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Computing discrete equivariant harmonic maps

Jonah Gaster∗, Brice Loustau†, and Léonard Monsaingeon‡

Abstract

We present effective methods to compute equivariant harmonic maps from the universal
cover of a surface into a nonpositively curved space. By discretizing the theory appropriately,
we show that the energy functional is strongly convex and derive convergence of the discrete
heat flow to the energy minimizer, with explicit convergence rate. We also examine center
of mass methods, after showing a generalized mean value property for harmonic maps.
We feature a concrete illustration of these methods with Harmony, a computer software
that we developed in C++, whose main functionality is to numerically compute and display
equivariant harmonic maps.
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Introduction

The theory of harmonic maps has its roots in the foundations of Riemannian geometry and the
essential work of Euler, Gauss, Lagrange, and Jacobi. It includes the study of real-valued harmonic
functions, geodesics, minimal surfaces, and holomorphic maps between Kähler manifolds.

A harmonic map f : M → N is a critical point of the energy functional

E( f ) =
1
2

∫
M

‖ d f ‖2 dvM .

The theory of harmonic maps was brought into a modern context for Riemannian manifolds
with the seminal work of Eells-Sampson [ES64] (also Hartman [Har67] and Al’ber [Al’68]). Eells-
Sampson studied the heat flow associated to the energy, i.e. the nonlinear parabolic PDE

d
dt

ft = τ( ft ) ,

where τ( f ) is the tension field of f (see § 1). The tension field can be described as minus the
gradient of the energy functional on the infinite-dimensional Riemannian space C∞(M,N), so that
the heat flow is just the gradient flow for the energy. When N is compact and nonpositively curved,
the heat flow is shown to converge to an energy-minimizing map as t →∞.

The theory has since been developed and generalized to various settings where the domain or the
target are not smooth manifolds [GS92, KS93, Che95, Jos97, EF01, Mes02, DM08]. In particular,
Korevaar-Schoen developed an extensive Sobolev theory when the domain is Riemannian but the
target is a nonpositively curvedmetric space [KS93, KS97]. Jost generalized further to a domain that
is merely a measure space [Jos84, Jos94, Jos95, Jos96]. Both took a similar approach, constructing
the energy functional E as a limit of approximate energy functionals.

These tools have become powerful and widely used, with celebrated rigidity results [Siu80,
GS92, Wan00, DMV11, IN05] and dramatic implications for the study of deformation spaces and
Teichmüller theory when the domain M is a surface (see e.g. [DW07]), especially via the nonabelian
Hodge correspondence [Don87, Hit87, Cor88, Wol89, Lab91, Sim91].

This paper and its sequel [GLM18] are concerned with effectiveness of methods for finding
harmonic maps. In addition to the mathematical content, we feature Harmony, a computer program
that we developed in C++whose main functionality is to numerically compute equivariant harmonic
maps. Our project was motivated by the question: is it possible to study the nonabelian Hodge
correspondence experimentally? Though the heat flow is constructive to some extent, it does not
provide qualitative information about convergence in general. We show that one can design entirely
effective methods to compute harmonic maps by discretizing appropriately.

Some of the existing literature treats similar questions. For example, Bartels applies finite
element methods on submanifolds of Rn to nonlinear PDEs such as the Euler-Lagrange equations
for minimization of the energy [Bar05, Bar10, Bar15]. There is also an extensive literature on
discrete energy functionals of the form we consider in this paper [CdV91, PP93, Leb96, KS01,
JT07, Wan00, IN05, EF01, Fug08, HS15].

However, there are a number of features that set our work apart. First of all, we focus on
surface domains, and we take sequences of arbitrarily fine discretizations as opposed to one fixed
approximation of the surface. Moreover, we follow the maxim of Bobenko-Suris [BS08, p. xiv]:

Discretize the whole theory, not just the equations.
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Our discrete structures record additional data beyond the commonly employed ‘cotangent edge
weights’ of Pinkall-Polthier [PP93]. This data takes the form of a measure on the 0-skeleton of the
triangulation, i.e. a system of vertex weights. One can think of this as a discrete record of the area
form (i.e. Kähler form) on the domain surface, which, together with the discrete conformal structure
recorded by the edge weights, provides a reasonable approximation of the surface’s metric.

This discretization endows the space of discrete maps with a finite-dimensional Riemannian
structure, approximating the L2 metric on C∞(M,N). We obtain the right setting for a study of the
convexity of the discrete energy, and for the definitions of a discrete tension field and, crucially, a
discrete heat flow. Among the practical benefits, we find that the discrete energy satisfies stronger
convexity properties than those known to hold in the smooth setting.

Another aspect of harmonicmaps is revealed via the study of centers ofmass. It is well-known in
the Euclidean setting that real-valued harmonic functions satisfy the essential mean value property.
Strictly speaking, this property does not hold in more general settings, but a fine analysis of the
interaction between harmonic maps and centers of mass is still possible. It turns out that averaging
a function can be a viable alternative to the heat flow in order to decrease its energy, a viewpoint
well adapted to Jost’s theory of generalized harmonic maps [Jos94, Jos95, Jos96, Jos97]. As an
alternative to the discrete heat flow, we also pursue a discretization of the theory of Jost by analyzing
discrete center of mass methods. First, we explore the smooth setting and obtain novel aspects of
the relationship between harmonic maps and Riemannian centers of mass.

For both heat flow and center ofmassmethods, the present paper focuses on a fixed discretization
of the domain, while the forthcoming paper [GLM18] analyzes convergence of the discrete theory
to the smooth one as we take finer and finer discretizations approximating a smooth domain.

Now let us describe more precisely some of the main theorems of the paper. After discussing
harmonic maps in § 1 and developing a discretized theory in § 2, we study the convexity of the
energy functionals in § 3. We show:

Theorem (Theorem 3.25). Let S be a discretized hyperbolic surface and let N be a compact
manifold with negative sectional curvature. Then the energy functional is strongly convex in the
homotopy class of any π1-injective map S → N .

Let us stress that while the convexity of the energy comes for free, the content of the theorem
above is a positive modulus of convexity, i.e. a uniform lower bound for the Hessian. We actually
show amore general version of this theorem involving equivariant maps and the notion of biweighted
triangulated graph which we introduce in § 2. See Theorem 3.25 for the precise statement.

When the target N is specialized to a hyperbolic surface, we find explicit bounds for the Hessian
of the energy functional (see Theorem 3.21). We achieve this through detailed calculations in the
hyperbolic plane, which we then generalize to negatively curved target manifolds using CAT(k)-
type comparisons. Roughly speaking, the key idea is that if the energy of some function has a very
small second variation, then each triangle in the domain must be mapped to an almost flat triangle
in the target; however this is not possible by the Gauss-Bonnet theorem. § 3 is concerned with the
significant work of making this argument precise and quantitative.

In § 4 we study gradient descent methods in Riemannian manifolds and specialize to the
convergence of the discrete heat flow. Fully leveraging strong convexity of the energy, we show:

Theorem (Theorem 4.5). LetS be a discretized hyperbolic surface and let N be a compact manifold
of negative curvature. Then there exists a unique discrete harmonic map f ∗ : S → N . Moreover,
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for any map f0 : S → N and for any sufficiently small t > 0, the discrete heat flow with initial
value f0 and fixed stepsize t converges to f ∗ with convergence rate

d( fk, f ∗) 6 cqk ,

where c > 0 and q ∈ [0,1) and d( fk, f ∗) is the L2 distance in the space of discrete maps.

Again, this is a simplified version of the theorem we show; see Theorem 4.5 for the precise
statement. When the target N is a hyperbolic surface, the constants c and q can be made explicit.

Next we discuss center of mass methods in § 5. In order to decrease the energy of any given
map f : M → N , an interesting alternative to the heat flow consists in averaging f on balls (or
spheres) of small radius r > 0, producing a new map Br f : M → N . Repeating this process
potentially produces energy-minimizing sequences for an approximate version of the energy Er ,
a phenomenon that has been explored by Jost [Jos94]. The central theorem we prove in § 5.2
is that in the Riemannian setting, this iterative process is almost the same as a fixed stepsize
time-discretization of the heat flow. See Theorem 5.8 for a precise statement.

An immediate but noteworthy consequence of this theorem is the following generalized mean
value property for harmonic maps:

Theorem (Theorem 5.9). Let f : M → N be a smooth map. Then f is harmonic if and only if

d( f (x),Br f (x)) = O(r4)

as r → 0, for all x ∈ M .

Under suitable conditions, we show that the center of mass method converges to a minimizer
of the approximate energy Er (see Theorem 5.17), recovering a theorem of Jost [Jos94, §3]. Jost’s
result is more general, but our conclusion is slightly stronger.

In the space-discretized setting, the approximate energy coincides with the discrete energy,
making the discrete center of mass method an appropriate alternative to the discrete heat flow.

Theorem (Theorem 5.21). Let S be a discretized hyperbolic surface, and let N be a compact
manifold of negative sectional curvature. In a homotopy class of π1-injective maps S → N , the
center of mass method from any initial map converges to the unique discrete harmonic map.

As a concrete demonstration of the effectiveness of our algorithms, we present in § 6 our
own computer implementation of a harmonic map solver: Harmony is a freely available computer
software with a graphical user interface written in C++ code, using the Qt framework. This
program takes as input the Fenchel-Nielsen coordinates for a pair of Fuchsian representations
ρL, ρR : π1S → Isom(H2) and computes and visualizes the unique equivariant harmonic map.
Harmony’s main user interface is illustrated in Figure 7.

In future development of Harmony, we plan to compute and visualize harmonic maps for more
general target representations that are not necessarily discrete, and for more general target spaces,
such as H3 and other nonpositively curved symmetric spaces.

We have implemented both the discrete heat flow method, with fixed and optimal stepsizes
separately, and the cosh-center of mass method, a clever variant of the center of mass method
suggested to us by Nicolas Tholozan that is better suited for computations in hyperbolic space
(discussed in § 5.4). In practice, the cosh-center of mass method is the most effective, both in
number of iterations and execution time (see § 4.3).
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1 Harmonic maps

1.1 Energy functional and harmonic maps

Let (M,g) and (N, h) be two smooth Riemannian manifolds. Assuming M is compact, the energy
of a smooth map f : M → N is:

E( f ) =
1
2

∫
M

‖ d f ‖2 dvg (1)

where vg is the volume density of the metric g. Note that d f is a smooth section of the bundle
T∗M ⊗ f ∗ TN over M , which admits a natural metric induced by g and h, giving sense to ‖ d f ‖.
This is the so-called Hilbert-Schmidt norm of d f , which is also described as ‖ d f ‖2 = trg( f ∗h).

Definition 1.1. A map f : M → N is harmonic if it is a critical point of the energy functional (1).

This means concretely that:
d
dt |t=0

E( ft ) = 0

for any smooth deformation ( ft ) : (−δ, δ) × M → N of f = f0. Note that one should work with
compactly supported deformations when M is not compact, as the energy could be infinite.

A more tangible characterization of harmonicity is given by the Euler-Lagrange equation for E ,
which takes the form τ( f ) = 0where τ( f ) is the tension field of f : this is an immediate consequence
of the first variational formula below (Proposition 1.3). First we define the tension field. Note that
the bundle T∗M ⊗ f ∗ TN admits a natural connection ∇ induced by the Levi-Civita connections of
g and h. Hence one can take the covariant derivative ∇(d f ) ∈ Γ(T∗M ⊗ T∗M ⊗ f ∗ TN) (we use the
notation Γ for the space of smooth sections), also denoted ∇2 f . It is easily shown to be symmetric
in the first two factors.

Definition 1.2. The vector-valued Hessian of f is

∇2 f B ∇(d f ) ∈ Γ(T∗M ⊗ T∗M ⊗ f ∗ TN) .

The contraction (trace) of ∇2 f on its first two indices using the metric g is the tension field of f :

τ( f ) B trg(∇2 f ) ∈ Γ( f ∗ TN) .
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Note that the vector-valued Hessian generalizes both the usual Hessian (when N = R) and the
(vector-valued) second fundamental form (when f is an isometric immersion). Accordingly, the
tension field generalizes both the Laplace-Beltrami operator and the (vector-valued)mean curvature.

Proposition 1.3 (First variational formula for the energy). Let f : (M,g) → (N, h) be a smooth map
and let ( ft ) be a smooth deformation of f . Denote by V ∈ Γ( f ∗ TN) the associated infinitesimal
deformation defined as Vx =

d
dt |t=0

ft (x). Then

d
dt |t=0

E( ft ) = −
∫
M

〈τ( f )x,Vx〉 dvg(x) (2)

where h = 〈·, ·〉 is the Riemannian metric in N .

One can introduce a naturalL2 inner product of two infinitesimal deformationsV,W ∈ Γ( f ∗ TN)
(also called vector fields along f ):

〈V,W〉 =
∫
M

〈Vx,Wx〉 dvg(x) . (3)

There is in fact a natural smooth structure on C∞(M,N), making it an infinite-dimensional manifold,
which identifies the tangent space at f as

T f C
∞(M,N) = Γ( f ∗ TN) , (4)

we refer to [KM97, Chapter IX] for details. With respect to this smooth structure, (3) defines a
Riemannian metric on C∞(M,N), and (2) can simply be put:

grad E( f ) = −τ( f ) . (5)

Next we compute the second variation of the energy (like the first variation, this is already in
[ES64]):

Proposition 1.4 (Second variational formula for the energy). Let ( fst ) : (−δ, δ)2 × M → N be a
smooth deformation of f = f00 . Denote V = ∂ f

∂s |s=0 and W = ∂ f
∂t |t=0. Then

∂2E( fst )
∂s∂t |s=t=0

=

∫
M

(
〈∇V,∇W〉 − trg

〈
RN (d f ,V)W,d f

〉
+

〈
∇ ∂
∂t

∂ f
∂s
, τ( f )

〉)
dvg

where RN is the Riemann curvature tensor1 on N .

When ( fst ) is a geodesic variation, i.e. fst (x) = exp f (x)(sVx + tWx), the third term in the integral
vanishes. This yields the formula for the Hessian of the energy functional:

Hess(E) | f (V,W) =
∫
M

(
〈∇V,∇W〉 − trg

〈
RN (V,d f ) d f ,W

〉)
dvg . (6)

When M is closed, this can also be written Hess(E) | f (V,W) = 〈J(V),W〉 using the L2 Riemannian
metric (3), where J(V) = − trg(∇2V + RN (V,d f ) d f ) is the Jacobi operator.

1For us the curvature tensor is R(X,Y )Z = ∇2
X ,Y Z −∇2

Y ,XZ . Some authors’ convention differs in sign, e.g. [GHL04].
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1.2 Energy functional on L2(M,N) and more general spaces

The energy functional can be extended to maps that are merely in L2(M,N). First let us define
this function space. Assume M is compact. The L2-distance between two measurable maps
f1, f2 : M → N is

d( f1, f2) =
(∫

M

d( f1(x), f2(x))2 dvg(x)
) 1

2

. (7)

If f1, f2 are both smooth, this is the distance induced by the L2 Riemannian metric (3), provided
there exists a geodesic between f1 and f2. A measurable map f : M → N is declared in L2(M,N)
when it is within finite distance of a constant map. For r > 0, one can then define an approximate
r-energy of f ∈ L2(M,N):

Er ( f ) =
1
2

∫
M

∫
M

ηr (x, y) d( f (x), f (y))2 dvg(y) dvg(x) (8)

where ηr (x, y) is a kernel that may be chosen ηr (x, y) = 1r (x,y)
r2Vm(r)

, where Vm(r) is the volume of a ball
of radius r in a Euclidean space of dimension m = dim M and 1r (x, y) is the characteristic function
of {(x, y) ∈ M2 : d(x, y) < r} in M ×M (see [Jos97, §4.1] for a discussion of the choice of kernel).
One can show that the functional Er is continuous on L2(M,N). Moreover, the limit:

E( f ) B lim
r→0

Er ( f ) (9)

exists in [0,∞] for every f ∈ L2(M,N). The resulting energy functional E is lower semi-continuous
on L2(M,N) and coincides with (1) on C∞(M,N). A measurable map f : M → N is declared in
the Sobolev space H1(M,N) if it is in L2(M,N) and has finite energy. The spaces L2

loc(M,N) and
H1
loc(M,N) are similarly defined by restricting to compact sets. One can then define a (weakly)

harmonic map as a critical point of the energy functional in H1
loc(M,N). Any continuous weakly

harmonic map is smooth [Jos11, Theorem 8.4.1] (the continuity assumption can be dropped when
M and N are compact and N has nonpositive curvature: [Jos11, Corollary 8.6.1]).

