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Organic light-emitting transistors are pivotal components for emerging opto- and 15 
nano-electronics applications, such as logic circuitries and smart displays. Within 16 
this technology sector, the integration of multiple functionalities in a single 17 
electronic device remains the key challenge. Here we show optically switchable 18 
organic light-emitting transistors fabricated through a judicious combination of 19 
light-emitting semiconductors and photochromic molecules. The irradiation of the 20 
solution-processed films at selected wavelengths enables the efficient and 21 
reversible tuning of charge transport and electroluminescence simultaneously, 22 
with a high degree of modulation (on/off ratios up to 500) in the three primary 23 
colours. Different emitting patterns can be written and erased, through a non-24 
invasive and mask-free process, on a length scale of few microns in a single device, 25 
thereby rendering this technology potentially promising for optically gated highly-26 
integrated full-colour displays and active optical memory. 27 
 28 

 Organic light-emitting transistors (OLETs), combining in a single device the 29 

functions of light generation of organic light-emitting diodes (OLEDs) with the current 30 

modulation (and signal amplification) of organic thin-film transistors (OTFTs), have 31 

emerged as a promising new class of devices with significant potential for integrated 32 

optoelectronics, smart display technology, and organic lasers1-5. The emitting layer of 33 

the unencapsulated OLETs is easily accessible for comprehensive optical and electrical 34 

investigation of the fundamental physical processes, thereby providing powerful 35 

insights into device physics6,7. The fabrication of OLETs does not require multiple 36 
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metal evaporation steps that are potentially damaging for the interface between 37 

electrodes and active layers. As a result, the simplified device architecture enables its 38 

potential use in active matrix displays. Furthermore, the position of the recombination 39 

region in the channel of ambipolar OLETs can be shifted away from the electrodes as a 40 

function of the applied bias, avoiding the metal-induced quenching of excitons8-10. 41 

Capelli et al. recently demonstrated that the performance of OLET can be boosted by 42 

exploiting a trilayer heterostructure, surpassing the equivalent OLED efficiency over 43 

100 times11. OLETs with performance comparable to display pixels driven by 44 

polycrystalline-silicon backplane transistors have been reported, which can be operated 45 

at low-voltage and low-power consumption12. 46 

 47 

 Besides the efforts devoted to enhance the charge carrier mobility, efficiency, and 48 

brightness of OLETs13-16, the integration of further functionalities into a single device 49 

represents another important challenge with the prospect of realizing controllable 50 

integrated circuitry17,18. Electrically switchable chiral light-emitting transistors (LETs) 51 

have been demonstrated, in which the current direction can be used to control the 52 

polarization of light from pn junctions in tungsten diselenide (WSe2), which serves as 53 

a channel material of LETs19. Another example is an all-graphene based light-emitting 54 

field-effect device featuring an external electrical bias tuning of the emission 55 

spectrum20. However, these multifunctional LETs, based on two-dimensional (2D) 56 

materials differ in terms of the nature of the charge transport and mechanism of light 57 

generation compared to OLETs. The current approach to control “multifunctional” 58 
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LETs still relies on external electrical driving. Conversely, optical control offers various 59 

advantages, such as non-invasively, high spatial and temporal resolution, and the 60 

possibility to tune both wavelength and intensity of the emitted light21.  61 

 62 

 Some recent reports demonstrated that it is possible to fabricate optically 63 

switchable multifunctional OTFTs22-24, by blending organic semiconductors with 64 

photochromic diarylethenes (DAEs). Upon exposure to light of different wavelength， 65 

DAEs can be toggled between two isomers with different electronic properties, and they 66 

also show high thermal stability and fatigue resistance during continuous 67 

photoswitching25-27. Such optically responsive OTFTs exhibited high current switching 68 

ratios and large charge carrier mobilities, and have been applied for the fabrication of 69 

flexible non-volatile optical memory with over 256 distinct levels28.  70 

 71 

 Here we report the fabrication and characterisation of the optically switchable 72 

organic light-emitting transistors (OSOLETs), by integrating DAEs into the light-73 

emitting semiconducting layer of OLETs via simple solution processing. Both output 74 

current and electroluminescence (EL) are simultaneously modulated by irradiating the 75 

devices at distinct wavelengths. We demonstrate three classes of OSOLETs emitting 76 

over the entire visible spectrum (green, red, and blue), which can reversibly and 77 

remotely switch output current and EL on and off via visible and UV light irradiation. 78 

In addition, emitting patterns within one pixel of the OSOLET can be written and erased 79 

easily by using a light beam as an external, non-invasive, and mask-free writing tool 80 
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with a spatial resolution down to the far-field diffraction limit, i.e. l/2NA < 1 µm (with 81 

l being the wavelength of visible light and NA the numerical aperture of the optical 82 

tool used). In view of current minimum pixel sizes, e.g. in the best “retina” displays 83 

(~55.5 µm), the present system holds particular potential of reversibly encoding high-84 

density visual information into a single pixel of a high-resolution display.  85 

 86 

Mechanism and device fabrication  87 

Three commercially-available semiconducting light-emitting polymers poly(9,9-88 

dioctylfluorene-alt-bithiophene) (F8T2), poly[2-methoxy-5-(3’,7’-dimethyloctyloxy)-89 

para-phenylenevinylene] (MDMO-PPV), and poly(9,9-dioctylfluorene) (F8) were 90 

used to fabricate OLETs having fluorescence emission ranging from blue to red (Fig. 91 

