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INTRODUCTION

Elastic boundary conditions are an important subject in beam theory and structural design, where its precise parametric identification remains an ongoing challenge. The correct assessment of the stiffness values that define these supports becomes increasingly computational demanding for complex arrangements. The investigation of different numerical procedures applied to this context and the evaluation of its effectiveness are thus a relevant practical issue, since the system's vibrations are highly influenced by the end supports, especially for the lower natural frequencies [START_REF] Hagedorn | Vibrations and Waves in Continuous Mechanical Systems[END_REF]. Extensive literature has covered different kinds of methods on the determination of the stiffness coefficients for spring-hinged ends in beam dynamics, with exact solutions for particular cases [START_REF] Hibbeler | Free Vibration of a Beam Supported by Unsymmetrical Spring-Hinges[END_REF][START_REF] Lee | Exact Solutions for the Analysis of General Eiastically Restrained Nonuniform Beams[END_REF][START_REF] Albarracin | Some observations in the dynamics of beams with intermediate supports[END_REF] being generalized through approximation methods to multiple scenarios, ranging from deterministic computations with polynomial [START_REF] Elishakoff | Apparentrly the first closed-form solution of inhomogeneous elastically restrained vibrating beams[END_REF] and trigonometric [START_REF] Elishakoff | On the dynamic behaviour of slender beams with elastic ends carrying a concentrated mass[END_REF] shape functions to Bayesian strategies for updating and uncertainty quantification [START_REF] Ritto | Uncertain boundary condition Bayesian identification from experimental data: A case study on a cantilever beam[END_REF][START_REF] Hernandez | Thermorheologically simple materials: A bayesian framework for model calibration and validation[END_REF][START_REF] Hernandez | On the model building for transmission line cables: a Bayesian approach[END_REF], enhanced by global sensitivity analysis [START_REF] Yuan | Parameter selection for model updating with global sensitivity analysis[END_REF], and also treatments over nonlinear updating of the model through non-parametric methods [START_REF] Da Silva | Non-linear model updating of a three-dimensional portal frame based on Wiener series[END_REF][START_REF] Bussetta | Nonlinear updating method: a review[END_REF]. This work studies the cross-entropy (CE) method on the associated inverse problem scheme for this context, which uses model evaluations in the classic sense but with the main difference that it employs a robust global search for the optimal parameters. The CE method originated considerably recent in rare-event simulation and combinatorial optimization [START_REF] Rubinstein | Optimization of Computer Simulation Models with Rare Events[END_REF][START_REF] Rubinstein | The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning[END_REF], showing promising results and adaptability also to continuous optimization [START_REF] Rubinstein | The Cross-Entropy Method for Continuous Multi-Extremal Optimization[END_REF].

The vertical bending vibration of an experimental structure is modeled in this work as a slender beam under Euler-Bernoulli theory elastically restrained at its ends, and an inverse problem is formulated to determine the torsional stiffness coefficients that match prescribed natural frequencies to those measured in impact tests of the rotor of Figure 1, which presents an attached disc between the supports. In previous works, this experimental data was used to investigate the efficiency of direct Rayleigh's quotient iterative calculation of the frequencies [START_REF] Silva | Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam[END_REF] and of a population-based algorithm aided by a surrogate description [START_REF] Silva | A Hybrd Procedure to identify the Optimal Sitffness Coeffcients of Elastically Restrained Beams[END_REF]. The CE method is appreciated here, observing its accuracy in the calibration and contrasting its efficiency with a genetic algorithm. The eigenfrequencies are accessed through finite element formalism of the approximated solution with polynomial mode shapes. The rest of this paper is organized as follows. Section 2 defines the theoretical model, the inverse problem and further assumptions of the approximated forward solution. The cross-entropy method is briefly exposed in section 3, where its expected interesting features are commented. The experimental data and numerical results are presented in section 3, where the performance of the CE method is examined and compared to results from a genetic algorithm. Finally, the contributions of this work are emphasized in section 5.