In addition to opening theway for tools from functional analysis, this approach can be generalized
to much more general spaces than Riemannian manifolds. Indeed, assume M = (M, µ) is a measure
space and N = (N, d) is a metric space. The space L2(M,N) may be defined as before, and given
a choice of kernel ηr for r > 0, one can define energy functionals Er : L2(M,N) → R using (8).
For a suitable choice of ηr and of a sequence rn → 0, the energy functional is E = limn→+∞ Ern .
More precisely, one must ensure that E is the Γ-limit of the functionals Ern . We refer to [Jos97,
Chap. 4] for details and [DM93] for the theory of Γ-convergence. Γ-convergence is adequate here
because it ensures that minimizers of Er converge to minimizers of E . This point of view on the
theory of harmonic maps was developed by Jost [Jos94, Jos95, Jos96, Jos97]. A similar approach
was developed by Korevaar-Schoen [KS93, KS97].

1.3 The heat flow

Going back to the smooth setting, assume that M is compact and N is complete and has nonpositive
curvature. The formula for the Hessian of the energy (6) shows that it is nonnegative, in other
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words E is a convex function on C∞(M,N) with respect to the L2 Riemannian metric. This
makes it reasonable to expect existence and in certain cases uniqueness of harmonic maps, which
are necessarily energy-minimizing in this setting (we discuss this further in § 3.2). A natural
approach to minimize a convex function is the gradient flow, called heat flow in this setting: given

f0 ∈ C∞(M,N), consider the initial value problem
d
dt

ft = − grad E( ft ), that is in light of (5):

d
dt

ft = τ( ft ) .

This flow exists for all t > 0. Moreover, if the range of ft remains in some fixed compact subset of N ,
then ft converges to a harmonic map as t →∞, uniformly and in L2(M,N) (in fact, in C∞(M,N)).
Otherwise, there exists no harmonic map homotopic to f . In particular, when N is compact, any
f0 ∈ C∞(M,N) is homotopic to a smooth energy-minimizing harmonic map. Moreover, such a
harmonic map is unique, unless it is constant or maps into a totally geodesic flat submanifold of N
in which case non-uniqueness is realized by translating f in the flat. These foundational results are
due to Eells-Sampson [ES64] and Hartman [Har67].

1.4 Equivariant harmonic maps

Instead of working with maps between compact manifolds, it can be useful to study their equivariant
lifts to the universal covers. Indeed, up to being careful with basepoints, any continuous map
f : M → N lifts to a unique ρ-equivariant map f̃ : M̃ → Ñ , where ρ : π1M → π1N is the group
homomorphism induced by f . Note that ρ only depends on the homotopy class of f , and if N is
aspherical (i.e. Ñ is contractible), then conversely any ρ-equivariant continuous map M → N is the
lift of some continuous map M → N homotopic to f .

This approach enables the following generalization: let X and Y be two Riemannian manifolds,
denote Isom(X) and Isom(Y ) their groups of isometries. Let Γ be a discrete group. Given group
homomorphisms ρL : Γ → Isom(X) and ρR : Γ → Isom(Y ), a map f : X → Y is called (ρL, ρR)-
equivariant if:

f ◦ ρL(γ) = ρR(γ) ◦ f

for all γ ∈ Γ. Note that the quotients X/ρL(Γ) and Y/ρR(Γ) can be pathological, but the space of
equivariant maps X → Y remains ripe for study.

The heat flow approach of Eells-Sampson to show existence of harmonic maps between compact
Riemannian manifolds when the target is nonpositively curved has been successfully adapted to
the equivariant setting by various authors. The adequate condition for guaranteeing existence of
equivariant harmonic maps is the reductivity of the target representation. More precisely:

Theorem 1.5 ([Lab91]). Let M and N be Riemannian manifolds, assume N is Hadamard. Denote
by ρL : π1M → Isom(M̃) the action by deck transformations and let ρR : π1M → Isom(N) be any
group homomorphism. If ρR is reductive, then there exists a (ρL, ρR)-equivariant harmonic map
M̃ → N . The converse also holds provided N is without flat half-strips.

Less general versions of this theorem had previously been established by Donaldson [Don87]
(for N = H3) and Corlette [Cor88] (for N a Riemannian symmetric space of noncompact type). The
notion of being reductive for a group homomorphism ρ : π1M → G can be described algebraically
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when N = G/K is a Riemannian symmetric space of noncompact type2. Labourie [Lab91]
generalized it to Hadamard manifolds. When N has negative curvature, ρ is reductive if and only
if it fixes no point on the Gromov boundary ∂∞N or it preserves a geodesic in N .

Wang [Wan00] and Izeki-Nayatani [IN05] generalized Theorem 1.5 to Hadamard metric spaces
using Jost’s extended notion of reductivity [Jos97, Def. 4.2.1]. Less general or different versions
were previously established by [GS92], [Jos97, Thm 4.2.1], [KS97].

1.5 Harmonic maps from surfaces

When M = S is a surface, i.e. dim M = 2, it is easy to check that the energy density element
e( f ) dvg B 1

2 ‖ d f ‖2 dvg is invariant under conformal changes of the metric g. Thus the energy
functional only depends on the conformal class of g, as does the harmonicity of a map S → N . A
conformal structure on an oriented surface is equivalent to a complex structure (this follows from
a result going back to Gauss [Gau25] on the existence of conformal coordinates). Hence one may
talk about the energy and harmonicity of maps X → (N, h) where X is a Riemann surface. Note
however that the L2 metric (3) does change under conformal changes of g, therefore the tension
field τ( f ) does too, as does the modulus of strong convexity of the energy (see § 3.1).

One can see directly that the energy density element only depends on the complex structure X
on S by writing the pullback metric f ∗h on X . Splitting it into types, one finds that

f ∗h = ϕ f + gf + ϕ̄ f

where ϕ f = ( f ∗h)(2,0) is a complex quadratic differential on X , called theHopf differential of f , and
gf = ( f ∗h)(1,1) is e( f ) (more precisely, gf is the conformal metric with volume density e( f ) dvg).

The Hopf differential ϕ f plays an important role in Teichmüller theory. First note that f is
conformal if and only if ϕ f = 0. A key fact is that if f is harmonic, then ϕ f is a holomorphic
quadratic differential on X . Wolf [Wol89] proved that the Teichmüller space of X is diffeomorphic
to the vector space of holomorphic quadratic differentials on X by taking Hopf differentials of
harmonic maps X → (S, h), where h is a hyperbolic metric on S (see § 6.3) . We refer to [DW07]
for a beautiful review of the connections between harmonic maps and Teichmüller theory.

On a closed surface S of negative Euler characteristic, it is convenient to choose the Poincaré
metric within a conformal class of metrics: it is the unique metric of constant curvature −1 (its
existence is precisely the celebrated uniformization theorem). This provides an identification of S̃
with the hyperbolic plane H2 and an action of π1S on H2 by isometries. Turning this identification
around, whenever a Fuchsian (i.e. faithful and discrete) representation ρL : π1S → Isom+(H2) is
chosen, we obtain a hyperbolic surface H2/ρL(π1S) ≈ S.

2When G is an algebraic group, a subgroup H ⊆ G is completely reducible if, for every parabolic subgroup P ⊆ G
containing H, there is a Levi subgroup of P containing H. Equivalently, the identity component of the algebraic closure
of H is a reductive subgroup (with trivial unipotent radical). A G-valued group homomorphism ρ is called reductive (or
completely reducible) when its image is a completely reducible subgroup. Refer to [Sik12] for details.
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2 Discretization

We fix some notation: for the remainder of the paper, S is a smooth, closed, oriented surface of
negative Euler characteristic (genus > 2). We denote π1S the fundamental group of S with respect
to some basepoint that can be safely ignored.

In § 2.1 we explain how to approach the energy minimization problem for smooth equivariant
maps H2 → N in order to allow effective computation by introducing meshes and subdivisions,
discrete equivariant maps, and discrete energy. Several of these notions will be further discussed
in [GLM18]. In the present paper they serve as a preamble to the more formal setting we develop
in § 2.2 and they justify the choices made in the software Harmony.

2.1 Meshes and discrete harmonic maps

Let us fix a hyperbolic structure on S given by a Fuchsian representation ρL, i.e. an injective group
homomorphism π1S → Isom+(H2)with discrete image. This setup can be easily generalized to any
nonpositively curved metric on S, but the hyperbolic metric is best suited for computations.

Meshes and subdivisions

Given a group homomorphism ρR : π1S → Isom(N)where N is a Riemannian manifold (or a metric
space), we would like to discretize (ρL, ρR)-equivariant maps H2 → N . To this end, we start by
discretizing the domain hyperbolic surface with the notion of invariant mesh:

Definition 2.1. A ρL-invariant mesh of H2 is an embedded graphM in H2 such that:
(i) The vertex setM(0) ⊂ H2 (set of mesh points) is invariant under a cofinite action of ρL(π1S).
(ii) Every edge e ∈ M(1) is an embedded geodesic segment in H2.
(iii) The complementary components are triangles.

For the purpose of approximating smoothmaps, wewill need to take finer and finermeshes. This
will be discussed in detail in [GLM18], but let us describe the strategy that we have implemented
in the software Harmony. A natural way to obtain a finer mesh from a given one is via geodesic
subdivision. We indicate below an edge ofM with endpoints x, y ∈ M(0) by exy , and let m(x, y) ∈
H2 be the midpoint of x and y. It is easy to see that the following is well-defined:

Definition 2.2. The refinement of a ρL-invariant meshM is the ρL-invariant meshM ′ such that:
(i) The vertices ofM ′ are the vertices ofM plus all midpoints of edges ofM.
(ii) The edges ofM ′ are given by x ∼ m(x, y) and y ∼ m(x, y) for each edge exy , and m(x, y) ∼

m(x, z) for each triple of vertices x, y, z that span a triangle inM.

Evidently, this refinement may be iterated. See Figure 1 for an illustration of a ρL-invariant
mesh and its refinement generated by the software Harmony.

Discrete equivariant maps

Given a ρL-invariant meshM and a group homomorphism ρR : π1S → Isom(N), we call discrete
equivariant map H2 → N along M a (ρL, ρR)-equivariant map from the vertex set M(0) to N .
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(a) An invariant mesh of H2 (b) Refinement of order 1

Figure 1: An invariant mesh of the Poincaré disk model of H2 on the left, its refinement of order 1
on the right. The brighter central region is a fundamental domain. The blue circle arcs are the axes
of the generators of ρL(π1S). Pictures generated by Harmony.

We denote MapM(H2,N) the set of discrete equivariant maps H2 → N along M. Note that
MapM(H2,N) ≈ NV where V = M(0)/ρL(π1S) is the set of equivalence classes of meshpoints,
which is finite. Therefore:

Proposition 2.3. If N is a finite-dimensional smooth manifold, then so is MapM(H2,N).

Denoting C0
eq(H

2,N) the space of continuous equivariant maps H2 → N , the forgetful map

C0
eq(H

2,N) → MapM(H
2,N) (10)

consists in restricting a continuous function to the set of meshpointsM(0).

Definition 2.4. We shall call a left inverse of the forgetful map (10) an interpolation scheme.

While there is one most natural way to interpolate discrete maps between Euclidean spaces
(affine interpolation), there is no preferred way for arbitrary Riemannianmanifolds. Even in the case
where both domain and target manifolds are the hyperbolic plane H2, there are several reasonable
interpolations to consider such as the barycentric interpolation and the harmonic interpolation.
However, these are not explicit, and with Harmony we work with a neat variant, the cosh-center of
mass interpolation (see § 5.4).

Discretization of energy

For a smooth (ρL, ρR)-equivariant map f : H2 → N where N is a Riemannian manifold, one defines
the total energy of f as:

E( f ) =
∫
D

‖ d f ‖2 dvg (11)
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where D ⊂ H2 is any fundamental domain for the action of π1S. If D is picked so that it coincides
with a union of triangles defined byM, then the energy can be written as a finite sum of energy
integrals over each triangle. When f is discretized alongM, only the values of f on the meshpoints
are recorded. Thus, a natural discretization of E is obtained if one knows how to define the energy
of a map from a triangle whose values are only known at the vertices. Given an interpolation
scheme (cf Definition 2.4), one can simply take the energy of the interpolated map.

Another approach consists in defining the energy à la Jost / Korevaar-Schoen as in § 1.2. One
can take the graph defined byM with metric induced from H2 as a domain metric space, introduce
a measure that approximates the area density of H2, and choose an appropriate kernel η(x, y).

A third approach consists in choosing a discrete energy that is a weighted sum of distances
squared as in Definition 2.6 and Definition 2.12. This approach provides a natural extension of the
classical notion of real-valued harmonic functions defined on graphs [BH12, Chu97, GR01], that
is, functions whose value at any vertex is the average of the values on the neighbors.

It turns out that all three approaches can be made to coincide (Proposition 2.19), or almost
coincide for fine meshes (Theorem 2.5), for the appropriate choices involved in the different
definitions. This will be discussed in greater detail in the paper [GLM18], but let us quote the
following theorem illustrating our claim:

Theorem 2.5 ([GLM18]). LetTL ⊂ H2 andTR ⊂ N be geodesic triangles. Denote by θi the interior
angles of TL and denote by di the opposite side lengths of TR (i ∈ {1,2,3}). Let 0 < δ 6 min{θi}]
and let D = max{diam(TL),diam(TR)}. There is a constant C = C(δ) so that the energy of the
barycentric interpolation map from TL to TR is approximately equal to

1
2

3∑
i=1

ωi · d2
i (12)

with error bounded above by C(δ)D4, where the weights ωi are given by

ωi = cot θi .

An elementary fact popularized by Pinkall-Polthier [PP93] is that in the Euclidean plane, the
barycentric map between two triangles has energy given by (12). As D→ 0 the Riemannian metric
looks more and more Euclidean; thus it should be no surprise that we recover this expression.

Definition 2.6. LetM be a ρL-invariant mesh in H2 such that all the complementary triangles are
acute. The discrete energy of a discrete equivariant map f ∈ MapM(H2,N) is defined by

EM( f ) =
1
2

∑
e=exy ∈E

ωxy d( f (x), f (y))2

where:
• E ⊂ M(1) is any fundamental domain for the action of π1S on the set of edges.
• Inside the sum, x and y are the vertices connected by the edge e.
• ωxy is the sum of the cotangents of two angles: one for each of the two triangles sharing the
edge e = exy , in which we take the angle of the vertex facing the edge e.

This definition is a generalization of the energy considered by Pinkall-Polthier [PP93], for whom
the domain is a triangulated surface with a piecewise Euclidean metric and N = Rn. In their setting,
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the discrete energy coincides with the energy relative to the linear interpolation. In [GLM18] we
show that the discrete energy EM converges to the smooth energy E under iterated refinement of
the meshM in a suitable function space.

Of course, we can now define a discrete equivariant harmonic map f ∈ MapM(H2,N) as a
critical point of the discrete energy functional EM . While several authors have shown the existence
and uniqueness of minimizers of the discrete energy in various contexts (e.g. [Wan00, EF01,
Mes02]), in this paper we analyze its strong convexity, which makes it better suited for effective
minimization. Our approach requires a Riemannian metric on MapM(H2,N) (cf. § 3.1), which
should approach the L2 Riemannian metric of C∞(M,N) (cf. § 1.1). In the next subsection, we
develop a more general framework where these ideas apply.

2.2 Equivariant harmonic maps from graphs

The definition of the discrete energy functional EM (Definition 2.6) is easily generalized to any
system of positive weights indexed by the edges ofM. On the other hand, the Riemannian structure
of MapM(H2,N) requires a measure on the domain: while in the smooth case one has the volume
density of the Riemannian metric, in the discrete case it can be recorded by a system of weights on
the vertices. All of this information can be captured using only the graph structure ofM.

S̃-triangulated graphs

Recall that a triangulationT of a surface is the data of a simplicial complexK and a homeomorphism
h from K to the surface. Lifting T to the universal cover, we find a triangulation whose underlying
graph (i.e. 1-skeleton) is locally cyclic, meaning that the open neighborhood of any vertex (subgraph
induced on the neighbors) is a cycle. This motivates the following definition:

Definition 2.7. Given a topological surface S, an S̃-triangulated graph is a locally cyclic graph G
with a free, cofinite action of π1S by graph automorphisms.

S̃-triangulated graphs are precisely the graphs that arise as 1-skeleta of triangulations. When
G is an S̃-triangulated graph, we denote the associated group action on the set of vertices by
ρL : π1S → Aut(G(0)). Let N be a metric space and ρR : π1S → Isom(N) a group homomorphism.

Definition 2.8. Given ρL and ρR as above, we call a (ρL, ρR)-equivariant map G(0) → N an
equivariant map from G to N . The space of such equivariant maps will be denoted Mapeq(G,N).

As in Proposition 2.3 we have:

Proposition 2.9. If N is a finite-dimensional smooth manifold, so is Mapeq(G,N).

