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ABSTRACT
Noisy labeled learning methods deal with training datasets
containing corrupted labels. However, prediction perfor-
mances of existing methods on small datasets still leave room
for improvements. With this objective, in this paper we
present a GAN-based method to generate a clean augmented
training dataset from a small and noisy labeled dataset. The
proposed approach combines noisy labeled learning princi-
ples with GAN state-of-the-art techniques. We demonstrate
the usefulness of the proposed approach through an empirical
study on simple and complex image datasets.

Index Terms— Generative adversarial networks, noisy
labeled learning, image classification

1. INTRODUCTION

Nowadays, the lack of clean labeled datasets remains an is-
sue in many image classification applications. As a conse-
quence, we need to tackle the problem of handling noisy la-
beled datasets. In the context of binary classification, a noisy
labeled dataset contains examples of the positive and nega-
tive classes, however, a fraction of the training examples are
mislabeled.

Noisy labeled learning methods [1], [2], [3] target this is-
sue. A state-of-the-art solution is Rank Pruning (RP) [4]. It
consists in first iteratively identifying confident positive and
negative examples. During the second step, it trains a clas-
sifier with identified examples by considering them as cor-
rectly labeled. However, small and complex noisy labeled
datasets remain challenging. It turns out that GAN-based ap-
proaches [5], [6] have demonstrated state-of-the-art predic-
tion performances to overcome similar issues on partially la-
beled datasets. In particular, GANs are compelling for sub-
distributions hallucination and for data augmentation on small
and complex datasets. RP and GAN-based approaches consist
in preparing a clean Positive-Negative (PN) dataset from the
input noisy one. They are referred to as two-stage methods.

We recall that the original GAN [7] is an unsupervised
generative model. It contains a classifier model, often called

discriminator D, and a generator G. D is trained to distin-
guish real samples xR from generated samples G(z), with z
an input random vector following a uniform or normal dis-
tribution pz . Adversarially, G is trained to generate exam-
ples which are considered as real as possible by D. In this
way, the generated examples distribution converges towards
the real examples distribution pR. This two-player game can
be formalized with the following minimax value function:

min
G

max
D

V (G,D) =ExR∼pR [−H(D(xR), 1)]

+ Ez∼pz [−H(D(G(z)), 0)],
(1)

with H the binary cross entropy metric. Moreover, the GAN
litterature provides nowadays effective techniques to over-
come the original mode collapse issue [8] and to improve
the hallucinated examples quality [9]. The DCGAN [10]
method stabilizes the original GAN for image datasets by us-
ing convolutional layers and batch normalization (BN) [11].
The spectral GAN [12] increases the examples quality by re-
placing BN with the spectral normalization (SN). Even more
recently, the SAGAN [13] has incorporated attention layers
to take into consideration spatial features correlations.

To sum up, on the one hand the noisy labeled learning
methods can manage noisy labeled datasets. On the other
hand, GAN-based approaches have demonstrated their effec-
tiveness for the partially labeled learning task on small and
complex datasets. For these reasons, we propose a novel
GAN-based approach to tackle the noisy labeled learning task
on small and complex datasets. The main contributions of this
work consist in:

• incorporating a noisy labeled risk inside the GAN dis-
criminator loss function;

• applying carefully regularization techniques during the
GAN adversarial training. This addresses GAN mode
collapse and discriminator overfitting issues;

• exploiting prior knowledge of the corrupted labels frac-
tions in order to estimate the most appropriate adversar-
ial training labels.



The outline of the paper is as follow. Section 2 presents the
proposed approach. Section 3 presents the experimental re-
sults. Then, the article ends by a conclusion.

2. PROPOSED METHOD

The insight of the proposed approach is to train two gener-
ators to generate examples which are considered by the dis-
criminator as the most positive, respectively most negative,
with the highest confidence as possible. To correctly guide
the generators, we first identify the discriminator prediction
behaviour when it is trained on a noisy labeled dataset.

We start by describing the noisy labeled dataset. The
positive and negative samples xP and xN follow distribu-
tions pP and pN respectively. The noisy labeled training
dataset is composed of partially corrupted positive and neg-
ative samples xP̂ and xN̂ with the distributions pP̂ and pN̂
respectively. These latter are mixtures of distributions of pP
and pN such that pP̂ = πP pP + (1 − πP )pN and pN̂ =
πNpN + (1− πN )pP . πP is the fraction of correctly labeled
(not corrupted) positive examples, and πN is the fraction of
correctly labeled (not corrupted) negative examples. Finally,
we make the assumption that (πP + πN ) ∈ (1, 2), such that
the majority of labels are not corrupted.

2.1. Noisy labeled training

We train the discriminator D to predict the label value 0 for
corrupted positive samples xP̂ and the label value 1 for cor-
rupted negative samples xN̂ such that the corresponding train-
ing loss function LNoisy is defined as

LNoisy(D) =ExP̂∼pP̂
[H(D(xP̂ ),0)]

+ ExN̂∼pN̂
[H(D(xN̂ ),1)].

