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ABSTRACT
The identification of physical parameters in a computational model is a crucial task so that it can be
used as a prediction tool. Particularly, in structural dynamics, the identification process often seeks to
determine the elastic properties of the system, materialized in the form of a stiffness coefficient. Depend-
ing on certain characteristics of the structural system (geometry complexity, vibration regime, material
nature, etc.), the optimization problem underlying the identification process becomes nonlinear and non-
convex, and its solution becomes an extremely challenging task, which requires the use of extremely
robust numerical methods. In this context, this work deals with the problem of identifying the stiffness
coefficient of a torsional spring coupled to an Euler-Bernoulli beam with an inertial element along its
axis. A mechanical-mathematical model for the physical system is presented and the underlying natural
frequencies are calculated through the solution of an eigenvalue problem. The identification problem is
formulated in terms of the minimization of a discrepancy function, which measures the mismatch between
natural frequencies calculated by the mathematical model and reference values obtained in laboratory
experiments. A numerical strategy based on the Cross-Entropy method, a stochastic metaheuristic used
in simulation of rare events and combinatorial optimization, is used to solve the minimization problem.
Numerical results demonstrate the robustness and accuracy of the proposed numerical procedure. The
method is compared with results from a Genetic Algorithm to appreciate the reduction in number of
required function evaluations brought by the cross-entropy strategy.
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1. INTRODUCTION

Elastic boundary conditions are an important subject in beam theory and structural design, where its
precise parametric identification remains an ongoing challenge. The correct assessment of the stiffness
values that define these supports becomes increasingly computational demanding for complex arrange-
ments. The investigation of different numerical procedures applied to this context and the evaluation of
its effectiveness are thus a relevant practical issue, since the system’s vibrations are highly influenced by
the end supports, especially for the lower natural frequencies [1].
Extensive literature has covered different kinds of methods on the determination of the stiffness coefficients
for spring-hinged ends in beam dynamics, with exact solutions for particular cases [2–4] being generalized
through approximation methods to multiple scenarios, ranging from deterministic computations with
polynomial [5] and trigonometric [6] shape functions to Bayesian strategies for updating and uncertainty
quantification [7–9], enhanced by global sensitivity analysis [10], and also treatments over nonlinear
updating of the model through non-parametric methods [11, 12]. This work studies the cross-entropy
(CE) method on the associated inverse problem scheme for this context, which uses model evaluations
in the classic sense but with the main difference that it employs a robust global search for the optimal
parameters. The CE method originated considerably recent in rare-event simulation and combinatorial
optimization [13, 14], showing promising results and adaptability also to continuous optimization [15].



The vertical bending vibration of an experimental structure is modeled in this work as a slender beam
under Euler-Bernoulli theory elastically restrained at its ends, and an inverse problem is formulated to
determine the torsional stiffness coefficients that match prescribed natural frequencies to those measured
in impact tests of the rotor of Figure 1, which presents an attached disc between the supports. In previous
works, this experimental data was used to investigate the efficiency of direct Rayleigh’s quotient iterative
calculation of the frequencies [16] and of a population-based algorithm aided by a surrogate description
[17]. The CE method is appreciated here, observing its accuracy in the calibration and contrasting its
efficiency with a genetic algorithm. The eigenfrequencies are accessed through finite element formalism
of the approximated solution with polynomial mode shapes.
The rest of this paper is organized as follows. Section 2 defines the theoretical model, the inverse prob-
lem and further assumptions of the approximated forward solution. The cross-entropy method is briefly
exposed in section 3, where its expected interesting features are commented. The experimental data and
numerical results are presented in section 3, where the performance of the CE method is examined and
compared to results from a genetic algorithm. Finally, the contributions of this work are emphasized in
section 5.
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Figure 1 System under study (MFS, SpectraQuest, Inc.).

for the mode shape of the natural frequency of
interest. The developed formulation does not require
numerical modelling and provides a useful tool to
the design phase. The above referred papers deal
with slender beams, typically with l/D > 10. As
a consequence, the inertial rotation energy of an
infinitesimal element dx is negligible compared to its
translational energy, justifying the applicability of the
Bernoulli-Euler beam theory. Sometimes, when this
principle is violated, the problem has to be treated
using Timoshenko beam theory.13,14

In this study, one shall use Rayleigh’s quotient,
with shape functions that take into account the
torsional flexibility of the supports, while assuming
infinite rigidity along the vertical direction (Fig. 2).
The algorithm will also include the effect of the
mass and torsional inertia of the attached discs.
Such an approach aims at a more precise model
that more accurately represents the real dynamic
behaviour of the system, rather than assuming simply
supported or perfectly clamped ends. After showing
that these ideal cases are far from the experimental
values, the updating procedure for identifying the
value of the torsional stiffness of both supports will
be explained.

