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It remains not so trivial to construct the equations of a given electrothermal problem. Various elements must be identified for their thermal influences while the electronic activities must be well modeled to take into account both effect of currents and heat. Mechanics interacts with these two physics through forces. We submit here a method combining Kron's method and branch fluxes under the tensorial analysis of networks to establish these equations. The objective is to deliver engineers a simple and efficient technique for electrothermal studies.

Introduction

When we look to a set of component, they can be seen as primitive elements or thermal volumes. As primitive elements they appear as one degree of freedom for electrical currents and can be associated with a branch in some cellular topology. As thermal volume they can be associated with a node also in some cellular topology. Basically, an electrothermal system can be represented by two graphs, one described natively in the branch space, and another described natively in the nodes space. In the first one, interactions are connections or cords between branches, then the whole problem is finally described in the meshes space, adding some particular properties in this last space. In the second case, interactions are branches between nodes and the whole problem can be described in the nodes-pair space. We will explain this mechanisms through some examples.

In the paper we use the tensorial analysis of network to solve the circuits. Readers can have all desired information on this technique seeing at [START_REF] Olivier | Caractères remarquables de la méthode de Kron[END_REF], [START_REF] Maurice | Kron's method and cell complexes for magnetomotive and electromotive forces[END_REF],

Preprint submitted to HAL February 24, 2019 [START_REF] Kron | Tensor analysis of networks[END_REF].

Simple and unidirectional example

We consider a diode which is power supplied by a step function. This circuit makes a current flowing through the diode. This current develops a power in the diode junction that creates temperature. In this first assumption, this temperature doesn't affect the diode working. That's why we call this case an unidirectional one. The circuit is displayed figure 1. The diode impedance operator includes domain operators. They define the effective diode impedance depending on the voltage across the diode. If we call k 1 the mesh current in this circuit, the electrical circuit design can be mathematically described by the equation:

b 1 = ζ 11 k 1 (1)
ζ 11 is the impedance operator associated with the circuit. It is equal to

ζ 11 = z d + R
where R is the self resistance of the generator and z d the diode impedance. We can simulate simply the diode. It can be seen as a high resistance if the voltage across the diode is too much low and a low resistance if this voltage is high enough. This can be written using:

z d = u D [-∞,vt[ R h + u D [vt,+∞[ R d (2) 
where R h is a very high resistance and R d a very low. Finally our first electrical equation becomes:

b 1 = u D [-∞,vt[ R h + u D [vt,+∞[ R d + R k 1 (3) 
with

ζ 11 = u D [-∞,vt[ R h + u D [vt,+∞[ R d + R (4) 
Now let's take a look to the thermal side. As in finite element method, each element can be seen as a node. Here we consider three fundamental thermal elements: the diode junction, the diode package and the ambiant temperature. It means that our problem has three nodes. Its graph is given figure 2. The current source Q1 is in thermal modeling the power that flows across the diode [START_REF] Maurice | Elements of Theory for Electromagnetic Compatibility and Systems[END_REF]. This thermal power is defined by:

Q 1 = e 1 -Rk 1 k 1 (5)
The circuit includes the thermal resistance R bj between the junction and the package, and the thermal resistance R Ab between the package and the ambient temperature. This heat creates a temperature gradient ω 1 in such a way that:

ω 1 = (R bj + R Ab ) Q 1 (6)
Each node is attached to one zone: j to the junction, b to the package and A to the ambient.

The electrothermal system (without considering R for the moment) is then represented by the system of equations:

   e 1 = ζ 11 k 1 ω 1 = (R bj + R Ab ) Q 1 (7)
Now the interface between the junction and the package can present some inertia. This means that during some time, the junction see its temperature increasing, while there are no transfer to the ambient. This increases the effective temperature of the component before its reaches the nominal value. This inertia is modeled using a RC circuit. Let's replace the junction interface thermal impedance by:

R bj → R bj + R i 1 + R i mc b p (8) 
R i being the thermal inertia and mc b the massic heat capacitance. So, in that case:

ω 1 = R bj + R i 1 + R i mc b p + R Ab Q 1 (9)
This can also be written:

ω 1 = (R bj + R Ab ) Q 1 + 1 mc b 1 p + 1 τ Q 1 with τ = R i mc b p. This leads to: ω 1 (t) = (R bj + R Ab ) Q 1 (t) + 1 mc b e -t/τ Q 1 (10)
In the short time, when t → 0, the relative temperature tends to

ω 1 = R bj + R Ab + 1 mc b Q 1
while in the long time, when t → +∞,

ω 1 = (R bj + R Ab ) Q 1
If the thermal inertia of the package is too high, this can provoke the diode breakdown on fast pulses.