(2)

If we use the binary cross entropy H metric in the training
loss function, we can consider this noisy labeled loss function
as a biased clean labeled loss function. In other words, we
can also formulate LNoisy as follow1

LNoisy(D) = (πP + (1− πN ))ExP∼pP
[H(D(xP ), δP )]

+ ((1− πP ) + πN )ExN∼pN
[H(D(xN ), δN )],

(3)
with δP = (1−πN )

πP+(1−πN ) and δN = πN

(1−πP )+πN
. In practice, if

we do not know prior πP and πN , we can estimate δP and δN
values with a clustering algorithm such as a Gaussian Mixture
Model (GMM) [14]. It is sufficient to apply GMM on the
discriminator prediction output for a training batch of noisy
labeled examples (see figure 1).

1This equality between equations 2 and 3 can be demonstrated easily by
developing and factoring those formulas by taking into consideration expec-
tations linearity and distributions compositions.
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Fig. 1. Histogram of discriminator output predictions for a
training batch including the same proportion of xP̂ samples
and xN̂ samples. We trained D during 15 epochs on the
MNIST dataset with ”5” the positive class, ”7” the negative
class, πP = 0.7 and πN = 0.7. GMM clustering algorithm
identifies empirically δP and δN . This histogram is empiri-
cally consistent with the proposed equality between equations
2 and 3.

2.2. Noisy labeled image classification

Concerning the noisy labeled learning task, we firstly use
the proposed GAN-based approach to generate a clean aug-
mented dataset from the noisy labeled one. Figure 2 presents
the schema of this first-stage framework.

2.2.1. Generative models step: training loss functions

The proposed GAN-based model contains a discriminator D,
a positive generator GP , and a negative generator GN . We
train GP to hallucinate fake positive samples xGP and we
train GN to hallucinate fake negative samples xGN . We train
GP and GN to minimize loss functions LGP and LGN , using
labels δP and δN , as follow{

LGP (D,GP ) = ExGP∼pGP
[H(D(xGP ), δP )]

LGN (D,GN ) = ExGN∼pGN
[H(D(xGN ), δN )].

(4)

Moreover, we train adversarially D with GP and GN such
that we define D training loss function LD as

LD(D,GP , GN ) =α · [ExP̂∼pP̂
[H(D(xP̂ ),0)]

+ ExN̂∼pN̂
[H(D(xN̂ ),1)]]

+ β · [ExGP∼pGP
[H(D(xGP ),1)]

+ ExGN∼pGN
[H(D(xGN ),0)]],

(5)

with α and β the hyper-parameters such that α >> β. This
accentuates the guidelines to train GP and GN to converge
towards the positive and negative samples distribution. As D,
GP and GN are deep convolution models, we backpropagate
the training errors in their weights with the stochastic gradient
descent (SGD) method [15].

Note that in practice, we can replace H by the mean
squared error (MSE) metric, while preserving the same train-
ing labels.



Fig. 2. Proposed GAN-based label denoising model: This ul-
lustrates how to output a generated cleanly labeled augmented
dataset from a small input noisy labeled dataset. z represents
an input random vector following a uniform or normal distri-
bution pz , such that xGP = GP (z) and xGN = GN (z).

2.2.2. Posterior step: A standard classification

Concerning the binary noisy labeled classification task, once
we have generated a cleanly labeled augmented dataset with
the proposed generative model during the first stage, we can
train a classifier with this relevant dataset by considering xGP
and xGN samples as respectively real correctly labeled sam-
ples xP and xN .

2.2.3. Regularizations

In practice, regularization techniques ensure the expected be-
haviour. We use BN to help the generators training stability
and to accelerate their convergence. However, in the discrim-
inator we rather use SN instead of BN. As SN is a weight
normalization technique, it is not influenced by the use of
four different minibatch samples distributions (see figure 2).
Moreover, we avoid overfitting problems on small datasets by
using dropout [16] in the discriminator. More specifically, we
activate it during the discriminator training while it is disabled
during the generators trainings.

The next section demonstrates the effectiveness of the
proposed approach through an empirical study.

3. EXPERIMENTS

The proposed approach has been tested on small and complex
images datasets MNIST [17] and CIFAR-10 [18]. First, we
present experimental settings. Then, we present the cleanly
labeled samples generated from noisy labeled datasets. Fi-
nally, we show that the accuracy prediction performances ob-
tained on small, complex and highly corrupted image datasets
confirm the proposed approach competitiveness.

3.1. Settings

Concerning the loss functions LD, LGP and LGN , we estab-
lished empirically α = 5 and β = 0.5. For the correspond-
ing first-stage learning models D, GP and GN , we adapted
the previous DCGAN [10] architecture to this novel frame-
work. D contains two bottom convolutional layers, followed
by two top fully-connected layers. The input convolutional
layer contains 64 3*3 filters, the next one has 128 3*3 filters,
and the hidden fully connected layer has 1024 filters. GP and
GN contain symetrically two bottom fully connected layers
followed by two deconvolutional layers with the same num-
ber of filters. The generators input is a vector z of 100 ran-
dom values following a uniform distribution. As discussed
in the regularization subsection, we use BN on the genera-
tors deconvolutional layers. In D, we apply SN on convolu-
tional layers, and dropout of 0.5 in the fully connected hidden
layer. To deal with the relatively complex CIFAR-10 image
dataset containing RGB images 32*32*3, we included in D
an additional hidden convolutional layer with 256 filters. GP
and GN consequently include a hidden deconvolutional layer
with the same number of filters. Concerning the second-stage
classifier, we use the convolutional structure previously men-
tioned in [5] 2. We use the SGD method Adam [19] for all
previously enumerated learning models, and a learning rate
initialized to 2 · 10−4 during the first-stage and to 1 · 10−4

during the classification step. We train D, GP and GN adver-
sarially during 40 epochs on MNIST and during 500 epochs
on CIFAR-10. Then, we train during 25 epochs the classifier,
as we train RP 3 during 25 epochs.