Edge-weighted graphs and the energy functional

Definition 2.10. Let G be an S̃-triangulated graph. We say that G is edge-weighted if it is given a
system of edge weights, i.e. a family of positive real numbers (ωe)e∈G(1) indexed by the set of edges
G(1), that is invariant under the action of π1S.
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Clearly, the data of a system of edge weights is equivalent to the data of a function

η0 : G(0) × G(0) → [0,+∞)

that is symmetric, invariant under the diagonal action of π1S, and such that η0(x, y) > 0 if and only
if x and y are adjacent.

Definition 2.11. A function η0 as above is called a pre-kernel on the S̃-triangulated graph G.

The motivation for introducing this notion will become clear in Definition 2.18 and Proposi-
tion 2.19. We are now ready to define the energy functional:

Definition 2.12. Let G be an S̃-triangulated graph with a system of edge weights (ωe)e∈G(1) , and let
ρR : π1S → Isom(N) be a group homomorphism where N is a metric space. The energy functional
EG : Mapeq(G,N) → R is defined by

EG( f ) =
1
2

∑
e=exy ∈E

ωxy d( f (x), f (y))2 (13)

where E ⊂ G(1) is any fundamental domain for the action of π1S.

When N is a Hadamard manifold3, EG is a smooth function on the manifold Mapeq(G,N). Of
course we now call a map f ∈ Mapeq(G,N) harmonic when it is a critical point of the energy
functional EG . When N is not a Hadamard manifold but merely a metric space, one can still define
(locally) energy-minimizing harmonic maps.

Note that, taking ωe = 1 for all e ∈ G(1) and N = R, a harmonic map from G to R in the sense
above coincides with the classical notion of harmonicity for real-valued functions on graphs. The
well-known mean value property of harmonic functions is generalized:

Proposition 2.13. Let G be an edge-weighted triangulated graph and let N be a metric space.
If f ∈ Mapeq(G,N) is an energy-minimizing harmonic map then f (x) is a center of mass of the
weighted system of points {( f (y),ωxy)}y∼x in N for every x ∈ G(0).

Refer to § 5 for the definition and elementary properties of centers of mass.

Proof. If f (x)was not the center of mass of its neighbors, then the part of (13) that involves x could
be decreased by replacing f (x) by the center of mass while leaving the other values unchanged. �

Vertex weighted-graphs and the Riemannian structure

Definition 2.14. Let G be an S̃-triangulated graph. We say that G is vertex-weighted if it is given
a system of vertex weights, i.e. a family of positive real numbers (µv)v∈G(0) indexed by the set of
vertices G(0), that is invariant under the action of π1S.

3A Hadamard manifold is a complete, simply connected Riemannian manifold of nonpositive curvature. On a
Hadamard manifold the distance squared function to a fixed point is smooth, while in general it may not be differentiable
on the cut locus.
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We think of a system of vertex weights as a π1S-invariant Radon measure µ on G(0). Of course,
this is simply a π1S-invariant function µ : G(0) → (0,+∞), but our viewpoint for discretization is to
approximate the smooth theory where µ is the volume density of a Riemannian manifold.

Assume now that N is a finite-dimensional Riemannian manifold and let ρR : π1S → Isom(N)
be a group homomorphism. We saw (Proposition 2.9) that Mapeq(G,N) is a smooth manifold.
Moreover, it is easy to describe its tangent space.

Proposition 2.15. The tangent space at f ∈ Mapeq(G,N) is:

T f Mapeq(G,N) = Γeq( f
∗ TN) (14)

where f ∗ TN is the pullback of the tangent bundle TN to G(0) and Γeq( f ∗ TN) is its space of π1S-
equivariant smooth sections . Equivalently, if V ⊆ G(0) is any fundamental domain for the action
of π1S,

T f Mapeq(G,N) =
⊕
x∈V

T f (x)N . (15)

Notice of course the similarity of (14) with (4). Using the measure µ, one can define a natural
L2 Riemannian metric on Mapeq(G,N) analogous to (3):

Definition 2.16. Let (G, µ) be an S̃-triangulated vertex-weighted graph, and let ρR : π1S → Isom(N)
where N is a Riemannian manifold. The L2 Riemannian metric on Mapeq(G,N) is given by:

〈V,W〉 =
∫
V

〈Vx,Wx〉 dµ(x)

where V,W ∈ Γeq( f ∗ TN) andV ⊆ G(0) is any fundamental domain for the action of π1S.

Of course, one can write more concretely:

〈V,W〉 =
∑
x∈V

µ(x)〈Vx,Wx〉 .

One can easily derive that the unit speed geodesics in Mapeq(G,N) are the one-parameter
families of functions ( ft (x))x∈G(0) given by ft (x) = exp(tVx), whereV ∈ Γeq( f ∗ TN) is a unit vector,
and, provided N is connected, the Riemannian distance in Mapeq(G,N) is simply given by

d( f ,g)2 =
∑
x∈V

µ(x) d( f (x),g(x))2 , (16)

where on the right hand-side d is the Riemannian distance in N . Of course notice that (16) is just
the discretization of (7).

Biweighted graphs

Definition 2.17. Let G be an S̃-triangulated graph (Definition 2.7). We say that G is biweighted if
it is both edge-weighted (Definition 2.10) and vertex-weighted (Definition 2.14).
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From the discussion of the previous paragraph, when G is an S̃-triangulated biweighted graph
and N is a Riemannian manifold with a group homomorphism ρR : π1S → N , the space of
equivariant maps Mapeq(G,N) is a Riemannian manifold and the energy is a continuous function
EG : Mapeq(G,N) → R. Moreover EG is smooth when N is Hadamard. In § 3 we show that
EG is strongly convex under suitable restrictions on ρR, with an explicit bound on the modulus of
strong convexity (Theorem 3.25). This implies that there exists a unique equivariant harmonic map
G → N that can be computed effectively through gradient descent (§ 4).

We pause to point out that our definition of the energy functional and harmonic maps in this
setting coincides with Jost’s theory briefly described in § 1.2 (we refer to [Jos96, Jos97] for details).
First we introduce the kernel function associated to a biweighted graph:

Definition 2.18. The kernel function associated to a biweighted graph G is the function

η : G(0) × G(0) → R

(x, y) 7→
η0(x, y)

2µ(x)µ(y)

where η0 is the pre-kernel associated to the underlying edge-weighted graph (cf. Definition 2.11)
and µ is the measure on G(0) giving the vertex weights.

The next proposition is trivial but conceptually significant:

Proposition 2.19. The energy functional on Mapeq(G,N) is given by

EG( f ) =
1
2

∬
V

η(x, y) d( f (x), f (y))2 dµ(y) dµ(x)

whereV ⊆ G(0) × G(0) is a fundamental domain for the diagonal action of π1S.

Proposition 2.19 implies that, choosing ηr = η for all r > 0, the Jost energy functional
E = limr→0 Er (compare with (9)) coincides with the energy functional EG . In particular, our
notion of harmonic maps from graphs is a specialization of Jost’s generalized harmonic maps.

Next we observe that the Riemannian structure of Mapeq(G,N) allows us to define the discrete
tension field as:

Definition 2.20. The tension field of f ∈ Mapeq(G,N) is the vector field along f denoted τG( f ) ∈
Γeq( f ∗ TN) given by:

τG( f ) |x =
1
µ(x)

∑
y∼x

ωxy exp−1
f (x)( f (y))

where we have denoted ωxy the weight of the edge connecting x and y.

We have the discrete version of the first variational formula for the energy (Proposition 1.3):

Proposition 2.21. The tension field is minus the gradient of the energy functional:

τG( f ) = − grad EG( f )

for any f ∈ Mapeq(G,N).
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Proof. In a Riemannian manifold N , when x0 ∈ N is chosen such that expx0
is a diffeomorphism

(any x0 works when N is Hadamard), the function g : x 7→ 1
2 d(x0, x)2 is smooth and its gradient is

given by grad g(x) = − exp−1
x (x0). �

It follows, of course, that an equivariant map G → N is harmonic if and only if its tension field
is zero, and we obtain a characterization of discrete harmonic maps:

Proposition 2.22. LetG be an edge-weighted triangulated graph and let N be aHadamardmanifold.
Then f ∈ Mapeq(G,N) is a harmonic map if and only if f (x) is a center of mass of the weighted
system of points {( f (y),ωxy)}y∼x in N for every x ∈ G(0).

We conclude this section by looping back to § 2.1 and the approximation problem. The point
is that when S is equipped with a hyperbolic structure (or more generally any nonpositively curved
metric), a mesh in the sense of Definition 2.1 induces a biweighted graph structure:

Definition 2.23. Let ρL : π1S → Isom+(H2) be a Fuchsian representation and letM be an invariant
mesh (cf. Definition 2.1). The biweighted graph underlyingM is the biweighted graph G such that:

• G is the abstract graph underlyingM (which is evidently S̃-triangulated).
• The edge weights are the ωe as in Definition 2.6.
• The vertex weights are given by, for every vertex x:

µ(x) =
1
3

∑
T

Area(T)

where the sum is taken over all triangles incident to the vertex x.

Clearly, any discrete equivariant map alongM from H2 to a Riemannian manifold N induces
an equivariant map G → N , and the energy EM agrees with the energy EG . Of course, the systems
of weights are chosen so that the discrete energy functional EG approximates the smooth energy
functional (11), and the Riemannian structure of Mapeq(G,N) approximates the L2 Riemannian
metric on C∞(M,N) (or L2(M,N)), with finer approximation when one takes finer meshes. The
analysis of this phenomenon is treated in [GLM18].
Remark 2.24. With this construction inmind, biweighted triangulated graphs can be roughly thought
of as follows: the edge weights are a discrete record of the conformal structure of S, and the vertex
weights, the area form. Note that the metric structure can be recovered from both, a phenomenon
specific to dimension 2. This is reminiscent of [BPS15]– though distinct– in which two graphs with
edge weights are considered conformally equivalent if there is a function of the vertices that scales
one set of weights to another.

3 Strong convexity of the energy

In this section we study the convexity of the discrete energy functional EG : Mapeq(G,H2) → R

introduced in the previous section (Definition 2.12). In § 3.1 we recall basics about convexity
and strong convexity in Riemannian manifolds. In § 3.2 we review the convexity of the energy
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functional for nonpositively curved target spaces. Next we turn to proving the strong convexity of
the discrete energy when the target space is H2 with a Fuchsian representation: we first perform
some preliminary computations in the hyperbolic plane in § 3.3, and then prove the main theorem
in § 3.4. In § 3.5 we extend this result to Hadamard spaces with pinched negative curvature.

3.1 Convexity in Riemannian manifolds

The classical notion of convexity in Euclidean vector spaces naturally extends to the Riemannian
setting—as Udrişte puts it [Udr94, Chapter 1], Riemannian geometry is the natural frame for
convexity.

We first give a definition for metric spaces. Recall that geodesics in a metric space (M, d) are
harmonic maps from intervals of the real line; more concretely, a curve γ : I ⊆ R → M in (M, d)
is a geodesic if and only if d(γ(t1), γ(t2)) = v |t2 − t1 | for any sufficiently close t1, t2 ∈ I, where v

is a positive constant. A real-valued function on M is then called (geodesically) convex when it is
convex along geodesics. More precisely:

Definition 3.1. Let (M, d) be a metric space. A function f : M → R is convex if, for every geodesic
γ : [a, b] → M and for all t ∈ [0,1]:

f (γ((1 − t)a + tb)) 6 (1 − t) f (γ(a)) + t f (γ(b)) .

When the inequality is strict for all t ∈ (a, b), f is called strictly convex. Furthermore f is called
α-strongly convex, where α > 0, if:

f (γ((1 − t)a + tb)) 6 (1 − t) f (γ(a)) + t f (γ(b)) − α
t(1 − t)

2
l(γ)2

where l(γ) is the length of γ. The largest such α is called the modulus of strong convexity of f .

When M = (M,g) is a Riemannian manifold and f is C2, one can quickly characterize convex
functions in terms of the positivity of their Hessian as a quadratic form. Recall that the Hessian of a
C2 function f : M → R is the symmetric 2-covariant tensor field on M defined byHess( f ) = ∇(d f ).

Proposition 3.2. Let f : M → R be a C2 function on a Riemannian manifold (M,g). Then:
• f is convex if and only if it has positive semidefinite Hessian everywhere.
• f is strictly convex if and only if it has positive definite Hessian everywhere.
• f is α-strongly convex if and only if it has α-coercive Hessian everywhere:

∀v ∈ TM Hess( f )(v, v) > α‖v‖2

Convex functions enjoy several attractive properties. Among them, we highlight the straight-
forward fact that any sublevel set of a convex function is totally convex (i.e. it contains any geodesic
whose endpoints belong to it). Definition 3.1 and Proposition 3.2 work when M is an infinite-
dimensional Riemannian manifold (e.g. C∞(M,N) as in § 1.1), however note that a convex function
is not necessarily continuous in that case, whereas it is always locally Lipschitz in finite dimension.
We refer to [Udr94, Chap. 3] for convex functions on finite-dimensional Riemannian manifolds.
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3.2 Convexity of the energy functional

We review the convexity of the energy functional when the target is nonpositively curved, whether
in the Riemannian sense or in the sense of Alexandrov, and we also address the possibility of strict
or strong convexity in these settings.
Remark 3.3. While strict convexity of the energy is a clear-cut way to prove uniqueness of harmonic
maps and strong convexity their existence, neither are necessary. The existence and uniqueness of
harmonic maps has been properly characterized both in the smooth case and in more general spaces:
see § 1.3 and § 1.4.

Convexity of the energy in the smooth setting

The second variation of the energy functional in the smooth context was first calculated by Eells-
Sampson [ES64] (cf. Proposition 1.4). The next proposition follows immediately from (6):

Proposition 3.4. Let M be and N be smooth Riemannian manifolds. If N has nonpositive sectional
curvature, then the Hessian of the energy functional satisfies:

∀V ∈ Γ( f ∗ TN) Hess(E) | f (V,V) >
∫
M

‖∇V ‖2 dvg . (17)

Recall that the Hessian of the energy is taken with respect to the L2 Riemannian structure on
the infinite dimensional manifold C∞(M,N).

In particular, (17) makes it clear that the energy functional is convex. It is tempting to try and
get more out of (17): is E strictly convex? Is it strongly convex? Neither can be true without
some obvious restrictions: if f maps into a flat (a totally geodesic submanifold of zero sectional
curvature), then the energy is constant along the path that consists in translating f along some
constant vector field on the flat. Even when N has negative sectional curvature, whence it has no
flats of dimension > 1, this issue remains for constant maps and maps into a curve.

However, one can restrict to a connected component of C∞(M,N) that does not contain such
maps, and there the question becomes interesting. For example when M is compact and dim N =
dim M > 1, the degree of maps is an invariant on the components of C∞(M,N), and any component
of nonzero degree contains only surjective maps (cf. Lemma 3.17). When the target is negatively
curved, (6) does guarantee strict convexity:

Proposition 3.5. Let M be a Riemannian manifold, let N be a Riemannian manifold of negative
sectional curvature. Then the energy functional is strictly convex on any connected component of
C∞(M,N) that does not contain any map of rank everywhere 6 1.

Proof. Let (Ei) be a local orthonormal frame in M . The integrand for the Hessian of the energy
functional (6) is:

‖∇V ‖2 −
n∑
i=1

〈
RN (V,d f (Ei)) d f (Ei),V

〉
Each term

〈
RN (V,d f (Ei)) d f (Ei),V

〉
is nonpositive, and is nonzero unless V and d f (Ei) are

collinear. Indeed, when V and d f (Ei) are not collinear:〈
RN (V,d f (Ei)) d f (Ei),V

〉
= KN (V,d f (Ei))

(
‖V ‖2 ‖ d f (Ei)‖

2 − 〈V,d f (Ei)〉
2
)
< 0
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where KN (V,d f (Ei)) denotes the sectional curvature of the plane spanned by V and d f (Ei).
If Hess(E) | f (V,V) vanishes, then the integrand must vanish everywhere, so that (1) ∇V = 0
everywhere, and (2) d f (Ei) and V must be collinear for every i. From (1) it follows that V has
constant length, and from (2) and the fact that Vx , 0 it follows that dx f maps into span(Vx) for
every x ∈ M . In particular, f has rank 6 1 everywhere. �

As far as the authors are aware, no sufficient conditions for strong convexity of the energy
functional are known in the smooth setting. We believe that a quantitative refinement of the
previous proof combined with a Poincaré-type inequality should guarantee:

Conjecture 3.6. Strong convexity holds in the setting of Proposition 3.5.

