≤ 3λ, and in the same
way d(x′, qk) ≤ 3λ. Since d(qj , qk) = 4λ, this implies that x′ is between qj and qk in P and that
d(x′, qi) ≤ λ. Thus, x ∈ N2λ[qi] which contradicts with our original assumption. Therefore, all the
bags that contain x induce a consecutive subsequence.

Overall, Φ satisfies all the properties of a path decomposition, thereby proving the claim.
We now show that Φ can be constructed in linear time. For that, we start by observing that the minimum

λ such that P λ-dominates G can easily be computed in linear time (by performing a modified BFS). Then,
calculating L and δ (line 1) as well as determining all vertices qi (line 3) can easily be done in linear time as
well. To show that constructing all bags (line 4) requires linear time in total, we recall that the distance
between two consecutive vertices in Q is exactly 2λ. Thus, if a vertex v is contained in the bags Bi = N2λ[qi]
and Bj = N2λ[qi+2] for some i, then d(qi, v) = d(qi+2, v) = 2λ. That is, v is on the boundary of the bags
Bi and Bj . As a result, each vertex of G can be in at most three bags and each edge of G is in at most
two bags. Therefore, performing a BFS which is limited to distance 2λ on each vertex qi requires at most
O(3n + 2m) = O(n + m) operations, i.e., line 4 runs in total linear time.

Based on Algorithm 1, we can now prove Theorem 1.

Proof of Theorem 1. Note that each graph G contains a shortest path P with eccentricity λ ≤ 2 pb(G) [3].
Performing Algorithm 1 on P then creates a path decomposition for G with strong breadth 2λ ≤ 4 pb(G). It
follows that spb(G) ≤ 4 pb(G) for any graph G, thereby proving Theorem 1.

We do not know if the bound in Theorem 1 is sharp. It therefore remains an open question if there is a
graph G such that spb(G) = 4 pb(G).

Algorithmic applications. An asteroidal triple in a given graph G is an independent set of size three in G
such that each pair of two vertices in the triple is joined by a path that avoids the closed neighbourhood of
the third one. A graph is called AT-free if it does not have any asteroidal triple. We get the following result
for AT-free graphs (improving a result from [3]):

Theorem 3. If a graph G is AT-free, a path decomposition for G with strong breath 2 can be computed in
linear time.

Proof. It is known that each AT-free graph G has a vertex pair x, y such that each path from x to y has
eccentricity 1; such a pair can be found in linear time [2]. We can now compute a shortest path P from x
to y and perform Algorithm 1 on P . The output is a path decomposition with strong breath 2 for G.
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Figure 1: An AT-free graph G. The decomposition
(

N2[v0], N2[v2], N2[v4]
)

(as constructed by Algorithm 1) has strong
breadth 2. The decomposition

(
N [v0], N [y], N [z], N [v2], N [v4]

)
, however, has strong breadth 1.

Note that a decomposition as constructed by Algorithm 1 is not necessarily optimal for all AT-free graphs.
See Figure 1 for an example.

Algorithm 1 also allows to approximate the strong pathbreadth of a given graph with a constant
approximation factor. For a given graph G, one can compute a shortest path with eccentricity at most 2 pb(G)
in O

(
n2m

)
time and with eccentricity at most 4 pb(G) in linear time [3]. By performing Algorithm 1 on such

a path, we get a path decomposition with strong breadth 4 spb(G) or strong breadth 8 spb(G), respectively.
Therefore, we can conclude as follows:

Theorem 4. The strong pathbreadth of a given graph can be approximated by a factor 4 in O
(
n2m

)
time

and by a factor 8 in linear time.
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