Modelling a Rotating Shaft as a Restrained Beam

T.A. for the mode shape of the natural frequency of interest. The developed formulation does not require numerical modelling and provides a useful tool to the design phase. The above referred papers deal with slender beams, typically with l/D > 10. As a consequence, the inertial rotation energy of an infinitesimal element dx is negligible compared to its translational energy, justifying the applicability of the Bernoulli-Euler beam theory. Sometimes, when this principle is violated, the problem has to be treated using Timoshenko beam theory. 13,14 In this study, one shall use Rayleigh's quotient, with shape functions that take into account the torsional flexibility of the supports, while assuming infinite rigidity along the vertical direction (Fig. 2). The algorithm will also include the effect of the mass and torsional inertia of the attached discs. Such an approach aims at a more precise model that more accurately represents the real dynamic behaviour of the system, rather than assuming simply supported or perfectly clamped ends. After showing that these ideal cases are far from the experimental values, the updating procedure for identifying the value of the torsional stiffness of both supports will be explained.

Theoretical Background

To obtain an analytical model th physical system (Fig. 1) one consi quotient, using the Bernoulli-Eule define the shape functions. On a ideal cases have been tried: simp and clamped (CC) beam at both e results for those ideal cases differ the experimental ones. Therefore build a model (Fig. 2) considering of the beam present different tors [elastic supports (ES)], whose valu the error between experimental an satisfies a given tolerance τ . Re method, the energy dissipation therefore the Principle of Conse holds:

(T + V ) = 0 ⇒ T ma
where T and V are the kinetic and respectively.

Through the quantification of th by the elastic forces, in relation position of the beam, the potential 2 , l is beam and θ is the rotation angle ∂w(x, t)/∂x. E(x) is the Young mo second moment of area of the beam the lateral displacement of the bea equilibrium position.

V = 1 2 l 0 M(x, t)d where M(x, t) is the bending m M(x, t) = E(x)I(x)∂ 2 w(x, t)/∂x
At each undamped natural fre variation of w(x, t) can be shown t therefore the displacement respon harmonic variation of a shape fun w(x, t) = φ(x) sin(ωt As w(x, t) max = φ(x) it follows th

V max = 1 2 l 0 E(x)I(x) φ
On the other hand, the kinetic e 

T = 1 l ẇ(x, t) 2 d

MATHEMATICAL FORMULATION

Forward Problem

Consider the free vibration transversal dynamics of the Euler-Bernoulli beam, pictographically depicted in Figure 2, which evolves according

ρ A ∂ 2 w ∂t 2 + ∂ 2 ∂ x 2 E I ∂ 2 w ∂ x 2 = 0 , ( 1 
)
where ρ is the mass density of the shaft, A its cross-sectional area, E the Young modulus, I the second moment of area, while w(x,t) denotes the vertical deflection, and x and t are the spatial and time coordinates. This model is supplemented with continuity conditions where the disc of mass m and inertia J is localized (position a over the beam length l), and spring-modeled torsional supports in the ends of the beam geometry, that are defined by their stiffness coefficients k t 1 (left) and k t 2 (right). Modal analysis is conducted with aid of a finite element numerical procedure, employed to solve the generalized eigenvalue problem

K φ = ω 2 M φ (2)
where ω is a natural frequency of vibration, that depends on the construction of a corresponding mode shape φ . The stiffness matrix K arises from the elastic properties of Eq. ( 2) (second term) and is modified by the springed-boundary conditions, while the mass matrix M comes from the dynamical part (first term) of the partial differential equation and is modified by the continuity conditions brought by the disc. In this work, the eigenvectors are assembled via element-wise interpolation of hermit cubic polynomials [START_REF] Reddy | An Introduction to the Finite Element Method[END_REF]. 

Inverse Problem

In this setting, the inverse problem underlying the stiffness identification process consist in finding the parameters x = (k t 1 , k t 2 ) that minimize the discrepancy (misfit) function

S(x) = || Ω exp -Ω(x)|| 2 + λ || x || 2 , (3) 
where Ω exp and Ω are the vectors of experimental and predicted (by solving the forward problem) natural frequencies, respectively; and the regularization term, with coefficient λ and vector x of parameters, is necessary to ensure uniqueness of solution [START_REF] Hibbeler | On the multiplicity of solution of the inverse problem for vibrating beam[END_REF].