Figure 2 Model of a beam with elastic torsional supports and a rigid
disc at x = a.

Theoretical Background

To obtain an analytical model that reproduces the
physical system (Fig. 1) one considers the Rayleigh’s
quotient, using the Bernoulli-Euler’s beam theory to
define the shape functions. On a first attempt, two
ideal cases have been tried: simply supported (SS)
and clamped (CC) beam at both ends. However, the
results for those ideal cases differ significantly from
the experimental ones. Therefore, it is proposed to
build a model (Fig. 2) considering that the supports
of the beam present different torsional stiffnesses kti
[elastic supports (ES)], whose values are iterated until
the error between experimental and numerical results
satisfies a given tolerance τ . Regarding Rayleigh’s
method, the energy dissipation is neglected and
therefore the Principle of Conservation of Energy
holds:

"(T + V ) = 0 ⇒ Tmax = Vmax (1)

where T and V are the kinetic and potential energies,
respectively.

Through the quantification of the work performed
by the elastic forces, in relation to the equilibrium
position of the beam, the potential energy is

V = 1
2

∫ l

0
M(x, t)dθ (2)

where M(x, t) is the bending moment given by
M(x, t) = E(x)I(x)∂2w(x, t)/∂x2, l is the length of the
beam and θ is the rotation angle given by θ(x, t) =
∂w(x, t)/∂x. E(x) is the Young modulus and I(x) the
second moment of area of the beam; w(x, t) represents
the lateral displacement of the beam in relation to its
equilibrium position.

At each undamped natural frequency, the time
variation of w(x, t) can be shown to be harmonic and
therefore the displacement response is given by the
harmonic variation of a shape function φ(x):

w(x, t) = φ(x) sin(ωt + ϕ) (3)

As w(x, t)max = φ(x) it follows that

Vmax = 1
2

∫ l

0
E(x)I(x)

(
φ′′(x)

)2 dx (4)

On the other hand, the kinetic energy is given by

T = 1
2

∫ l

0
ẇ(x, t)2dm (5)

From Eq. 3, ẇ(x, t)max = ωφ(x). As dm = ρ(x)A(x)dx,
where ρ(x) is the density of the material and A(x) the
cross sectional area of the beam, one has

Tmax = ω2 1
2

∫ l

0
ρ(x)A(x) (φ(x))2 dx (6)
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Figure 1 – Experimental structure (MFS, SpectraQuest, Inc.).

2. MATHEMATICAL FORMULATION

2.1. Forward Problem
Consider the free vibration transversal dynamics of the Euler-Bernoulli beam, pictographically depicted
in Figure 2, which evolves according

ρ A
∂ 2w
∂ t2 +

∂ 2

∂x2

(
E I

∂ 2w
∂x2

)
= 0 , (1)

where ρ is the mass density of the shaft, A its cross-sectional area, E the Young modulus, I the second
moment of area, while w(x, t) denotes the vertical deflection, and x and t are the spatial and time coordi-
nates. This model is supplemented with continuity conditions where the disc of mass m and inertia J is
localized (position a over the beam length l), and spring-modeled torsional supports in the ends of the
beam geometry, that are defined by their stiffness coefficients kt1 (left) and kt2 (right).
Modal analysis is conducted with aid of a finite element numerical procedure, employed to solve the
generalized eigenvalue problem

Kφ = ω
2 Mφ (2)

where ω is a natural frequency of vibration, that depends on the construction of a corresponding mode
shape φ . The stiffness matrix K arises from the elastic properties of Eq. (2) (second term) and is modified
by the springed-boundary conditions, while the mass matrix M comes from the dynamical part (first
term) of the partial differential equation and is modified by the continuity conditions brought by the disc.
In this work, the eigenvectors are assembled via element-wise interpolation of hermit cubic polynomials
[18].



Figure 2 – Euler-Bernoulli beam with torsional spring end supports and rigid disc.