Convexity of the energy for more general spaces

Defining the energy à la Jost as in § 1.2, it is straightforward that the energy functional is convex
when the target space is negatively curved in a suitable sense. Indeed, let (M, µ) be a measure space
and let (N, d) be a Hadamard metric space, i.e. a complete CAT(0) metric space. Recall that a
CAT(0) space is a geodesic metric space where any geodesic triangle T is ‘thinner’ than the triangle
T ′ with same side lengths in the Euclidean plane—more precisely, the comparison map T → T ′ is
distance nonincreasing. In a Hadamard space the distance squared function

d2 : N × N → R

is convex (see [BH99] for details). It follows easily that for any choice of nonnegative symmetric
kernel ηr (cf § 1.2), the energy functional Er is convex on L2(M,N). Furthermore if the energy
functional E on L2(M,N) is obtained as a Γ-limit of Er , then it must also be convex [DM93, Thm
11.1]. In particular, this applies to our energy functional EG by way of Proposition 2.19:

Proposition 3.7. Let G be any S̃-triangulated biweighted graph (Definition 2.17) and let N be a
Hadamard metric space. The energy functional EG : Mapeq(G,N) → R (Definition 2.12) is convex.

We stress that the convexity is relative to a metric structure on Mapeq(G,N) which depends on
a system of vertex weights (see Definition 2.14), but the fact that the energy is convex (respectively
strictly or strongly convex) does not depend on the choice of such vertex weights.

We will examine conditions that ensure EG is strongly convex, first for N = H2 (Theorem 3.21),
then in Hadamard manifolds with pinched negative curvature (Theorem 3.25).

We highlight some important context: Korevaar-Schoen obtained yet another form of convexity
of the energy when the domain M is Riemannian. Their energy functional E , which coincides with
Jost’s for suitable choices [Chi07], satisfies the convexity inequality

E( ft ) 6 (1 − t)E( f0) + tE( f1) − t(1 − t)
∫
M

‖∇d( f0, f1)‖2 , (18)

where ( ft ) ∈ L2(M,N) is a geodesic, i.e. ft (x) is a geodesic in N for all x ∈ M . This is a weaker
analog of Proposition 3.4. It is again tempting to investigate strong convexity when N has pinched
negative curvature and f does not have rank everywhere 6 1, but work remains to be done.

Mese [Mes02] claims without proof both an improvement of the convexity statement (18) and
the strict convexity of the energy functional at maps of rank 6 1 as in Proposition 3.5, however
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neither of these claims are explained as far as we can tell. We also note that there is a mistake in the
curvature term of [Mes02, eq. (1)]. (In fairness, this lack of explanation is probably due to Mese’s
focus on the task of extending the uniqueness of Korevaar-Schoen to the setting where ∂M = ∅.)

Although we prove strong convexity for biweighted graph domains under appropriate restric-
tions, we suspect that a more general version of this theorem is true, namely an analog of Conjec-
ture 3.6 for singular spaces. In fact, one can further explore extensions to the equivariant setting,
with a suitable condition on the target representation strengthening reductivity.

3.3 Convexity estimates in the hyperbolic plane

In order to study the second variation of the discrete energy for H2-valued equivariant maps, we
first need some convexity estimates in the hyperbolic plane. The strategy in § 3.4 will be to reach
a contradiction under the assumption that the second variation of the energy is too small; here we
derive necessary consequences of a small second variation of the energy in the the elementary cases
consisting of two and three vertices. We start with a formula for quadrilaterals in H2.

A• B•

C
•

D
•

α β

Figure 2

A• B•

C
•

D
•

α1

α2
β

Figure 3

Proposition 3.8. Let A, B, C, D be four points in the hyperbolic plane. Let α and β denote the
oriented angles as shown in Figure 2. Then:

cosh(DC) = cosh(AB)
[

cosh(DA) cosh(BC) + sinh(DA) sinh(BC) cosα cos β
]

− sinh(AB)
[

cosh(DA) sinh(BC) cos β + sinh(DA) cosh(BC) cosα
]

− sinh(DA) sinh(BC) sinα sin β .

Remark 3.9. This equation holds without restriction on α and β; they may be negative or obtuse.

Proof. Referring to Figure 3, the hyperbolic law of cosines implies:

cosh(DC) = cosh(DA) cosh(AC) − sinh(DA) sinh(AC) cos(α2) . (19)
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The hyperbolic laws of sines and cosines in the triangle ABC give

cosh(AC) = cosh(AB) cosh(BC) − sinh(AB) sinh(BC) cos(β) , and (20)
sinh(AC) cos(α2) = sinh(AC) cos(α1 − α)

= sinh(AC) cos(α1) cos(α) + sinh(AC) sin(α1) sin(α)
= sinh(AC) cos(α1) cos(α) + sinh(BC) sin(β) sin(α) . (21)

Moreover, it is a consequence of the two forms of the hyperbolic law of cosines (see e.g. [Rat06,
p. 82]) in the triangle ABC that we have

sinh(AC) cos(α1) = sinh(AB) cosh(BC) − sinh(BC) cosh(AB) cos(β) . (22)

Equation (22) allows us to rewrite equation (21) as:

sinh(AC) cos(α2) =
(
sinh(AB) cosh(BC) − sinh(BC) cosh(AB) cos(β)

)
cos(α)

+ sinh(BC) sin(β) sin(α) .
(23)

Together (20) and (23) and (19) imply the desired equation. �

Next we study the convexity of the energy for two points, which amounts to analyzing the second
variation of the half-distance squared function d2

2 : H2 ×H2 → R. We perform this computation in
two stages: first we study instead the function (cosh d) − 1: H2 × H2 → R, as it is better suited to
computations, and then we relate the second variation of the two functions.

Proposition 3.10. Let A and B be two points in the hyperbolic plane at distance D. Let ®u and ®v
be tangent vectors at A and B respectively. Let At = expA(t ®u) and Bt = expB(t®v) for t ∈ R, and
consider the function FAB(t) = cosh (d(At,Bt )) − 1. Then:

d
dt |t=0

FAB(t) = − sinh(D)
(
‖ ®u1‖ cosα − ‖ ®u2‖ cos β

)
d2

dt2
|t=0

FAB(t) = cosh(D)
(
‖ ®u‖2 + ‖®v‖2 − 2‖ ®u‖‖®v‖ cosα cos β

)
− 2‖ ®u‖‖®v‖ sinα sin β .

where α (resp. β) is the oriented angle between the geodesic AB and the vector ®u (resp. ®v).

Proof. Consider the quadrilateral given by the four points A, B,C = Bt , D = At . Note that the angle
β here corresponds to the angle π − β of Proposition 3.8. By direct application of Proposition 3.8,

1 + FAB(t) = cosh(D)
[

cosh(t‖ ®u‖) cosh(t‖®v‖) − sinh(t‖ ®u‖) sinh(t‖®v‖) cosα cos β
]

− sinh(D)
[
− cosh(t‖ ®u‖) sinh(t‖®v‖) cos β + sinh(t‖ ®u‖) cosh(t‖®v‖) cosα

]
− sinh(t‖ ®u‖) sinh(t‖®v‖) sinα sin β .

The result follows immediately by taking the first and second derivatives at t = 0. �

Proposition 3.11. We keep the same setup as Proposition 3.10, and let EAB(t) = 1
2 d(At,Bt )

2. Then:

d2

dt2
|t=0

EAB(t) = a + b D tanh(D/2) + c (D coth D − D tanh(D/2)) ,
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where a, b, and c > 0 are given by

a = (‖ ®u‖ cosα − ‖®v‖ cos β)2 ,
b = ‖ ®u‖2 sin2 α + ‖®v‖2 sin2 β , and

c = (‖ ®u‖ sinα − ‖®v‖ sin β)2 .

Proof. For ease in notation, we leave the subscripts AB from EAB and FAB in what follows. We
have E(t) = φ ◦ F(t), where φ(x) = 1

2 (arcosh(1 + x))2. It is straightforward to check that

φ′(cosh x − 1) =
x

sinh x
, and φ′′(cosh x − 1) =

sinh x − x cosh x

sinh3 x
.

Since we have E ′′(0) = φ′′(F(0)) (F ′(0))2 + φ′(F(0))F ′′(0), using Proposition 3.10 we find that

E ′′(0) =
sinh D − D cosh D

sinh3 D
· sinh2 D (‖ ®u‖ cosα − ‖®v‖ cos β)2

+
D

sinh D

(
cosh D

(
‖ ®u‖2 + ‖®v‖2 − 2‖ ®u‖‖®v‖ cosα cos β

)
− 2‖ ®u‖‖®v‖ sinα sin β

)
= (‖ ®u‖ cosα − ‖®v‖ cos β)2 + D coth D

(
− (‖ ®u‖ cosα − ‖®v‖ cos β)2 +(

‖ ®u‖2 + ‖®v‖2 − 2‖ ®u‖‖®v‖ cosα cos β
))
− D csch D (2‖ ®u‖‖®v‖ sinα sin β)

= a + b D coth D + (c − b) D csch D .

To finish, note that coth D − csch D = tanh(D/2). �

We will use this elementary estimate several times:

Lemma 3.12. Let ε > 0 and x ∈ [−π, π] such that 1 − cos(x) < ε. Then |x | < π
√
ε
2 .

Proof. Recall that 1 − cos(x) = 2 sin2 (
x
2
)
= 2 sin2

(
|x |
2

)
. Since |x |2 is in the interval [0, π2 ] where

the sine function is concave, we have sin
(
|x |
2

)
> 2

π
|x |
2 , and the conclusion follows. �

The following quantitative control is at the core of strong convexity for EG:

Proposition 3.13. Let EAB(t) be the function as in Proposition 3.11. Then d2

dt2 |t=0EAB(t) > 0.

Furthermore, if ε > 0 is such that d2

dt2 |t=0EAB(t) < ε then:
(i) �� ‖ ®u‖ − ‖®v‖ �� < √ε .
(ii) �� pv (α − β)

�� < π

2

√
ε

‖ ®u‖‖®v‖
.

Note that pv(θ) refers to the principal value of the angle θ, an element of (−π, π].
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Proof. By rewriting E ′′AB(0) using Proposition 3.11, and noting that 2b > c by the Cauchy-Schwarz
inequality, we find

E ′′AB(0) = a + b D tanh
D
2
+ c

(
D coth D − D tanh

D
2

)
> a + c

(
D coth D −

D
2

tanh
D
2

)
= a + c ·

D
2

coth
D
2
.

Because x coth x > 1, we find that E ′′AB(0) > a + c. In particular, E ′′AB(0) > 0.
Observe that a + c may be rewritten as

a + c = (‖ ®u‖ − ‖®v‖)2 + 2‖ ®u‖‖®v‖(1 − cos(α − β)) . (24)

Now the inequality a + c < ε implies that each term is < ε:(
‖ ®u‖ − ‖®v‖

)2
< ε (25)

2‖ ®u‖‖®v‖
(
1 − cos(α − β)

)
< ε . (26)

Inequality (25) clearly gives us (i), while inequality (26) gives us (ii) as a direct application of
Lemma 3.12. �

Remark 3.14. More geometrically, the quantity a + c of (24) is ‖ ®u − P[BA]®v‖
2, where P[BA]®v

denotes the parallel transport of ®v along the geodesic segment BA. Thus the proof above shows that
E ′′AB(0) > ‖ ®u − P[BA]®v‖

2.

Now we upgrade the estimates of Proposition 3.13 from edges to triangles. Let ABC be a
hyperbolic triangle, and suppose that ®u, ®v, and ®w are tangent vectors at A, B, and C respectively as
in Figure 4. Suppose that At = expA(t ®u), Bt = expB(t®v), and Ct = expC(t ®w), and let

EABC(t) = ωA EBC(t) + ωB EAC(t) + ωC EAB(t)

for some weights ωA,ωB,ωC > 0.

Proposition 3.15. We have d2

dt2 |t=0EABC(t) > 0. Furthermore, if d2

dt2 |t=0EABC(t) < ε for ε > 0,
then

Area(ABC) <
π
√
ε

2

(
1√

ωA‖®v‖‖ ®w‖
+

1√
ωB‖ ®u‖‖ ®w‖

+
1√

ωC ‖ ®u‖‖®v‖

)
.

The reader should interpret the above statement as vacuous if any of the vectors ®u, ®v, or ®w vanish.

Proof. Nonnegativity is immediate. For the requisite estimates, let αA and βA indicate the oriented
angles from BC to ®v and ®w, respectively, and similarly for αB, βB, αC , and βC (see Figure 4), and
let Â, B̂, and Ĉ indicate the oriented interior angles of ABC.

Observe that at each vertex of ABC, the labelled angles imply the equalities

βB − αC + Â = π ,

βC − αA + B̂ = π , and
βA − αB + Ĉ = π .

25



A B

C

®u

®w

®v

βC
αC

αA

βA

βB

αB

Figure 4: Oriented angles for the tangent vectors to triangle ABC.

Summing these modulo 2π and rearranging we obtain

pv ((βA − αA) + (βB − αB) + (βC − αC)) = Area(ABC) . (27)

Of course, if d2

dt2 |t=0EABC(t) < ε then each of d2

dt2 |t=0EAB(t), d2

dt2 |t=0EAC(t), and d2

dt2 |t=0EBC(t) are
bounded by ε/ωA, ε/ωB, and ε/ωC , respectively, as they are all nonnegative. Proposition 3.13
then implies that each of the summands on the left of (27) is controlled. We find that

| pv (βA − αA)+ pv (βB − αB) + pv (βC − αC) | <
π
√
ε

2

(
1√

ωA‖®v‖‖ ®w‖
+

1√
ωB‖ ®u‖‖ ®w‖

+
1√

ωC ‖ ®u‖‖®v‖

)
.

(28)

As the quantity Area(ABC) is in [0, π], (27) and (28) together imply the desired result. �

3.4 Strong convexity of the discrete energy in H2

Let G be any S̃-triangulated biweighted graph (Definition 2.17) and let ρR : π1S → Isom(H2) be a
Fuchsian representation. We are ready to prove strong convexity of the discrete energy functional
EG : Mapeq(G,H2) → R introduced in Definition 2.12.

Choose once and for all a fundamental domain for the action of π1S on G(0), consisting of
vertices {p1, . . . , pn} ⊆ G(0). Recall that G is equipped with vertex and edge weights; these are
completely determined by the weights µi = µ(pi) and ωi j = ω(epip j ) for i, j ∈ {1, . . . ,n}.

Fix an equivariant map f ∈ Mapeq(G,H2), recorded by the tuple (x1, . . . , xn) ∈ (H2)n where
xi B f (pi). Also fix a tangent vector ®v ∈ T f Mapeq(G,H2), given by ®v = (®v1, . . . , ®vn)where vi ∈ Txi

as in (15). We assume that ®v is a unit tangent vector: by Definition 2.16 this means
∑

i µi ‖ ®vi ‖
2 = 1.

We want to compute the second derivative at t = 0 of EG(t) B EG ◦ exp f (t®v). Let us denote

Ei j(t) B
1
2

d (expxi
(t ®vi),expx j

(t ®vj))2
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for each edge ei j between points pi and pj and

Ei jk(t) =
1
2

(
ωi j Ei j(t) + ωik Eik(t) + ωjk Ejk(t)

)
for each triangle Ti jk in G whose vertices are at pi, pj , and pk . Evidently, the energy EG(t) may be
rewritten either as a sum over edges or over triangles of G:

EG(t) =
∑

Ti jk ∈T

Ei jk(t) =
∑
ei j ∈E

ωi j Ei j(t) . (29)

Here E may be understood as the set of π1S-orbits of edges and T the set of orbits of triangles of
G. Note that both these sets are finite.

First we observe that if the second variation of EG is small, then Proposition 3.13 implies that
the tangent vectors ®vi all have approximately the same length. Precisely,

Lemma 3.16. Given ε > 0, there is a δ > 0 so that if d2

dt2 |t=0EG(t) 6 δ then���� ‖ ®vi ‖2 − 1
A

���� < ε

for all i, where A =
∑

i µi.

Proof. We temporarily postpone the choice of δ. Let εi j = d2

dt2 |t=0Ei j(t) for each edge ei j ∈ E, so that
d2

dt2 |t=0EG(t) =
∑

ei j ∈E εi j . Observe that for each edge ei j ∈ E, one finds that |‖ ®vi ‖ − ‖ ®vj ‖| <
√
εi j

by Proposition 3.13.
LetU = min{µi}, and observe that

∑
i µi ‖ ®vi ‖

2 = 1 implies that ‖ ®vi ‖ 6 1/
√

U for all i. Therefore�� ‖ ®vi ‖2 − ‖ ®vj ‖2 �� = | ‖ ®v1‖ − ‖ ®v2‖ | · (‖ ®v1‖ + ‖ ®v2‖) <
2
√

U

√
εi j .