Interactions between elements through convection or radiation

If now we take into account the heat of the resistance R. A second thermal circuit, easy to make, appears in addition to the diode one. But as the diode and the resistance are near to each other, each of them can transmit heat to the other. A temperature gradient can be induced on the diode package element b coming from the heat flow Q 2 . And at the contrary a thermal gradient can be induced on the resistance R by the heat flow coming from the diode. In final, two interactions appear between the two nodes b and R: σ bR and σ Rb (figure 3). The system equations becomes: 

             e 1 = ζ 11 k 1 ω 1 = (R bj + R Ab ) + 1 mc b 1 p+ 1 τ Q 1 + σ bR Q 2 ω 2 = σ Rb Q 1 + R R Q 2 (11) with Q 2 = Rk 1 k 1 .

How to compute these interactions?

These interactions σ correspond to radiative interactions. We have to express how bodies radiate and receive thermal radiations. We note the emitted flux per surface, solid angle and wavelength dφ e . By definition:

dφ e = L λ,e (λ, θ, φ, T ) Cos (θ) dΩdλ ( 12 
)
where φ is the azimuth and θ the declination. The declination is counted starting from the normal to the surface. The luminance L characterize the body spectral emission in W/m 2 . For a black body, this luminance is equal to (Stefan's law):

L 0 = σT 4 π (13) 
σ is the Stefan-Boltzmann's constant 5, 67.10

-8 [W ][m] -2 [K] -1
. By integrating the luminance over the whole half sphere we obtain the global body radiation:

φ e = +∞ λ=0 dλ π/2 θ=0 dθ 2π φ=0 dφL λ,e CosθSinθ = σT 4 (14) 
The black body luminance is defined by:

L 0 λ = C 1 λ -5 e C 2 /λT -1 (15) 
Real bodies can present different luminance having absorption rays or summation of monochromatic sources. We characterize the distance between the black body radiation and a particular body by the ratio λ :

λ = L λ,e L 0 λ (16) 
The emitted flux for an isotropic source is:

φ e = πL e (T )
If α is the absorption coefficient, the absorbed flux φ a is defined by:

φ a = λ dλ θ dθ φ dφα λ L λ Cos(θ)dλ (17) 
Emission and absorption of a body are equal λ = α λ . The reflected flux φ r is defined following the same principle:

φ r = λ dλ θ dθ φ dφρ λ L λ Cos(θ)dλ (18) 
It is clear that α λ + ρ λ = 1 ⇒ ρ λ = 1λ . Now we can define the function giving the received power depending on the sent one. This function is called a form factor σ jk .

The incident flux on the surface j coming from the surface k is given by:

dΦ j = dλ S j S k L λ (λ, T k )cosθ j dΩ j • dS j (19) 
with

dΩ j = Cos(θ k ) • dS k d 2 d is the distance between the two bodies.
The monochromatic flux starting from surface k has for definition:

dΦ k = S k dλ φ θ L λ Cos(θ)dΩ (20) 
and: dΩ = Sin(θ)dθdφ

Finally:

σ jk = dΦ j dΦ k (21) 
The form factor σ jk depends on geometry only.

Method

Primitive elements are modeled by branches in the electrical space and by nodes in the thermal space. The objective in the electrical domain is to determine meshes while in the thermal domain, the objective is to determine nodes-pair sources of currents. The current sources are obtained from the mesh currents. The temperature deduced from the thermal equation is injected in the electrical equation to set the conductivity, permeability and permittivity values. If we imagine one system:

   e 1 = R 1 (1 + αt 2 ) k 1 t 2 = σ 1 Q 1 (22)
This system can be rewritten under the form of a function vector:

   0 = e 1 -R 1 (1 + αt 2 ) k 1 → f 1 0 = t 2 -σ 1 R 1 k 1 k 1 → f 2 (23)
Defining x : (k 1 , t 2 ) we obtain:

J µν = ∂f µ ∂x ν =   -R 1 (1 + αt 2 ) -R 1 αk 1 -2σ 1 R 1 k 1 1   (24) If s 
x is the value of x at time s, we solve:

1 x = 0 x -[J µν ] -1 0 x • f 0 x (25) 
The system can be solved using iterative method like Newton's one.
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