NUMERICAL PROCEDURE

The main idea of the cross-entropy method for this context consists in recasting the optimization of Eq. ( 3) as a problem of estimating the probability of a rare-event, i.e, given a performance function S(X) for the random vector of system parameters X and some level γ ≈ γ * = max S(x * ), then S(X) ≥ γ is a rare event, and the theory for importance sampling and variance minimization can be used [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF]. Given some probability density function (PDF) for the system parameters, the algorithm samples them and calculates the performance function, selecting an elite group that provides its highest values. The information is used to update the PDF and minimize the Kullback-Leibler divergence between PDF and a Dirac delta distribution centered at their optimal value, thus the procedure is repeated until the density is concentrated around the optimal parameters. The steps are summarized in Algorithm 1.

Algorithm 1 Cross-entropy method for optimization 1: Set initial PDF f (•; v) under hyperparameter vector v 0 . Set counter t = 1.

2: Generate samples of system parameters X 1 , ..., X N ∼ f (•; v 0 ). Compute the performance function S(X) for each sample and select the elite samples for the set ε t 3: Solve the stochastic program max ∑ X i ∈ε t ln f (X i ; v) to obtain v t . Increase counter by 1.

4: Repeat from step 2 until some stop criterion is met. 5: The final elite set contains an estimation of optimal system parameters.

Step 3 from Algorithm 1 has extensive literature over analytical formulas for different families of PDFs [START_REF] Kroese | A tutorial on the cross-entropy method[END_REF], which in particular are of easy implementation for exponential families. Additionally, an smoothing updating rule is usually employed when calculating v t , which can be seen in [START_REF] Costa | Convergence properties of the cross-entropy method for discrete optimization[END_REF] and has relevant impact on convergence. A common stopping criteria, known as normal updating, is to pause the algorithm when the sum of the standard deviations are smaller than some tolerance [START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF]. The most interesting feature of the CE method is that there is theoretical assurance that the algorithm will find the global optimum, if only one global optimum exists [START_REF] Margolin | Free Vibration of a Beam Supported by Unsymmetrical Spring-Hinges[END_REF]. Besides, it attains easy implementation and has in general very few, intuitive and defined control parameters, namely, sample size, elite set size, tolerance and smoothing parameter, which is not a common feature for other metaheuristic procedures. In the next section, its performance on a computational point of view is verified for the problem.

RESULTS

The first and second natural frequencies for the structure in Figure 1 were obtained through impact tests and are presented under ω 1 and ω 2 respectively in the following tables. The experiment's specifications are: L = 0.362 m, E = 73 GPa, I = 1.277 × 10 -9 m 4 , ρ = 2766 kg m -3 , A = 1.2668 × 10 -4 m 2 , m = 3 kg, J = 2.8 × 10 -3 kg m 2 . The calculated first and second natural frequency are denoted ω 1 and ω 2 (converted to Hertz), and each pair with the experimental ones were used to minimize Eq. ( 3) to obtain the optimal k t 1 and k t 2 presented in Table 1 for different positions a of the disc along the beam. The number of times the eigenvalue problem had to be solved is shown under "Func. Eval.". Finally, for each case, a second solution is provided where the additional condition k t 1 = k t 2 is also enforced.