For any pair of points pi and pj , choose a path pi = pi0, pi1, . . . , pir = pj and observe that by
the triangle inequality and the Cauchy-Schwarz inequality:��‖ ®vi ‖2 − ‖ ®vj ‖2�� < 2

√
U

r∑
k=1

√
εik−1ik

6
2
√

U

(
r∑

k=1
εik−1ik

)1/2

·

(
r∑

k=1
1

)1/2

6
2
√

rδ
√

U
.

Because the action of π1S on G is cofinite, the quotient graph has bounded diameter D C diam(G).
Now the path may be taken with length r 6 D, and the above inequality reads�� ‖ ®vi ‖2 − ‖ ®vj ‖2 �� < 2

√
Dδ
U

. (30)

Now we fix i, and observe that because ®v is a unit tangent vector we have

1 =
∑
j

µj ‖ ®vj ‖
2 = A‖ ®vi ‖2 +

∑
j

µj

(
‖ ®vj ‖

2 − ‖ ®vj ‖
2
)
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where A =
∑

j µj . Rearranging and using (30) we find that���� ‖ ®vi ‖2 − 1
A

���� < 2
√

Dδ
U

.

Taking δ =
ε2U
4D

proves the claim. �

Lemma 3.17. For any f ∈ Mapeq(G,H2), we have∑
Ti jk ∈T

Area(Ti jk) > Area(Y ) = 2π |χ(S)| .

where Y B H2/ρR(π1S) is the target hyperbolic surface.

Proof. By pasting in triangles to the graph G, the map f ∈ Mapeq(G,H2) induces a ρ-equivariant
continuous map S̃ → H2 (see § 2.1 and § 2.2). This map descends to a continuous map S → Y that
induces an isomorphism of the fundamental groups, so that it is in particular of degree 1. Recall
that any continuous map of nonzero degree between closed manifolds of the same dimension is
surjective. The result is now immediate: the triangles in T have full measure in Y . �

This is enough to produce a lower bound for the second variation:

Proposition 3.18. There exists an α = α(G) > 0 independent of f and ®v so that we have

d2

dt2
|t=0

EG(t) > α .

Proof. Let Ri jk indicate the geodesic triangle with vertices xi, xj , and xk inH2. By Proposition 3.15,
for each triangle Ti jk ∈ T we have

Area(Ri jk) <
π

2
©«
√

d2

dt2
|t=0

Ei jk(t)
ª®¬ · Ki jk (®v)

with
Ki jk (®v) =

1√
ωi j ‖ ®vi ‖‖ ®vj ‖

+
1√

ωik ‖ ®vi ‖‖ ®vk ‖
+

1√
ωjk ‖ ®vj ‖‖ ®vk ‖

.

Thus we have

2π |χ(S)| 6
∑

Ti jk ∈T

Area(Ri jk) , by Lemma 3.17

<
π

2
©«
√

d2

dt2
|t=0

Ei jk(t)
ª®¬ · Ki jk (®v)

6
π

2

√√ ∑
Ti jk ∈T

d2

dt2
|t=0

Ei jk(t)
√ ∑

Ti jk ∈T

Ki jk (®v)
2
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where we have used the Cauchy-Schwarz inequality in the last line. We indicate

K(®v) =
∑

Ti jk ∈T

Ki jk (®v)
2

and note that the inequality above may be rearranged to

d2

dt2
|t=0

EG(t) >
16|χ(S)|2

K(®v)
.

Thus in order to complete the proof of the claim, it remains to bound K(®v). Unfortunately, though
we have made the assumption that ®v is a unit tangent vector to Mapeq(G,H2), it remains possible
that some components of ®v may vanish, and therefore K(®v) may be infinite. However Lemma 3.16
may be brought to bear: There is a δ0 > 0 so that if d2

dt2 |t=0Ei j(t) 6 δ0 for all edges ei j ∈ E, then����‖ ®vi ‖2 − 1
A

���� < 1
2A

where A =
∑

i µi. Let Ω = min{ωi j} and ε = δ0Ω. By (29) if d2

dt2 |t=0EG(t) 6 ε we find that

d2

dt2
|t=0

Ei j(t) 6 ε/Ω = δ0 (31)

for all edges, and hence ‖ ®vi ‖2 > 1
2A for each i.

Now we find that

K(®v) 6
∑

Ti jk ∈T

18A
Ω
=

18A|T |
Ω

.

Therefore, we conclude that either d2

dt2 |t=0EG(t) > ε or d2

dt2 |t=0EG(t) >
8 |χ(S) |2Ω

9A |T | . �

Remark 3.19. Tracing both the proofs of Lemma 3.16 and Proposition 3.18, one finds that

d2

dt2
|t=0

EG(t) > min
{
ΩU

16A2D
,
8Ω|χ(S)|2

9AT

}
C α (32)

gives a lower bound for the modulus of convexity, where U = min{µi}, A =
∑
µi, Ω = min{ωi j},

D = diam(G), and T = |T |. Note: if step (31) is done more carefully using the Cauchy-Schwarz
inequality, the denominator of the first term in the minimum would lose one factor of A.

The discrete heat flow will also require an upper bound for the Hessian of EG (see § 4).

Proposition 3.20. Suppose that EG(0) 6 E0. Then

d2

dt2
|t=0

EG(t) 6
2VW

U

(
1 +

√
E0
Ω

coth
√

E0
Ω

)
C β (33)

where V is the maximum valence of vertices of G, U = min{µi} is the minimum vertex weight,
Ω = min{ωi j} is the minimum edge weight, and W = max{ωi j} is the maximum edge weight.
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Proof. It is not hard to see from Proposition 3.11 that we have

d2

dt2
|t=0

Ei j(t) 6 2
(
‖ ®vi ‖

2 + ‖ ®vj ‖
2
) (

1 + d(xi, xj) coth d(xi, xj)
)
.

Letting L = max{d(xi, xj)} we find

d2

dt2
|t=0

EG(t) =
∑
ei j ∈E

ωi j
d2

dt2
|t=0

Ei j(t) 6 2W (1 + L coth L)
∑
ei j ∈E

(
‖ ®vi ‖

2 + ‖ ®vj ‖
2
)

6
2W
U
(1 + L coth L)

∑
ei j ∈E

(
µi ‖ ®vi ‖

2 + µj ‖ ®vj ‖
2
)

6
2VW

U
(1 + L coth L)

∑
i

µi ‖ ®vi ‖
2 =

2VW
U
(1 + L coth L) .

The assumption EG(0) 6 E0 implies that ΩL2 6 E0, so we are done. �

Together, Proposition 3.20 and Proposition 3.18 imply:

Theorem 3.21. Suppose that G is a biweighted triangulated graph, N = H2 is the hyperbolic plane
and ρ = ρR : π1S → Isom+(H2) is Fuchsian. Then the energy functional EG : Mapeq(G,N) → R
is strongly convex. More precisely,

∀®v α‖®v‖2 6 Hess(EG)(®v, ®v)

where α is given explicitly by (32). Moreover, on the compact convex set {E 6 E0} ⊆ Mapeq(G,N),

∀®v Hess(EG)(®v, ®v) 6 β‖®v‖2

where β is given explicitly by (33).

3.5 More general target spaces

Many of the steps in the proof of Theorem 3.21 actually hold in much greater generality. For
instance, Proposition 3.13 holds verbatim if we replace H2 with any Hadamard manifold. Keeping
the same setup as in § 3.3, let A,B ∈ N , let ®u and ®v be vectors in TAN and TBN , respectively, let
At = expA(t ®u) and Bt = expB(t®v), and let EAB(t) = 1

2 dN (At,Bt )
2.

Proposition 3.22. Suppose that N is a Hadamard manifold. Then d2

dt2 |t=0EAB(t) > 0. Furthermore,

if ε > 0 is such that d2

dt2 |t=0EAB(t) < ε, then
(i) �� ‖ ®u‖ − ‖®v‖ �� < √ε .
(ii) �� pv (α − β)

�� < π

2

√
ε

‖ ®u‖‖®v‖
,

where α (resp. β) are the oriented angles between the geodesic AB and ®u (resp. ®v).
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The proof below builds on § 3.3.

Proof. We start by noting that the computations for E ′′AB(0) (Proposition 3.10 and Proposition 3.11)
simplify dramatically when N = R2. In this case we have

d2

dt2 EAB(t) =
1
2
‖ ®u − ®v‖2 . (34)

In particular, if ®u , ®v then EAB(t) is 1
2 ‖ ®u − ®v‖

2-strongly convex.
Now we turn to the general case. Let r, s ∈ R, and consider the quadrilateral through Ar , Br , Bs,

and As. Because Hadamard manifolds are CAT(0), this quadrilateral has a comparison quadrilateral
in R2 with vertices A′r , B′r , B′s, A′s. For any t ∈ R, as a consequence of (34) we have

d(A(1−t)r+ts,B(1−t)r+ts)2 6 d(A′
(1−t)r+ts,B

′
(1−t)r+ts)

2

6 (1 − t)d(A′r,B
′
r )

2 + td(A′s,B
′
s)

2 − ‖®u′ − ®v′‖2
t(1 − t)

4
|r − s |2

6 (1 − t)d(Ar,Br )
2 + td(As,Bs)

2 − ‖®u′ − ®v′‖2
t(1 − t)

4
|r − s |2 ,

where ®u′ = A′s − A′r and ®v′ = B′s − B′r in R2, respectively. In terms of EAB we have

EAB((1 − t)r + ts) 6 (1 − t)EAB(r) + tEAB(s) − ‖ ®u′ − ®v′‖2
t(1 − t)

4
|r − s |2 .

This is almost an equivalent formulation of the strong convexity of EAB (see Definition 3.1),
however the term ‖ ®u′ − ®v′‖2 depends on both r and s. In fact, this detail is essential, as EAB may
fail to be strongly convex (see Remark 3.23). For δ > 0, taking r = s = δ and t = 1

2 , one finds

EAB(0) = EAB

(
1
2
δ +

1
2
(−δ)

)
6

1
2

EAB(δ) +
1
2

EAB(−δ) − ‖ ®u′ − ®v′‖2
δ2

2
.

(We stress the dependence of ‖ ®u′ − ®v′‖2 on δ.) Rearranging we find that

‖ ®u′ − ®v′‖2 6
EAB(δ) − 2EAB(0) + EAB(−δ)

δ2 . (35)

As δ→ 0, the right-hand side approaches d2

dt2 |t=0EAB(t). As for the left-hand side, we may rewrite

‖ ®u′ − ®v′‖2 = ‖ ®u′‖2 + ‖®v′‖2 − 2‖ ®u′‖‖®v′‖ cos(α′ − β′)
= ‖ ®uδ ‖2 + ‖®vδ ‖2 − 2‖ ®uδ ‖‖®vδ ‖ cos(α′ − β′) ,

where ®uδ = exp−1
A−δ
(Aδ) and ®vδ = exp−1

B−δ
(Bδ) (so that ‖ ®uδ ‖ = ‖ ®u′‖ and ‖®vδ ‖ = ‖®v′‖), and α′

(resp. β′) are the oriented angles (measured inR2) between the geodesic A−δB−δ and ®u′ (resp. ®v′). By
a well-known theorem of Alexandrov (see [Ale51] or [BH99]), the interior angles of a quadrilateral
of N are smaller than those of the model, and we conclude that αδ 6 α′ and π− βδ 6 π− β′, where
αδ and βδ are the interior angles at A−δ and B−δ , respectively, of the quadrilateral with vertices
A−δ , B−δ , Bδ , and Aδ . Thus αδ − βδ 6 α′ − β′, and we may conclude that

‖ ®u′ − ®v′‖2 > ‖ ®uδ ‖2 + ‖®vδ ‖2 − 2‖ ®uδ ‖‖®vδ ‖ cos(αδ − βδ) .
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Using the latter for the lefthand side of (35) and taking the limit as δ→ 0, we find that

‖ ®u‖2 + ‖®v‖2 − 2‖ ®u‖‖®v‖ cos(α − β) 6
d2

dt2
|t=0

EAB(t) .

Now the hypothesis d2

dt2 |t=0EAB(t) < ε implies that

‖ ®u‖2 + ‖®v‖2 − 2‖ ®u‖‖®v‖ cos(α − β) < ε .

Note that this is precisely the quantity a+c from (24), and the remainder of the proof is as before. �

Remark 3.23. Though we exploit convexity properties of the distance squared function, it is in
general false that EAB is strongly convex: one could have ®u and ®v of equal length and parallel to the
geodesic AB. Slightly more surprisingly, strong convexity may fail differently in negative curvature.
For instance, when N = H2 one could have ®u and ®v of equal length and both pointing towards a
fixed point on ∂∞H2. For N = H2 these are the only situations in which EAB is not strongly convex.

The other crucial piece of strong convexity for EG is Proposition 3.15. The latter step also
admits a straightforward generalization using the Gauss-Bonnet theorem:

Proposition 3.24. Suppose that N is a Hadamard manifold of curvature bounded above by κ < 0.
We have d2

dt2 |t=0EABC(t) > 0. Furthermore, if d2

dt2 |t=0EABC(t) < ε for ε > 0, then

Area(ABC) <
π
√
ε

−2κ

(
1√

ωA‖®v‖‖ ®w‖
+

1√
ωB‖ ®u‖‖ ®w‖

+
1√

ωC ‖ ®u‖‖®v‖

)
.

This in turn makes a generalization of Theorem 3.21 possible:

Theorem 3.25. Let G is be a biweighted S̃-triangulated graph, let N be a Hadamard manifold of
pinched negative curvature and suppose that ρ : π1S → Isom(N) is a faithful representation whose
image is contained in a discrete subgroup of Isom(N) acting freely, properly, and cocompactly.
Then the energy functional EG : Mapeq(G,N) → R is strongly convex.

Proof. The proof of Theorem 3.21 applies in more generality as long as there is a lower bound for
the sum of areas in N of the images of the triangles of G. The assumptions on ρ here apply for the
existence of such a lower bound. Indeed, the equivariantmaps under consideration in this settingmay
be seen as continuous maps S → Y whereY is a compact quotient of N , after pasting triangles to G.
Any sequence of maps with second variation approaching zero would have a uniformly convergent
subsequence whose limit has zero second variation, via the Arzelà-Ascoli theorem. Because the
fundamental group of the limit’s image is a surface group (and, in particular, not free) one finds that
the image of the limiting map must have positive area, contradicting Proposition 3.24. �

4 Discrete heat flow

4.1 Gradient descent in Riemannian manifolds

The area of mathematics concerned with methods for finding the minima of a convex function
F : Ω → R, called convex optimization, has been intensely developed in the last few decades

32



and finds countless applications. The majority of the existing literature deals with the classical
case where Ω is a subset of a Euclidean space; the Riemannian setting has been far less explored
although it is a natural and useful extension. Udrişte’s book [Udr94] is a good standard reference
for Riemannian convex optimization (see e.g. [AMS08], [ZS16] for more recent developments).
Our goal is to present a simple but effective method that can be implemented to find the minimum
of the discrete energy functional, with a rigorous proof of convergence and explicit control of
the convergence rate. Of course, there are more advanced and faster algorithms in practice. For
example, the C++ library ROPTLIB [HAGH16] was developed for this purpose.

A gradient descent method is an iterative algorithm for minimizing a function F : Ω ⊆ RN → R

which produces a sequence (xk)k>0 of points in Ω, defined inductively by:

xk+1 = xk − tk grad F(xk) . (36)

In this relation, tk > 0 is a chosen stepsize. If F has good convexity properties such as being
strongly convex, then a small enough stepsize tk = t > 0 guarantees convergence of the sequence
(xk) to a minimum of F, with explicit control of the convergence rate.

This method naturally extends to the Riemannian setting, i.e. when F : Ω ⊆ M → R is defined
on a subset Ω of a Riemannian manifold M , in which case (36) should be understood as

xk+1 = expxk
(−tk grad F(xk)) . (37)

As in the Euclidean setting, − grad F(xk) is the direction of steepest descent for F at xk , so it is
natural to look for xk+1 in the geodesic ray based at xk in this direction. Note that the gradient
descent method can simply be described as Euler’s method for the gradient flow ODE:

x ′(t) = − grad F(x(t)) .