We simulated the corrupted labels from fully cleanly la-
beled datasets MNIST and CIFAR-10 in order to respect prior
knowledge parameters πP and πN . Then, we reduced the
dataset size by selecting the first 1000 or 100 training exam-
ples with the associated simulated corrupted labels. A size of
100 for the MNIST task {5; 7− vs− 2, 4} means that we use
only 25 examples for each subclass. Thus, after the dataset
reduction, we systematically do an upsampling such that the
training dataset used always has a size of 10000 examples.
This introduces redundancy in the training dataset, but this

2https : //github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/tutorials/mnist/mnist softmax.py

3RP code is available at: https :
//github.com/cgnorthcutt/rankpruning



Table 1. Two-stage noisy labeled learning comparative results in terms of test accuracy prediction performances on small
noisy labeled image datasets. As we use a SGD optimization method, each result is respectively the average of five identical
independent trainings.

Test Accuracy ref πP = 0.85, πN = 0.85 πP = 0.7, πN = 0.85 πP = 0.6, πN = 0.65

{5; 7}-vs-{2; 4}MNIST PN NL-GAN RP NL-GAN RP NL-GAN RP

Size: 1000 0.97 0.961 0.965 0.956 0.948 0.926 0.809

Size: 100 0.9 0.909 0.892 0.881 0.853 0.814 0.703

Car-vs-AirplaneCIFAR-10 PN NL-GAN RP NL-GAN RP NL-GAN RP

Size: 1000 0.878 0.843 0.833 0.824 0.794 0.704 0.659

Size: 100 0.789 0.789 0.761 0.782 0.739 0.687 0.64

mainly enables to keep the same number of epochs iterations
for any dataset reduction.

3.2. Qualitative results

Figure 3 illustrates the images that the proposed approach is
able to generate on MNIST and the natural image dataset
CIFAR-10. We corrupt up to 40 percents of the training la-
bels. However, despite the fact that the generated examples
are cleanly labeled, the hallucinated images quality probably
still has the potential to be improved with hyper-parameters
fine-tuning study in the context of this novel framework.

3.3. Comparative results

Table 1 presents comparative accuracy prediction perfor-
mances on small corrupted training datasets. PN baseline
reference in table 1 represents a training of the classifier,
used during the second stage, on the initial dataset re-
duced and without corrupted labels, such that πP = 1 and
πN = 1. The other columns show results for three experi-
ments: πP = πN = 0.85, πP = 0.70 and πN = 0.85, and
πP = 0.60 and πN = 0.65, respectively.

The proposed approach, referred to as Noisy Labeled
GAN (NL-GAN), globally outperforms RP method on both
MNIST and CIFAR-10 datasets. In particular, the proposed
approach becomes especially interesting with high fractions
of corrupted training labels. Nonetheless, because of the
adversarial training, we recall that 500 first-stage epochs iter-
ations were necessary on CIFAR-10 to get these results while
only 40 epochs are necessary on MNIST. Therefore, if we
can afford the computational complexity, the proposed ap-
proach remains competitive on complex image datasets like
CIFAR-10.

4. CONCLUSION

In this paper, we proposed a novel GAN-based framework
to deal with small noisy labeled image datasets. Experimen-
tal results show that it is possible to generate a clean dataset

xP̂ xN̂ xGP xGN

πP = 0.6 πN = 0.65

πP = 0.7 πN = 0.85

πP = 0.85 πN = 0.85

Fig. 3. Cleanly labeled dataset generation from noisy labeled
datasets. The two left columns present noisy labeled mini-
batch input positive samples xP̂ and negative samples xN̂ .
The two right columns present output generated minibatch
samples xGP and xGN . The first row presents results for
MNIST classification task 5-vs-7 when πP = 0.6 and πN =
0.65. The second row presents results for MNIST classifica-
tion task {5; 7}-vs-{2; 4} when πP = 0.7 and πN = 0.85.
The third row presents results for CIFAR-10 classification
task Car-vs-Airplane when πP = 0.85 and πN = 0.85. Vi-
sually, every generated samples observed hallucinate cleanly
labeled examples.

from noisy labels with a GAN. The proposed approach com-
pares favorably with the state-of-the-art in terms of predic-
tion performances. Moreover, we expect that the proposed
approach can further be improved by including recent GAN-
based advances [20]. In particular, it may be relevant to take
into consideration recent GANs using several generators [21].
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