Table 1 -CROSS-ENTROPY METHOD. First and second experimental and model natural frequencies for each position of disc a, with optimal stiffness coefficients and number of function evaluations required. Values in parenthesis are the relative percent error. For each position a, the first set (top) allows k t 1 = k t 2 while the second set (bottom) requires The precision of the CE method for the given problem is attested in Table 1 for negligible errors in the fundamental frequency for all cases, showcasing its potential at estimating such quantity. While the errors for the second frequency have a relevant degree, the method was successful at attaining at least the same level of precision encompassed by previous procedures on these data [START_REF] Silva | Modelling a Rotating Shaft as an Elastically Restrained Bernoulli-Euler Beam[END_REF][START_REF] Silva | A Hybrd Procedure to identify the Optimal Sitffness Coeffcients of Elastically Restrained Beams[END_REF], allowing estimation of w 2 up to unity precision. The results also respect geometric expected behavior: same result for a = 4/8 l and close mirrored results for the symmetric cases. Comparison with the results under the additional constraint k t 1 = k t 2 reveal great gain in efficiency (less function evaluations required) but minor precision variation for ω 1 , while providing effectively no change for ω 2 . This unexpected behavior contrasts the gain in precision that was observed in the previous works using other methods when allowing the stiffness to be different, and suggests a possible lesser degree of sensitivity in the CE method to variations in ω 2 , for which further investigation in future works is required to ascertain the impact of the regularization and stopping criteria in such measure. Figure [START_REF] Lee | Exact Solutions for the Analysis of General Eiastically Restrained Nonuniform Beams[END_REF] illustrates the mode shapes obtained in the formulation for a = 4/8 l up to 5th, using hermit cubic interpolation. Table 2 compiles the calibration solution for each case using the standard Genetic Algorithm (GA) from MATLAB. Population size and elite group of GA were set equal to the sample size and elite set size of CE method in each instance, to allow comparison between the method efficiency. It is clear how the global search method is way faster for obtaining the solutions with increased precision by noticing the difference in thousands from the required number of evaluations. Even so, the few hundred evaluations required in the CE method may be computational costly for more complex problems settings, which advocates research of allowable modifications in the CE method that have been known to increase the rate of convergence, as dynamic smoothing and Gaussian mixture update for example [START_REF] Rubinstein | The Cross-Entropy Method for Continuous Multi-Extremal Optimization[END_REF][START_REF] Kroese | Handbook of Monte Carlo Methods[END_REF], in the specific context of structural design calibration, as well as the application of metamodels to alleviate computational cost, as proposed in the framework of [START_REF] Silva | A Hybrd Procedure to identify the Optimal Sitffness Coeffcients of Elastically Restrained Beams[END_REF]. 

k t 1 = k t 2 . a (m) ω 1 2π | exp (Hz) ω 2 2π | exp (Hz) ω 1 2π (Hz) ω 2 2π (Hz) k t 1 ( N m rad ) k t 2 ( N m rad ) Func. Eval.

CONCLUDING REMARKS

The cross-entropy method is applied on the calibration of a Euler-Bernoulli beam vertical deflection, assessing its efficiency on prediction of torsional stiffness coefficients for the end supports and comparing predicted natural frequencies with values obtained experimentally. The results show remarkable precision for the first frequency and sustainable estimations of the second at low cost of function evaluations, at least when compared with Genetic Algorithm solutions of the inverse problem, which are also presented, suggesting a promising numerical procedure for this context of structural parameters identification that may be enhanced further. Considerations about previous works that used different numerical methods for the same set of data were also commented. In future works, the authors intend to implement modifications in the Cross-entropy method to evaluate the rate of convergence, pair the procedure with surrogate modeling and ascertain the model efficiency under different regularization schemes.
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 1 Figure 1 System under study (MFS, SpectraQuest, Inc.).
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 1 Figure 1 -Experimental structure (MFS, SpectraQuest, Inc.).
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 2 Figure 2 -Euler-Bernoulli beam with torsional spring end supports and rigid disc.
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 3 Figure 3 -First to fifth mode shape for the case a = 4/8 l.

Table 2 -

 2 GENETIC ALGORITHM. First and second experimental and model natural frequencies for each position of disc a, with optimal stiffness coefficients and number of function evaluations required. Values in parenthesis are the relative percent error.

	a (m) ω 1 2π | exp (Hz) ω 2 2π | exp (Hz)	ω 1 2π (Hz)	ω 2 2π (Hz)	k t 1 ( N m rad ) k t 2 ( N m rad ) Func. Eval.
	2 8 l	45.454	218.327	45.4537 (5.8E-4 %) (8.6E+0 %) 199.5403	533.60	317.79	19 710
	3 8 l	39.764	187.378	39.7664 (5.9E-3 %) (5.0E+0 %) 178.0941	800.13	617.31	49 620
	4 8 l	38.907	178.156	38.9088 (4.7E-3 %) (2.5E+0 %) 173.6608	935.28	935.15	14 115
	5 8 l	39.833	188.724	39.8814 (1.2E-1 %) (5.6E+0 %) 178.1866	614.73	823.65	19 200
	6 8 l	45.918	211.980	45.8267 (2.0E-1 %) (5.8E+0 %) 199.7872	332.39	562.80	35 940
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