Gradient descent method with fixed stepsize for strongly convex functions

The gradient descent method with fixed stepsize remains valid for C2 strongly convex functions on
Riemannian manifolds:

Theorem 4.1 ([Udr94, Chap. 7, Theorem 4.2]). Let (M,g) be a complete Riemannian manifold
and let F : M → R be a function of class C2. Assume that there exists α, β > 0 such that:

∀v ∈ TM α ‖v‖2 6 (Hess F)(v, v) 6 β ‖v‖2

Then F has a unique minimum x∗. Furthermore, for t ∈ (0, 1
β ], the gradient descent method with

fixed stepsize tk = t converges to x∗ with a linear convergence rate:

d(xk, x∗) 6 c qk

The constants c > 0 and q ∈ [0,1) are given by:

c =

√
2
α
(F(x0) − F(x∗)) q =

√
1 −

t
2
α

(
1 +

α

β

)
. (38)

33



Remark 4.2. A key step in the proof of Theorem 4.1 is that (F(xk) − F(x∗)) is nonincreasing and
limits to 0 with a linear convergence rate. In particular, (F(xk))k>0 is nonincreasing, therefore any
sublevel set of F is stable under the gradient descent. Moreover, such a set is convex and compact
by strong convexity of F. Thus, the gradient descent method is valid even if the Hessian of is not
bounded above: one can restrict to a sublevel set, where the Hessian of F is bounded.

Gradient descent method with optimal stepsize for strongly convex functions

There are many variants of the gradient descent method that can be more or less useful depending
on the context (see e.g. [ZS16], [FLP18]). One of them is the optimal stepsize gradient descent, an
instance of the gradient descent method (37) where one performs a line search in order to determine
a stepsize tk that minimizes F(xk+1). Clearly, when F is strongly convex, such a tk exists, is unique,
and is > 0 unless xk = x∗. When the Hessian of F is known analytically, Newton’s method offers a
very fast line search.

Theorem 4.3. Let F : M → R as in Theorem 4.1. The optimal stepsize gradient descent has a
linear convergence rate at least as fast as that of Theorem 4.1, for any choice of the fixed stepsize.

Proof. Theorem 4.3 is derived from a careful analysis of the proof of Theorem 4.1 which can be
found in [Udr94, Chapter 7, Theorem 4.2]. This proof is a combination of three observations:

(i) For any x ∈ M:
α

2
d(x, x∗)2 6 F(x) − F(x∗) 6

β

2
d(x, x∗)2 . (39)

This follows from a Taylor expansion of F at x∗ along the geodesic [x∗, x].
(ii) For any x ∈ M:

‖ grad F(x)‖2 > α
(
1 +

α

β

)
(F(x) − F(x∗)) .

This follows from a Taylor expansion of F at x along the geodesic [x, x∗] and from (39).
(iii) For any x ∈ M and for any t ∈ [0, 1

β ]:

F(x) − F(x+(t)) >
t
2
‖ grad F(x)‖2

where x+(t) B expx(−t grad F(x)). This follows from a Taylor formula for F along [x, x+(t)].
It follows immediately from these three observations that for any x ∈ M and for any t ∈ [0, 1

β ]:

F(x+(t)) − F(x∗) 6 Q(t) (F(x) − F(x∗)) (40)

where Q(t) = 1 − t
2α(1 +

α
β ) = q2.

When one performs the gradient descent method with fixed stepsize t, by assumption xk+1 =

x+
k
(t). Theorem 4.3 is then easily concluded by finding F(xk) − F(x∗) 6 Qk (F(x0) − F(x∗)) from

(40) (with an obvious induction) and making one last use of (39).
If instead one performs an optimal stepsize gradient descent, then xk+1 = x+

k
(tk), where tk

is the optimal step. Fix t ∈ [0, 1
β ]. By definition of the optimal step, F(x+

k
(tk)) 6 F(x+

k
(t)), so

F(xk+1) − F(xk) 6 F(x+
k
(t)) − F(xk). Therefore we can derive from (40) that

F(xk+1) − F(x∗) 6 Q(t) (F(xk) − F(x∗))

and the conclusion follows like before. �
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4.2 Convergence of the discrete heat flow

The discrete heat flow can be described as a discretization both in time and space of the heat flow on
C∞(M,N) . Recall that the smooth heat flow is the gradient flow of the smooth energy functional:

d
dt

ft = τ( ft )

where τ( ft ) = − grad E( ft ) is the tension field of ft (cf § 1.1, § 1.3).
We recall the setup of our discretization: Let G be a biweighted S̃-triangulated graph (Defi-

nition 2.17), let N be a Riemannian manifold, and let ρ : π1S → Isom(N) be a group homomo-
morphism. Recall that the discrete energy is a function EG : Mapeq(G,N) → R (Definition 2.12),
where Mapeq(G,N) is the space of ρ-equivariant maps G → N . The latter space has a natural
Riemannian structure with respect to which the gradient of the energy is minus the discrete tension
field τG (Definition 2.16 and Proposition 2.21). Thus we define the discrete heat flow:

Definition 4.4. The discrete heat flow is the iterative algorithm which, given f0 ∈ Mapeq(G,N),
produces the sequence ( fk)k∈N in Mapeq(G,N) defined inductively by the relation

fk+1(x) = exp fk (x)

(
tk(τG fk)x

)
,

where tk ∈ R is a chosen stepsize.

Themain theorem of this section is an immediate application of Theorem 3.25 and Theorem 4.1:

Theorem 4.5. Let G be a biweighted S̃-triangulated graph. Let N be a Hadamard manifold
of pinched negative curvature and ρ : π1S → Isom(N) a faithful representation whose image is
contained in a discrete subgroup acting freely, properly, and cocompactly on N . Then there exists
a unique ρ-equivariant harmonic map f ∗ : G → N . Moreover, for any f0 ∈ Mapeq(G,N) and for
any sufficiently small t > 0, the discrete heat flow with initial value f0 and fixed stepsize t converges
to f ∗ with a linear convergence rate:

d( fk, f ∗) 6 cqk (41)

where c > 0 and q ∈ [0,1) are constants, and d( fk, f ∗) is the L2 distance in Mapeq(G,N).

Of course, it also follows from Theorem 4.3 that the discrete heat flow with optimal stepsize
converges to f ∗ as well, with a linear convergence rate as least as fast as (41).

We emphasize that in our favorite setting where N = H2 and ρ : π1S → Isom+(H2) is Fuchsian,
Theorem 3.21 enables explicit estimates on the constants c and q in (41): the expressions of c and
q are given by (38), in which α is given by (32) and β is given by (33) with E0 = E( f0).

4.3 Experimental comparison of convergence rates

In Figure 5 and Figure 6 we present numerical experiments performed with the software Harmony.
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Figure 5: Number of iterations against stepsize in the discrete heat flowwith fixed stepsize performed
by Harmony.

Comparison of different fixed stepsizes

In the first experiment (Figure 5) we observe the number of iterations required for the discrete heat
flow with fixed stepsize to converge as a function of the stepsize.

Let S be a closed oriented surface of genus 2. We fix a domain Fuchsian representation
ρL : π1S → Isom+(H2): the representation pictured on the left in Figure 9, and let Harmony
construct an invariant mesh (depth 4, 1921 vertices). We let the target Fuchsian representation ρR
vary, taking Fenchel-Nielsen lengths (2,2, `) and twists (−1.5,2,0.5), where ` ∈ {2.5,1.5,0.5,0.2}.

We observe that the plotted points resemble in profile functions of the form−C1 (log(1 − C2t))−1,
which is precisely the type of function predicted by Theorem 4.5.

Comparison of our three methods

For the second experiment (Figure 6) we compare the convergence rate, in terms of number of
iterations, of our three methods:

• Discrete heat flow with fixed stepsize (see § 4.2),
• Discrete heat flow with optimal stepsize (see § 4.2),
• Cosh-center of mass method (see § 5.3).

We keep the same setting as before, letting ` this time vary between 0.2 and 4.4. As the figure
shows, the cosh-center of mass method is more effective than either gradient descent methods.
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Figure 6: Comparison of the three methods performed by Harmony.

5 Center of mass methods

In this section we investigate a center of mass algorithm towards the minimization of the discrete
energy. We shall see that it is in some sense a variant of the fixed stepsize discrete heat flow. In the
current state of our software Harmony, it is the most effective method (see § 4.3).

First we recall facts about centers of mass in Riemannian manifolds and investigate how they
relate to harmonic maps. We shall prove in particular a generalized mean value property for
harmonic maps between Riemannian manifolds (Theorem 5.9).

5.1 Centers of mass in metric spaces and Riemannian manifolds

Let (Ω,F , µ) be a probability space, (X, d) be a metric space, and h : Ω→ X a measurable map.

Definition 5.1. A center of mass (or barycenter) of h is a minimizer of the function

Ph : X → R

x 7→
1
2

∫
Ω

d(x, h(y))2 dµ(y) .
(42)

In general, neither existence nor uniqueness of centers of mass hold. If X is a Hadamard space
and h ∈ L2(Ω,X) then existence and uniqueness do hold [KS93, Lemma 2.5.1]. For Riemannian
manifolds we have:

Theorem 5.2 (Karcher [Kar77]). Assume that X is a complete Riemannian manifold and h takes
values in a ball B = B(x0,r) ⊂ X such that:

• B is strongly convex: any two points of B are joined by a unique minimal geodesic γ : [0,1] →
X , and each such geodesic maps entirely into B.
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• B has nonpositive sectional curvature, or r < π

4
√
K

where K > 0 is an upper bound for the
sectional curvature in B.

Under these conditions, the function Ph of (42) only has interior minimimizers on B̄ and is strongly
convex inside B. Consequently, existence and uniqueness of the center of mass hold.

Note that if X is a complete Riemannian manifold, any sufficiently small r > 0 meets the
requirements of Theorem 5.2. The center of mass of h is the unique point G ∈ X such that∫

Ω

exp−1
G (h(y)) dµ(y) = 0 . (43)

This simply expresses the vanishing at G of the gradient of the function Ph : X → R of (42).
Of course, Definition 5.1 generalizes the usual notion of center of mass in Rn: when h ∈

L2(Ω,Rn), the center of mass given by G =
∫
Ω

h(y) dµ(y). When X is not Euclidean, the center of
mass is only defined implicitly, but one can estimate proximity to the center of mass:

Lemma 5.3. Assume that the conditions of Theorem 5.2 are satisfied. In particular the center of
mass G of h is well-defined. If G′ is a point in X such that:∫

Ω

exp−1
G′(h(y)) dµ(y)

 6 δ
then

d(G,G′) 6 Cδ ,

whereC = 1when X has nonpositive curvature, orC = C(K,r) > 0when X has sectional curvature
bounded above by K > 0 in a strongly convex ball of radius r containing the image of h.

Proof. This is an immediate consequence of the fact that the function Ph of (42) is C-strongly
convex under the assumptions of the lemma. Also see [Kar77, Thm 1.5]. �

5.2 Generalized mean value property

In this section we show a generalized mean value property for smooth harmonic maps between
Riemannian manifolds. Let f : (M,g) → (N, h) be a smooth map between Riemannian manifolds.

Fix x ∈ M . Denote by Sr (resp. Br ) the sphere (resp. the closed ball) centered at the origin of
radius r in the Euclidean vector space (TxM,g). Also denote Ŝr (resp. B̂r ) the sphere (resp. the
closed ball) centered at x of radius r in (M,g). The topological space Sr (resp. Br ) can be equipped
with a natural Borel probability measure by taking the measure induced from the Euclidean metric
g in TxM , renormalized so that it has total mass 1. Similarly, Ŝr (resp. B̂r ) can be equipped with a
natural Borel probability measure by taking the measure induced from the Riemannian metric g.

Definition 5.4. We define four functions Sr f ,Br f , Ŝr f , B̂r f : M → N as follows. Given x ∈ M:
• Sr f (x) (resp. Br f (x)) is the center of mass of f ◦ expx : Sr → N (resp. f ◦ expx : Br → N).
• Ŝr f (x) (resp. B̂r f (x)) is the center of mass of f |Ŝr : Ŝr → N (resp. f |B̂r

: B̂r → N).

Remark 5.5. The four functions of Definition 5.4 are well-defined as long as (N, h) is a Hadamard
manifold, or as long as r is small enough and (N, h) has sectional curvature bounded above and
injectivity radius bounded below by a positive number (e.g. N is compact).
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Note that Sr f (x) and Ŝr f (x) are different in general, as are Br f (x) and B̂r f (x). However they
are very close when r is small:

Proposition 5.6. Let f : M → N be a smooth map. Then for all x ∈ M:

d(Sr f (x), Ŝr f (x)) = O(r4)

d(Br f (x), B̂r f (x)) = O(r4) .

Proof. The proof is technical but not very difficult. It is basically derived from a Taylor expansion
of the metric in normal coordinates at x and one use of Lemma 5.3. We will do several similar
proofs in what follows, so we skip the details for brevity. �

Of course, in the case where M = Rm and N = R (or N = Rn), Sr f and Ŝr f (resp. Br f and
B̂r f ) coincide. We recall the celebrated mean property for harmonic functions in this setting:

Theorem 5.7. f : Rm → R is harmonic if and only if Sr f = Br f = f for all r > 0.

More generally, if M is any Riemannian manifold and N = R, Willmore [Wil50] proved that
Ŝr f = f characterizes harmonic maps if and only if M is a harmonic manifold.

The central theorem of this subsection is the following:

Theorem 5.8. Let f : M → N be a smooth map. For all x ∈ M , as r → 0:

d
(
Sr f (x) , exp f (x)

(
r2

2m
τ( f )x

))
= O(r4) (44)

d
(
Br f (x) , exp f (x)

(
r2

2(m + 2)
τ( f )x

))
= O(r4) . (45)

The following “generalized mean property for harmonic functions between Riemannian mani-
folds” is an immediate corollary of Theorem 5.8:

Theorem 5.9. Let f : M → N be a smooth map. The following are equivalent:
(i) f is harmonic.
(ii) d( f (x),Sr f (x)) = O(r4) for all x ∈ M .
(iii) d( f (x),Br f (x)) = O(r4) for all x ∈ M .

Remark 5.10. It is an immediate consequence of Proposition 5.6 that Theorem 5.8 and Theorem 5.9
also hold for Ŝr f (x) instead of Sr f (x), and B̂r f (x) instead of Br f (x).

In the remainder of this subsection we show Theorem 5.8. We only prove (44); the proof of
(45) follows exactly the same lines. Consider a smooth map f : (M,g) → (N, h) and fix x ∈ M .

Lemma 5.11. Let r > 0. Denote by Sr the Euclidean sphere of radius r > 0 in TxM and σr its
area density. Then, as r → 0, the following estimate holds:

1
Area(Sr )

∫
Sr

exp−1
f (x) ◦ f ◦ expx(u) dσr (u) =

r2

2m
τ( f )x +O(r4) (46)

where m = dim M .
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Proof. We write the Taylor expansion of the function f̂ = exp−1
f (x)
◦ f ◦ expx : TxM → Tf (x)N:

f̂ (u) = f̂ (0) + (D f̂ )0(u) +
1
2
(D2 f̂ )0(u,u) +

1
6
(D3 f̂ )0(u,u,u) +O(‖u‖4) .

Let us integrate this identity over Sr . We have:
• f̂ (0) = 0, so 1

Area(Sr )

∫
Sr

f̂ (0) dσr (u) = 0.
• (D f̂ )0(u) = (d f )x(u) is an odd function of u, so 1

Area(Sr )

∫
Sr
(D f̂ )0(u) dσr (u) = 0.

• It is straightforward to check that (D2 f̂ )0(u,u) = (Hess f )x(u,u) by definition of Hess f .
Moreover, since this is a quadratic function of u, we can apply Lemma 5.12:

1
Area(Sr )

∫
Sr

(D2 f̂ )0(u,u) dσr (u) =
r2

m
tr((Hess f )x) =

r2

m
τ( f )x .

• (D3 f̂ )0(u,u,u) is an odd function of u, so 1
Area(Sr )

∫
Sr
(D3 f̂ )0(u,u,u) dσr (u) = 0.

Putting all this together, we get (46). �

The following lemma is required to complete the proof of Lemma 5.11:

Lemma 5.12. Let (V,g = 〈·, ·〉) be a Euclidean vector space and let B : V ×V → R be a symmetric
bilinear form. Denote by Sr = S(0,r) the sphere centered at the origin in V with radius r > 0, dσr

the area density on Sr induced from the metric g and Area(Sr ) =
∫
Sr

dσr its area. Then:

1
Area(Sr )

∫
Sr

B(x, x) dσr =
r2

dim V
trg(B) .

Herewe have denoted by trg(B) the g-trace of B, i.e. the trace of the g-self adjoint endomorphism
of V associated to B, or, equivalently, the trace of a matrix representing B in a g-orthonormal basis.

Proof. Let (e1, . . . , en) be basis of V which is g-orthonormal and B-orthogonal (the existence of
such a basis is precisely the spectral theorem). Let λk = B(ek, ek) for k ∈ {1, . . . n}. For any vector
x =

∑n
k=1 xkek , the quadratic form is given by B(x, x) =

∑n
k=1 λk xk2, hence:∫

Sr

B(x, x) dσr =

n∑
k=1

λk

∫
Sr

xk2 dσr .