2.2. Inverse Problem
In this setting, the inverse problem underlying the stiffness identification process consist in finding the
parameters x = (kt1 ,kt2) that minimize the discrepancy (misfit) function

S(x) = ||Ωexp−Ω(x)||2 + λ ||x ||2 , (3)

where Ω
exp and Ω are the vectors of experimental and predicted (by solving the forward problem) natural

frequencies, respectively; and the regularization term, with coefficient λ and vector x of parameters, is
necessary to ensure uniqueness of solution [19].

3. NUMERICAL PROCEDURE

The main idea of the cross-entropy method for this context consists in recasting the optimization of
Eq. (3) as a problem of estimating the probability of a rare-event, i.e, given a performance function S(X)
for the random vector of system parameters X and some level γ ≈ γ∗ = maxS(x∗), then S(X)≥ γ is a rare
event, and the theory for importance sampling and variance minimization can be used [20]. Given some
probability density function (PDF) for the system parameters, the algorithm samples them and calculates
the performance function, selecting an elite group that provides its highest values. The information is
used to update the PDF and minimize the Kullback–Leibler divergence between the PDF and a Dirac
delta distribution centered at their optimal value, thus the procedure is repeated until the density is
concentrated around the optimal parameters. The steps are summarized in Algorithm 1.

Algorithm 1 Cross-entropy method for optimization

1: Set initial PDF f (·;v) under hyperparameter vector v0. Set counter t = 1.
2: Generate samples of system parameters X1, ...,XN ∼ f (·;v0). Compute the performance function S(X)

for each sample and select the elite samples for the set εt
3: Solve the stochastic program max ∑

Xi∈εt

ln f (Xi;v) to obtain vt . Increase counter by 1.

4: Repeat from step 2 until some stop criterion is met.
5: The final elite set contains an estimation of optimal system parameters.

Step 3 from Algorithm 1 has extensive literature over analytical formulas for different families of PDFs
[21], which in particular are of easy implementation for exponential families. Additionally, an smoothing
updating rule is usually employed when calculating vt , which can be seen in [22] and has relevant impact
on convergence. A common stopping criteria, known as normal updating, is to pause the algorithm when
the sum of the standard deviations are smaller than some tolerance [20].
The most interesting feature of the CE method is that there is theoretical assurance that the algorithm will
find the global optimum, if only one global optimum exists [23]. Besides, it attains easy implementation
and has in general very few, intuitive and defined control parameters, namely, sample size, elite set size,
tolerance and smoothing parameter, which is not a common feature for other metaheuristic procedures.
In the next section, its performance on a computational point of view is verified for the problem.

4. RESULTS

The first and second natural frequencies for the structure in Figure 1 were obtained through impact tests
and are presented under ω1 and ω2 respectively in the following tables. The experiment’s specifications
are: L = 0.362m, E = 73GPa, I = 1.277× 10−9m4, ρ = 2766kgm−3, A = 1.2668× 10−4 m2, m = 3kg, J =



2.8×10−3 kgm2. The calculated first and second natural frequency are denoted ω1 and ω2 (converted to
Hertz), and each pair with the experimental ones were used to minimize Eq. (3) to obtain the optimal
kt1 and kt2 presented in Table 1 for different positions a of the disc along the beam. The number of times
the eigenvalue problem had to be solved is shown under “Func. Eval.”. Finally, for each case, a second
solution is provided where the additional condition kt1 = kt2 is also enforced.

Table 1 – CROSS-ENTROPY METHOD. First and second experimental and model natural frequencies for
each position of disc a, with optimal stiffness coefficients and number of function evaluations required. Values in
parenthesis are the relative percent error. For each position a, the first set (top) allows kt1 6= kt2 while the second
set (bottom) requires kt1 = kt2 .

a (m) ω1
2π
|exp (Hz) ω2

2π
|exp (Hz) ω1

2π
(Hz) ω2

2π
(Hz) kt1 (Nm

rad ) kt2 (Nm
rad ) Func. Eval.