The integrals Ik =
∫
Sr

xk2 dσr can be swiftly computed starting with the observation that any two
of them are equal. Indeed, for k , l, one can easily find a linear isometry ϕ such that xk2 ◦ ϕ = xl2;
the change of variables theorem ensures that Ik = Il. One can then write Ik = 1

n

∑n
l=1 Il for any k.

That is Ik = 1
n

∫
Sr

(∑n
k=1 xk2) dσr . However

∑n
k=1 xk2 = g(x, x) = r2 for any x ∈ Sr . This yields

Ik = 1
n

∫
Sr

r2 dσr =
r2

n Area(Sr ). The desired result follows. �

It is easy to see that Theorem 5.8 follows immediately from Lemma 5.11 when N = Rn. When
N is not Euclidean, centers of mass in N are only defined implicitly (by equation (43)), so we have
to work harder to prove Theorem 5.8. The trick is to use Lemma 5.3.

First we need a Riemannian geometry estimate in the following general setting. Let A, B, C
be three points in a Riemannian manifold (M,g). We assume that B and C are contained in a
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sufficiently small ball centered at A for what follows to make sense. Denote by ®uA = (expA)
−1(B),

®uB = (expB)
−1(C), and ®uC = (expC)−1(A). If we were in a Euclidean vector space, we could write:

®uA + ®uB + ®uC = 0 .

We would like to find an approximate version of this identity in general. Note that the sum
®uA + ®uB + ®uC does not make sense, because these vectors are based at different points. Denote ®v
the parallel transport of − ®uC along the geodesic segment [C, A] and ®w the parallel transport of ®uB

along the geodesic segment [B, A]. Let us also write ®u = ®uA for aesthetics. Now the vectors ®u, ®v, ®w
are all based at A, and one expects that ®w = ®v − ®u up to some error term.

Lemma 5.13. Using the setting and notations above, we have as ‖ ®u‖ → 0 and ‖®v‖ → 0:

®w = ®v − ®u +O(‖ ®u‖2 ‖®v‖ + ‖ ®u‖ ‖®v‖2) .

We prove in fact the following more precise lemma:

Lemma 5.14. Let (M,g) be a Riemannian manifold, fix A ∈ M . Let ®U and ®V be two tangent
vectors at A, denote B(t) = expA(t ®U) and C(s) = expA(s ®V). Let ®w(t, s) be the parallel transport of
®uB B exp−1

B(t)
(C(s)) along the geodesic segment from B(t) to A. Then:

®w(t, s) = s ®V − t ®U −
t2s
2

R( ®V, ®U) ®U −
ts2

3
R( ®U, ®V) ®V +O(t4 + t3s + t2s3) .

where R is the Riemann curvature tensor of (M,g).

Proof. First let us quickly discuss some general Riemannian geometry estimates in normal coordi-
nates. We refer to [Bre96, Bre09] for more details on the computations that follow.

In normal coordinates at a point A, the Riemannian metric g has the Taylor expansion

gi j = δi j −
1
3

Rik jlxk xl +O(|x |3)

where Ri jkl is the Riemann curvature tensor at A, or rather its purely covariant version (this well-
known fact of Riemannian geometry goes back to Riemann’s 1854 habilitation [Rie13]). One can
derive from the expression for the Christoffel symbols Γk i j = 1

2g
kl(gli, j + gl j ,i − gi j ,l) that

Γ
k
i j = −

1
3
(Rk

i jl − Rk
jil)xl +O(|x |3) .

One can then find the Taylor expansion of any geodesic x(s), say with initial endpoint x = x(0) and
initial velocity v, by solving the geodesic equation d2xk

ds2 + Γ
k
i j

dxi
ds

dx j

ds = 0. One finds:

xk(s) = xk + svk −
s2

3
Rk

il j v
iv j xl +O(s |x |3) . (47)

We can rewrite (47) as a coordinate-free expression (but still in the chart given by expA) as

x(s) = x + sv −
s2

3
R(x, v)v +O(s |x |3) . (48)
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One can also compute the parallel transport of a vector v along a radial geodesic x(t) = t x by
solving the parallel transport equation dvk

dt + Γ
k
i j(x(t))vi dx j

dt . One finds that

vk(t) = vk +
1
6

Rk
jilv

ix j(t)xl(t) +O(t |x |3) ,

which we can rewrite as
v(t) = v +

1
6

R(v, x)x +O(t |x |3) . (49)

Let us now come back to the setting of Lemma 5.14. We shall work (implicitly) in the chart
given by expA. Note that we can write B = t ®U and C = s ®V in this chart. Let us denote by x(·) the
unit speed geodesic from B to C, so that x(0) = B, x(r) = C where r = d(B,C), and x ′(0) = ®UB is
the unit vector such that expB(r ®UB) = C. By (48) we can write

x(r) = x(0) + r ®UB −
r2

3
R(x(0), ®UB) ®UB +O(r |x(0)|3) .

In other words, recalling that x(0) = B = t ®U and x(r) = C = s ®V , we have

s ®V − t ®U = r ®UB −
tr2

3
R( ®U, ®UB) ®UB +O(rt3) . (50)

On the other hand, the parallel transport of ®uB = r ®UB back to the origin along the radial geodesic
[A,B] is given by, according to (49):

®w = r ®UB −
t2r
6

R( ®UB, ®U) ®U +O(t3r) . (51)

Comparing (50) and (51), we see that

®w = s ®V − t ®U −
t2r
6

R( ®UB, ®U) ®U −
tr2

3
R( ®U, ®UB) ®UB +O(t3r) . (52)

Finally, let’s work to have s’s and ®V’s appear in this equation instead of r’s and ®UB’s. First note that
®rUB = s ®V − t ®U +O(tr2 + rt3) according to (50), so using the fact that R( ®U, ®U) = 0, one can write:

rR( ®UB, ®U) ®U = sR( ®V, ®U) ®U +O(tr2 + rt3)

r2R( ®U, ®UB) ®UB = s2R( ®U, ®V) ®V − tsR( ®U, ®V) ®U +O(tsr2 + t2sr + t2r3 + t3sr + t4r) .

We thus get in lieu of (52):

®w = s ®V − t ®U −
t2s
2

R( ®V, ®U) ®U −
ts2

3
R( ®U, ®V) ®V +O(t3r + t2sr2) .

The conclusion follows, noting that r = O(t + s) by the triangle inequality. �

Remark 5.15. A direct consequence of Lemma 5.14 is the expansion of the distance squared:

d2(expA(t ®U),expA(s ®V)) = ‖s ®V − t ®U‖2 −
1
3

R(U,V,V,U)s2t2 +O((t2 + s2)
5
2 ) .

The same formula has been observed by other authors, see e.g. [Raz15].
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We are now ready to wrap up the proof of Theorem 5.8:

Proof of Theorem 5.8. Let u0 ∈ Sr ⊂ TxM , and consider the triangle in N with vertices A B f (x),
B B Tr f (x), and C(u0) B f (expx(u0)) in N . With the notations introduced above Lemma 5.13,
note that ®u = ®uA =

r2

2mτ( f )x , ®v(u0) = exp−1
f (x)
( f (expx(u0))), and ®w(u0) = P( ®uB(u0)) where ®uB(u0) =

exp−1
Tr f (x)

( f (expx(u0))) and P : TAN → TBN is the parallel transport along the geodesic segment
[A,B]. By Lemma 5.13, we have

P( ®uB(u0)) = ®w(u0) = ®v(u0) − ®u +O(‖ ®u‖2 ‖®v(u0)‖ + ‖ ®u‖ ‖®v(u0)‖
2) . (53)

Because we have ‖ ®u‖ = O(r2) and ‖®v(u0)‖ = O(r), (53) may be rewritten:

P( ®uB(u0)) = ®v(u0) − ®u +O(r4) . (54)

We now integrate (54) over u0 ∈ Sr :

1
Area(Sr )

∫
Sr

P( ®uB(u0)) dσr (u0) =
1

Area(Sr )

∫
Sr

(
®v(u0) dσr (u0) − ®u +O(r4)

)
,

which we can rewrite as

P
(

1
Area(Sr )

∫
Sr

®uB(u0) dσr (u0)

)
=

(
1

Area(Sr )

∫
Sr

®v(u0) dσr (u0)

)
− ®u +O(r4) .

Now, Lemma 5.11 says precisely that
(

1
Area(Sr )

∫
Sr
®v(u0) dσr (u)

)
= ®u + O(r4). We thus get

1
Area(Sr )

∫
Sr
®uB(u0) dσr (u0) = P−1(O(r4)) = O(r4). That is,∫

Sr

exp−1
Tr f (x)

( f (expx(u0))) dσr (u0) = O(r4) .

Recalling that Sr f (x) is by definition the center of mass of the function u0 ∈ Sr 7→ f (expx(u0)), we
can apply Lemma 5.3 to conclude that d(Sr f (x),Tr f (x)) = O(r4). �

5.3 Center of mass methods

We now discuss center of mass methods as an alternative to the heat flow in order to minimize the
energy functional. The basic idea is to iterate the process of replacing a function f : M → N by
its average on balls (or spheres) of radius r > 0, hopefully converging to a map f ∗r that is almost
harmonic when r is small. Observe that Theorem 5.8 shows that this method is very close to a
constant step gradient flow for the energy functional, i.e. an Euler method with fixed stepsize.

The next proposition is claimed in [Jos11, Lemma 4.1.1].

Proposition 5.16. Let (M, µ) be a measure space, let (N, d) be a Hadamard metric space and let
η : M × M → [0,+∞) be a measurable symmetric function. Define the Jost energy functional by

E( f ) =
1
2

∫
M

∫
M

η(x, y) d( f (x), f (y))2 dµ(y) dµ(x) . (55)
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For a measurable map f : M → N , let ϕ( f ) : M → N be the map such that for all x ∈ M , ϕ( f )(x)
is the center of mass of f for the measure η(x, ·)µ. Then for every f with finite energy we have:

E(ϕ( f )) 6 E( f ) . (56)

Moreover, the following are equivalent:
(i) Equality holds in (56).
(ii) ϕ( f ) = f almost everywhere in (M, µ).
(iii) f is a minimizer of E .

Center of mass method in the smooth setting

Now assume that M and N are both Riemannian manifolds. For r > 0 we take the kernel ηr (x, y)
described in § 1.2, so that Er is the r-approximate energy. The map ϕ( f ) of Proposition 5.16 is
then the same as the map B̂r f introduced in Definition 5.4. It is tempting to iterate the process
of averaging f in order to try and minimize Er . The next theorem guarantees the success of this
method under suitable conditions. Moreover, recall that the energy functional E on L2(M,N) is the
Γ-limit of Er as r → 0 ([Jos11, Lemma 8.3.4]), so that minimizers of Er converge to minimizers
of E (possibly up to subsequence).

Theorem 5.17. Let M and N be Riemannian manifolds, assume N is compact and with nonpositive
sectional curvature. In any homotopy class of continuous maps M → N where the r-approximate
energy Er admits a unique minimizer f ∗, the sequence ( fk)k∈N defined by fk+1 = B̂r fk converges
locally uniformly to f ∗ for any choice of a locally Lipschitz continuous f0.

Proof. We reduce the proof to a combination of Lemma 5.18 and Lemma 5.19 below. Denote by
X the connected component of f0 in C(M,N), let E : X → R denote the restriction of Er , and let
ϕ : X → X be the map f 7→ B̂r f (it is easy to see that ϕ preserves X). Lemma 5.18 guarantees
immediately that the sequence ( fk)k∈N is equicontinuous. Since N is compact, it follows from the
Arzelà-Ascoli theorem that the sequence ( fk)k∈N is relatively compact in X for the compact-open
topology. By Proposition 5.16 and the assumption that f ∗ is unique, we have E(ϕ( f )) 6 E( f ) for
all f ∈ X , with equality only if f = f ∗. Conclude by application of Lemma 5.19. �

Lemma 5.18. Let f : M → N where M and N are Riemannian manifolds, with N complete and
nonpositively curved. If f is locally Lipschitz continuous, then so is B̂r f . Moreover, the Lipschitz
constant of B̂r f is bounded above by the Lipschitz constant of f on any compact K ⊆ M .

Proof. For simplicity, we assume that f is globally L-Lipschitz, and argue that B̂r f is also L-
Lipschitz; the proof can easily be extended to the general case by restricting to compact sets. First
we assume that M is Euclidean, in fact let us put M = Rm. Let x, y ∈ M , write y = x + h so that
d(x, y) = ‖h‖. By definition, B̂r f (y) is the point of N such that

1
Vol(B(y,r))

∫
B(y,r)

exp−1
B̂r f (y)

( f (v)) dvg(v) = 0 . (57)

Note that the map u 7→ u + h defines an isometry from B(x,r) to B(y,r). Making the change of
variables v = u + h, we derive from (57):∫

B(x,r)
exp−1

B̂r f (y)
( f (u + h)) dvg(u) = 0 .

44



It follows that∫
B(x,r)

exp−1
B̂r f (y)

( f (u)) dvg(u) =
∫
B(x,r)

[
exp−1

B̂r f (y)
( f (u)) − exp−1

B̂r f (y)
f (u + h))

]
dvg(u) . (58)

Assume without loss of generality that N is simply connected (one can lift to the universal cover).
Then N is a Hadamard manifold and in particular a CAT(0) metric space, which implies that for
any p ∈ N , the map exp−1

p : N → TpN is distance nonincreasing (in fact, the converse is also true).
We can therefore derive from (58):∫

B(x,r)
exp−1

B̂r f (y)
( f (u)) dvg(u)

 6 ∫
B(x,r)

d( f (u), f (u + h)) dvg(u) . (59)

It follows from (59) and the fact that f is L-Lipschitz that 1
Vol(B(x,r))

∫
B(x,r)

exp−1
B̂r f (y)

( f (u)) dvg(u)
 6 L‖h‖ . (60)

Lemma 5.3 now applies directly to (60) to conclude that d(B̂r f (x), B̂r f (y)) 6 L‖h‖. Since
‖h‖ = d(x, y), we have shown that B̂r f is L-Lipschitz, as desired.

Now we argue that the argument extends to the case where M is an arbitrary Riemannian
manifold using a local to global trick. First note that a function is globally L-Lipschitz if and only
if it is locally L-Lipschitz. Here we mean by locally L-Lipschitz the property that for any x ∈ M ,
there exists δ > 0 such that d(y, x) < δ implies d( f (y), f (x)) 6 Ld(y, x). We leave it to the reader
to show that in any path metric space, locally L-Lipschitz in this sense implies globally L-Lipschitz.

With this observation in mind, let us finish the proof. The key argument that worked above when
M is Euclidean is that there exists an isometry from B(x,r) to B(y,r) that displaces every point
of at most d(x, y). This is no longer true when M is an arbitrary Riemannian manifold, however
note that it is almost true when x and y are very close. Quantifying this properly, clearly one can
show that for every x ∈ M and for every L ′ > L, there exists δ > 0 such that d(y, x) < δ implies
d(B̂r f (y), B̂r f (x)) 6 L ′d(y, x). Thus we have shown that B̂r f is locally L ′-Lipschitz, and therefore
globally L ′-Lipschitz. Since this is true for all L ′ > L, B̂r f is actually L-Lipschitz. �

Lemma 5.19. Let X be a first-countable topological space and let E : X → R a continuous function
that admits a unique minimizer x∗. Assume that ϕ : X → X is a continuous map such that:

(i) E(ϕ(x)) 6 E(x) for all x ∈ X , with equality only if x = x∗.
(ii) For all x0 ∈ X , the set {ϕk(x0), k ∈ N} is relatively compact in X .

Then for any x0 ∈ X , the sequence (ϕk(x0))k∈N converges to x∗.

Proof. In any topological space, in order to show that a sequence (xk)k∈N converges to a point x∗,
it is enough to show that:
(a) The sequence (xk) has no cluster points except possibly x∗.
(b) Any subsequence of (xk) admits a cluster point.

Indeed, assume that (xk) does not converge to x∗, then there exists a subsequence of (xk) that avoids
a neighborhood of x∗. This subsequence must have a cluster point by (b), which cannot be x∗.
However this point is also a cluster point of the sequence (xk), contradicting (a).