2
8 l 45.454 218.327

45.4538 199.5404
533.59 317.80 600

(4.3E-4 %) (8.6E+0 %)

45.4424 199.6094
464.54 90

(2.6E-2 %) (8.6E+0 %)

3
8 l 39.764 187.378

39.7664 178.0942
800.09 617.38 240

(5.9E-3 %) (5.0E+0 %)

39.7646 178.1245
727.40 90

(1.5E-3 %) (4.9E+0 %)

4
8 l 38.907 178.156

38.9090 173.6609
935.24 935.24 225

(5.2E-3 %) (2.5E+0 %)

38.9082 173.6602
935.13 90

(3.1E-3 %) (2.5E+0 %)

5
8 l 39.833 188.724

39.8291 178.1482
631.10 802.05 255

(9.9E-3 %) (5.6E+0 %)

39.8400 178.1870
735.71 105

(1.7E-2 %) (5.6E+0 %)

6
8 l 45.918 211.980

45.9203 199.8459
328.07 574.45 480

(5.0E-3 %) (5.7E+0 %)

45.9196 199.9252
496.40 90

(3.5E-3 %) (5.7E+0 %)

The precision of the CE method for the given problem is attested in Table 1 for negligible errors in the
fundamental frequency for all cases, showcasing its potential at estimating such quantity. While the errors
for the second frequency have a relevant degree, the method was successful at attaining at least the same
level of precision encompassed by previous procedures on these data [16, 17], allowing estimation of w2
up to unity precision. The results also respect geometric expected behavior: same result for a = 4/8 l
and close mirrored results for the symmetric cases. Comparison with the results under the additional
constraint kt1 = kt2 reveal great gain in efficiency (less function evaluations required) but minor precision
variation for ω1, while providing effectively no change for ω2. This unexpected behavior contrasts the
gain in precision that was observed in the previous works using other methods when allowing the stiffness
to be different, and suggests a possible lesser degree of sensitivity in the CE method to variations in ω2,
for which further investigation in future works is required to ascertain the impact of the regularization



and stopping criteria in such measure. Figure (3) illustrates the mode shapes obtained in the formulation
for a = 4/8 l up to 5th, using hermit cubic interpolation.
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Figure 3 – First to fifth mode shape for the case a = 4/8 l.

Table 2 compiles the calibration solution for each case using the standard Genetic Algorithm (GA) from
MATLAB. Population size and elite group of GA were set equal to the sample size and elite set size
of CE method in each instance, to allow comparison between the method efficiency. It is clear how the
global search method is way faster for obtaining the solutions with increased precision by noticing the
difference in thousands from the required number of evaluations. Even so, the few hundred evaluations
required in the CE method may be computational costly for more complex problems settings, which
advocates research of allowable modifications in the CE method that have been known to increase the
rate of convergence, as dynamic smoothing and Gaussian mixture update for example [15, 20], in the
specific context of structural design calibration, as well as the application of metamodels to alleviate
computational cost, as proposed in the framework of [17].

Table 2 – GENETIC ALGORITHM. First and second experimental and model natural frequencies for each
position of disc a, with optimal stiffness coefficients and number of function evaluations required. Values in
parenthesis are the relative percent error.

a (m) ω1
2π
|exp (Hz) ω2

2π
|exp (Hz) ω1

2π
(Hz) ω2

2π
(Hz) kt1 (Nm

rad ) kt2 (Nm
rad ) Func. Eval.

2
8 l 45.454 218.327

45.4537 199.5403
533.60 317.79 19 710

(5.8E-4 %) (8.6E+0 %)

3
8 l 39.764 187.378

39.7664 178.0941
800.13 617.31 49 620

(5.9E-3 %) (5.0E+0 %)

4
8 l 38.907 178.156

38.9088 173.6608
935.28 935.15 14 115

(4.7E-3 %) (2.5E+0 %)

5
8 l 39.833 188.724

39.8814 178.1866
614.73 823.65 19 200

(1.2E-1 %) (5.6E+0 %)

6
8 l 45.918 211.980

45.8267 199.7872
332.39 562.80 35 940

(2.0E-1 %) (5.8E+0 %)



5. CONCLUDING REMARKS

The cross-entropy method is applied on the calibration of a Euler-Bernoulli beam vertical deflection,
assessing its efficiency on prediction of torsional stiffness coefficients for the end supports and comparing
predicted natural frequencies with values obtained experimentally. The results show remarkable precision
for the first frequency and sustainable estimations of the second at low cost of function evaluations, at
least when compared with Genetic Algorithm solutions of the inverse problem, which are also presented,
suggesting a promising numerical procedure for this context of structural parameters identification that
may be enhanced further. Considerations about previous works that used different numerical methods for
the same set of data were also commented. In future works, the authors intend to implement modifications
in the Cross-entropy method to evaluate the rate of convergence, pair the procedure with surrogate
modeling and ascertain the model efficiency under different regularization schemes.
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