Coming back to Lemma 5.19, let x0 ∈ X and denote xk = ϕk(x0). The sequence (xk) satisfies
(b) because of the assumption (ii). So we need to show that (xk) satisfies (a) and we are done. Let
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y be a cluster point of (xk), we need to show that y = x∗. Since X is first-countable, there exists a
subsequence (xkn )n∈N converging to y. Observe that by assumption (i), since kn 6 kn + 1 6 kn+1,

E(xkn+1) 6 E(xkn+1) 6 E(xkn ) . (61)

By continuity of E , we have lim E(xkn ) = lim E(xkn+1) = E(y), so (61) implies that lim E(xkn+1) =

E(y). On the other hand, since xkn+1 = ϕ(xkn ) and ϕ is continuous, we have lim xkn+1 = ϕ(y), so
lim E(xkn+1) = E(ϕ(y)). Thus E(ϕ(y)) = E(y), and we conclude that y = x∗ by (i). �

Discrete center of mass method

We now prove that Theorem 5.17 also holds in the discrete setting developed in § 2, providing
an alternative method to the discrete heat flow discussed in § 4.2. Let G be a biweighted S̃-
triangulated graph (see § 2.2), let N be a Hadamard manifold and let ρ : π1S → Isom(N) be a group
homomorphism. We recall that the discrete energy functional EG : Mapeq(G,N) → R coincides
with Jost’s energy functional (55) for the appropriate choice of kernel η (Proposition 2.19).

Motivated by Proposition 5.16, we note that in this discrete setting the measure η(x, ·)µ is given
by the weighted atomic measure ∑

y∼x

ωxy

µ(x)
δy , (62)

where δy is the Dirac measure at y. Now the averaging map f 7→ B̂r f takes the following form:

Definition 5.20. The discrete center of mass method on Mapeq(G,N) is given by f 7→ ϕ( f ), where
ϕ( f )(x) is the center of mass of f for the atomic measure (62).

Note that Proposition 5.16 applies in this setting (cf. Proposition 2.22). Under certain assump-
tions on N and ρ, we obtained strong convexity of EG in Theorem 3.25, so that, in particular, EG
has a unique minimum. The same assumptions have similarly useful consequences here:

Theorem 5.21. Let N be a manifold of pinched negative curvature and let ρ be a faithful rep-
resentation whose image is contained in a discrete subgroup of Isom(N) acting freely, properly,
and cocompactly on N . Given any initial discrete equivariant map f0 ∈ Mapeq(G,N), the discrete
center of mass method converges to the unique discrete harmonic map.

Proof. The proof is a similar but easier version of the proof of Theorem 5.17. Let f0 ∈ Mapeq(G,N),
and define the sequence ( fk)k∈N by fk+1 = ϕ( fk). The assumption on ρ means that we can work in
a compact quotient of N , making the sequence ( fk) pointwise relatively compact. Since the action
of π1S on G is cofinite, it is easy to see that the condition that the family { fk} is equicontinuous
is vacuous. Hence the family { fk} is relatively compact in Mapeq(G,N). Since Proposition 5.16
holds in this setting, all the requirements are met to conclude with Lemma 5.19. �

Remark 5.22. In [JT07], Jost-Todjihounde describe an iterative process to obtain a discrete harmonic
map from an edge-weighted triangulated graph G to a target space that admits centers of mass (e.g.
Hadamard spaces). Theorem 5.21 can be viewed as a strengthened version of their result in two
respects: For one, we avoid Jost-Todjihounde’s passage to a subsequence of ( fk). Moreover, Jost-
Todjihounde start by subdividing G and pursuing centers of mass in two phases, separately for
vertices and midpoints of edges. Our discrete center of mass method requires no such subdivision.
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5.4 cosh-center of mass

Theorem 5.21 provides an effective method to compute discrete equivariant harmonic maps, al-
ternative to the discrete heat flow (see § 4.2), as long as one is able to compute centers of mass.
Unfortunately, non-Euclidean centers of mass are not easily accessible. Even finding the barycenter
of three points in the hyperbolic plane is a nontrivial task. While it is possible to use gradient
descent method (see [ATV13]), it is computationally expensive and, in any case, not possible to do
precisely in finite time. We present a clever variant to barycenters, well-suited to hyperbolic space
Hn, that avoids this issue. We thank Nicolas Tholozan for bringing this idea to our attention.

Definition 5.23. Let (Ω,F , µ) be a probability space, (X, d) be a metric space, and h : Ω → X a
measurable map. A cosh-center of mass of h is a minimizer of the function

Ph : X → R

x 7→
∫
Ω

(cosh d(x, h(y)) − 1) dµ(y) .

When X is a Riemannian manifold, a cosh-center of mass G is characterized by∫
Ω

sinhc d(G, h(y)) exp−1
G (h(y)) dµ(y) = 0 , (63)

where sinhc(x) = sinh(x)/x is the cardinal hyperbolic sine function.
Equation (63) implies that if supp(h∗µ) is contained in a strongly convex region U (e.g. a ball of

small enough radius), then any cosh-center of mass is contained in U as well: if x is outside U, then
each vector exp−1

x (h(y)), for y ∈ supp(h∗µ), is contained in an open half-space in TxX containing
exp−1

x (U), and (63) cannot be satisfied.
Let us now specialize to the case where X = Hn is the hyperbolic n-space. In this setting the

function F(x) = cosh(d(x0, x)) − 1 is especially amenable to computations:

grad F(x) = sinhc(d(x0, x)) exp−1
x (x0)

Hess(F)x(v, v) = F(x)‖v‖2 .

In particular, F is a strongly convex function on Hn with modulus of strong convexity α = 1.
Existence and uniqueness of the center of mass of any function h ∈ L2(Ω,Hn) quickly follows.

The main advantage of the cosh-center of mass is that it admits an explicit description, much
like the Euclidean barycenter. For this we work in the hyperboloid model for Hn, i.e.

H = {x ∈ Rn,1 : 〈x, x〉 = −1, xn+1 > 0} ,

where Minkowski space Rn,1 is defined as Rn+1 equipped with the indefinite inner product

〈x, y〉 = x1y1 + · · · + xnyn − xn+1yn+1 .

This inner product induces a Riemannian metric onH of constant curvature −1.

Proposition 5.24. The cosh-center of mass in Hn ≈ H is equal the orthogonal projection of the
Euclidean barycenter in Minkowski space Rn,1 to the hyperboloidH ⊂ Rn,1.
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Proof. We prove Proposition 5.24 for a finite collection of points for comfort; the generalization
to any probability measure is immediate. Consider points p1, . . . , pn ∈ H with weights w1, . . . ,wn

satisfying
∑

i wi = 1, let p be their Euclidean barycenter in Rn,1, and let q indicate the orthogonal
(i.e. radial) projection of p toH . By (63), it suffices to check that∑

i

wi sinhc d(q, pi) exp−1
q (pi) = 0 . (64)

Let P be the tangent plane toH at q, i.e. the affine plane in Rn,1 which is orthogonal to the line Rq
through q. The orthogonal projection π : Rn,1 → P is an affinemap, so the identity

∑
i wi(pi−p) = 0

projects to
∑

i wi(qi − q) = 0 on P, where qi = π(pi). It is straightforward to compute q = p
√
−〈p,p〉

and qi = pi + q + 〈pi ,p〉
−〈p,p〉 p.

Geodesics in the hyperboloid are intersections of 2-dimensional subspaces of Rn,1 with H , so
qi − q is a vector in TqH pointing towards pi, and we can compute its length:

‖qi − q‖2 = 〈pi,q〉2 − 1
= sinh2 dH(q, pi)

Thus we proved that

qi − q =
sinh dH(q, pi)

dH(q, pi)
expq

−1(qi)

and we get (64) as desired. �

Another useful feature of the cosh-center of mass is that it is a good approximation of the center
of mass for small distances. This will be important in [GLM18].

Proposition 5.25. If a probability measure is supported in a ball of radius r , then its center of mass
p and its cosh-center of mass q and are within O(r3) of each other.

Proof. Assume µ has finite support {p1, . . . , pn} for comfort and denote wi = µ({pi}) the weights.
By (63) we can write:∑

i

wi exp−1
q (pi) =

∑
i

wi (1 − sinhc d(pi,q)) exp−1
q (pi) . (65)

Because q must be contained in the same ball of radius r as {pi}, we find that d(pi,q) < 2r for each
i. Given that sinhc is a nondecreasing function we derive from (65)∑

i

wi exp−1
q (pi)

 6∑
i

wi (sinhc d(pi,q) − 1)
exp−1

q (pi)


6
∑
i

wi (sinhc(2r) − 1) · (2r) = 2r (sinhc(2r) − 1) .

Lemma 5.3 now implies that
d(p,q) 6 2r (sinhc(2r) − 1) .

The conclusion follows, since 2r (sinhc(2r) − 1) = 4r3

3 +O(r5). �

Note that we did not use in the proof of Proposition 5.25 that we are working in Hn: this
proposition holds in any Riemannian manifold.
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6 Computer implementation: Harmony

6.1 Computer description and availability

Harmony is a computer programdeveloped by the first two authors (JonahGaster andBrice Loustau).
It is a cross-platform software with a graphical user interface written in C++ code using the Qt
framework. In its current state, it totals about 14,000 lines of code.
Harmony is a free and open source software under the GNU General Public License. It is

available on GitHub at https://github.com/seub/Harmony.
For more information, including install instructions and a quick guide to get started using the

software, please visit the dedicated web site: https://www.brice.loustau.eu/harmony/.

6.2 Algorithms

We provide a brief overview of Harmony’s algorithms allowing effective computation of discrete
equivariant harmonic mapsH2 → H2 with respect to a pair of Fuchsian representations. A flowchart
showing how the main algorithms fit into the program is pictured in Figure 13.

We fix an identification of the closed oriented topological surface S of genus g as P0/∼, where
P0 is a topological 4g-gon with oriented sides labelled a1, b1, a−1

1 , b−1
1 , a2, etc..

We parametrize hyperbolic structures on S using the famous Fenchel-Nielsen coordinates. This
requires choosing a pants decomposition of S. Harmony is equipped to make such choices for
arbitrary g in a way that minimizes future error propagation.

The input is a pair of Fenchel-Nielsen coordinates for hyperbolic structures X and Y on S,
the domain and target hyperbolic surfaces respectively. These can be entered by the user in a
‘Fenchel-Nielsen selector’ window: see Figure 8.

Step 1: Construct the fundamental group and pants decomposition

After getting the genus g as input, Harmony constructs the fundamental group of the surface as an
abstract structure. It then chooses a pants decomposition of the surface, yielding a decomposition
of the fundamental group in terms of amalgamated products and HNN extensions of fundamental
groups of pairs of pants. This is done recursively on the genus using a binary tree structure.

Step 2: Construct representations ρX and ρY

This step performs the translation of Fenchel-Nielsen coordinates to Fuchsian representations.
Harmony starts by computing the representation of the fundamental group of each pair of pants
using formulas that can be found in e.g. [Kou94, Prop. 2.3] or [Mas99, Mas01]. It then computes
the representation of the whole fundamental group using its decomposition discussed in Step 1.
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Step 3: Construct fundamental domains PX and PY

This step computes polygonal fundamental domains PX and PY in H2 for the Fuchsian groups in
the images of ρX and ρY . These polygons should be ‘as convex as possible’ in order to ensure good
behavior of the discrete heat flow.

Both PX and PY come with π1S-equivariant identifications to the topological 4n-gon P0 that
record side pairings. Because the vertices of P0 are all in the same π1S-orbit, PX is determined by a
single point in H2. With this combinatorial setup, a best choice of polygon is obtained minimizing
an adequate cost function F : H2 → R+. This is done with a straightforward Newton method.

Step 4: Construct a triangulation of PX

This step computes a triangulation of the fundamental domain PX . Finer and finer meshes can then
be obtained by subdivision (see Definition 2.2). As explained in [GLM18], it is crucial to keep the
smallest angle of the triangulation as large as possible.

Unfortunately, PX already typically has very small angles. In order to avoid subdividing these
angles further, we first introduce new Steiner vertices evenly spaced along the sides of PX . The
resulting polygon is triangulated with a greedy recursive algorithm maximizing the smallest angle.
See Figure 8 for a sample output.
Remark 6.1. The algorithm seems to always produce acute triangulations, a necessary condition for
the definition of the edge weights (see § 2.1), but we do not know whether this always holds. Acute
triangulations of surfaces are part of a fascinating area of current research [CdVM90, Zam13,BG18].

Step 5: Construct the ρX-invariant meshM

The mesh M consists of a list of meshpoints M(0) ⊂ H2, each of which is equipped with a list
of references to its neighboring meshpoints, and possibly side-pairing information. This data is
initially recorded from the triangulated polygon PX . Then, given a user chosen mesh depth k > 1,
M is replaced with the kth iterated midpoint refinement ofM (see Definition 2.2).
Remark 6.2. Constructing the adequate data structure to efficiently store the mesh data is a difficult
challenge: the corresponding C++ classes are the most sophisticated in the code of Harmony.

Step 6: Initialize an equivariant map

The triangulation of PX may be transported to one for PY via the π1S-equivariant maps

PX ≈ P0 ≈ PY .

Because the mesh is built from midpoint refinements, this identification provides an initial discrete
equivariant map f0 : H2 → H2. A sample initial map is showed in Figure 9.
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Step 7: Run the discrete flow

Harmony is ready to run: either the discrete heat flow with fixed or optimal stepsize (see § 4.2) or
the cosh-center of mass method (§ 5.3, § 5.4). Harmony uses several threads so that the flow is
displayed “live” as it is being computed. See Figure 10 for a screenshot of Harmony mid-flow.

The flow is iterated until the error reaches a preset tolerance, or when it is stopped by the user.
Both the discrete heat flow and the center of mass method typically converge very well. Refer to
§ 4.3 for a comparison of the methods. Figure 11 shows a sample output equivariant harmonic map.

6.3 High energy harmonic maps between hyperbolic surfaces

In this final subsection we briefly explain how Harmony provides visual confirmation of a qualitative
phenomenon that is well-known in Teichmüller theory. We hope that future development of the
program will allow many more experimental investigation of theoretical aspects. We refer to
[DW07] for more details on what follows.

As mentioned in § 1.5, taking the Hopf differential of harmonic maps allows one to parametrize
Teichmüller space by holomorphic quadratic differentials. More precisely, given a closed oriented
S of genus > 2, let F (S) denote the Fricke-Klein space of S, i.e. the deformation space of hyperbolic
structures on S up to isotopically trivial diffeomorphisms. Fix a complex structure X on S, and
denote Q(X) the vector space of holomorphic quadratic differentials on X . For any σ ∈ F (S), there
is a unique harmonic map fσ : X → (S, σ). Taking its Hopf differential yields a map

H : F (S) → Q(X)

σ 7→ ϕ fσ .

Wolf [Wol89] proved that the map H is a global diffeomorphism from F (S) to Q(X). Furthermore,
H continuously extends to the “boundaries at infinity”:

∂H : ∂F (S) → ∂Q(X) . (66)

Here the boundary ∂F (S) compactifying Fricke-Klein space is the Thurston boundary ∂F (S) B
PMF(S), the projective space of measured foliations on S. The boundary of the vector space
Q(X) is simply its projectivization: ∂Q(X) B P(Q(X)). It can be identified to the projective
space of measured laminations PML(S) by assigning to any holomorphic quadratic differential its
horizontal foliation. Thus the boundary map ∂H of (66) may be described as a map

∂H : PMF(S) → PML(S) .

This map has a nice geometric interpretation as the well-known “pull tight” map which assigns to
each non-singular leaf of a measured foliation the unique geodesic in its homotopy class.

Concretely, this means that a high energy harmonic map f : X → (S, σ) typically has a specific
behavior dictated by its Hopf differential ϕ, namely: the zeros of ϕ are blown up to ideal hyperbolic
triangles, while the rest of the surface is compressed onto the measured lamination dual to ϕ. This
behavior is well verified by Harmony. As an example, Figure 12 shows the image of a high energy
harmonic map: observe how the most contracted (darker) regions approach a geodesic lamination,
while the most dilated (lighter) regions approach a union of ideal triangles.
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6.4 Illustrations of Harmony

Figure 7: Harmony’s main user interface.

Figure 8: Fenchel-Nielsen coordinates selector.
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Figure 9: An initial discrete equivariant map f0. The highlighted blue triangles are matched.

Figure 10: Harmony mid-flow.
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Figure 11: Sample output harmonic map. The brighter central regions are fundamental domains.

Figure 12: Sample output high energy equivariant harmonic map.
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INPUT Fenchel-Nielsen
coordinates for X INPUT Fenchel-Nielsen

coordinates for Y

INPUT genus

INPUT mesh depth

INPUT flow method

INPUT display
parameters

Construct π1S = 〈a1, b1, . . . , ag, bg|
∏

[ai, bi]〉

Construct Fuchsian ρX

Construct fund domain PX

Triangulate PX

Construct Fuchsian ρY

Construct fund domain PY

Construct ρX-invariant mesh M:

· graph data of M
· triangulation data of M
· metric data of M

Are both ρX and ρY set?

Yes

No

Construct initial (ρX , ρY )-equivariant
map M→ H2 using PX ≈ PY

Iterate flow: update map M→ H2

Is error < ε0? or user stop?

Yes

No

Display discrete harmonic map

Figure 13: Flowchart representing Harmony’s main algorithms.
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