1a), thus covering the entire visible spectrum (supplementary Fig. S1 for the absorption 92 

and photoluminescence spectra). To enable the optical switching in OLETs, an energetic 93 

matching between the photochromic molecules and the emissive materials is required, 94 

i.e., the highest occupied molecular orbital (HOMO) levels of the emissive polymers 95 

should energetically be positioned in between those of the open and closed DAEs (Fig. 96 

1b). According to cyclic voltammetry (CV) measurements of the light-emitting 97 

polymers (see supplementary Fig. S2) and previous studies on DAEs23,29,30, the HOMO 98 

levels of DAEs in their open forms are slightly below the one of the green and blue-99 

emitting hosts (~100 meV) and comfortably below that of MDMO-PPV (~200 meV). 100 

Conversely, the HOMO levels of the DAEs in their closed forms are > 600 meV higher 101 

than the HOMO of the light-emitting polymers in all three binary components, and thus 102 

significant hole trapping is expected for the DAEs in their closed form. In view of the 103 



 5 

different HOMO levels of the three polymers responsible for red, green, and blue light 104 

emission, we have selected two DAEs, i.e., DAE_tBu and DAE_F (Fig. 1a)29,30, having 105 

high fatigue resistance over repetitive photoswitching cycles in the solid state (Fig. S4). 106 

Based on the energetic considerations above, DAE_tBu molecules act as switchable 107 

charge traps within the matrix of the emissive F8T2 and MDMO-PPV, whereas the 108 

lower HOMO level of DAE_F makes it suitable in combination with the blue emitter 109 

(F8).  110 

 111 

 The OSOLETs were fabricated in a bottom-gate bottom-contact configuration with 112 

SiO2/Si as substrates and the pre-patterned gold interdigitated electrodes as source and 113 

drain contacts (Fig. 1c, see device fabrication in the supplementary information). To 114 

enhance the charge carrier mobility, self-assembled monolayers (SAMs) of octadecyl-115 

trichlorosilane (OTS) were chemisorbed onto the SiO2/Si substrates31,32 prior to spin-116 

coating the solutions of the light-emitting polymers, followed by their thermal 117 

annealing at 170 ℃ to leverage their optoelectronic properties33. To avoid thermal 118 

degradation of the DAEs at such high temperature, the photochromic molecules were 119 

dissolved in solvents orthogonal to those used for the polymers and spun on top of the 120 

emissive layer. A gentle post-annealing process was applied to activate the thermal 121 

diffusion of DAE molecules into the polymer matrix (80 ℃ for 1 h in the case of F8T2 122 

and MDMO-PPV, while 40 ℃ for 1.5 h with regards to F8). The morphologies of the 123 

deposited light-emitting polymer/DAE bicomponent films were investigated by atomic 124 

force microscopy (AFM, see supplementary Fig. S3). The deposition of DAE_tBu via 125 

this permeation process did not modify the morphology of F8T2 and no phase 126 
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separation was observed. Only minor morphology variations were monitored in the case 127 

of MDMO-PPV. However, the exposure of neat F8 to both the solvent and thermal 128 

treatment, helps the diffusion of DAE_F into F8, and further promotes the formation of 129 

supramolecular structures (such as the crystalline phase34 and the conformational 130 

isomer β-phase35) of F8, resulting in a rougher morphology (from root-mean-squared 131 

roughness Rrms = 3.0 nm for the neat F8 film to Rrms = 12.3 nm for the F8/DAE_F film) 132 

due to the presence of micron-sized islands from the aggregation36.  133 

 134 

 We assessed the retained photoisomerization ability of DAEs in the solid state in 135 

the presence of the selected light-emitting polymers for the OSOLETs. UV/visible 136 

absorption spectroscopy on the light-emitting polymer/DAE bicomponent films 137 

revealed upon UV (312 nm) irradiation the appearance of the typical spectral features 138 

in the visible region for the closed DAE isomer that disappear upon green light (> 520 139 

nm) irradiation (see supplementary Fig. S5). These observations provide unambiguous 140 

evidence that after diffusion into the three polymer matrices the DAEs are still able to 141 

undergo reversible photoisomerization. 142 

 143 

Characteristics of OSOLETs 144 

 The performance of OSOLETs in the three primary colours was characterised by 145 

using EL spectroscopy as well as transfer curves of current density and luminance vs. 146 

gate voltage, as summarized in Fig. 2. The light generated within the channel was 147 

observed when OSOLETs were in operation, and thereby EL spectra and optical images 148 
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(inset) of the green, red and blue OSOLETs (channel length L = 2.5 µm and channel 149 

width W = 1 cm) were recorded (Figs. 2a-c). The emission peaks of the green and red 150 

OSOLETs are located at 540 nm (FWHM = 90 nm) and 630 nm (FWHM = 143 nm), 151 

respectively. Two emissive bands appear in the F8/DAE_F based OSOLET with the 152 

main peak at 450 nm. The red-shift of EL spectra, compared to that of glassy F8 film 153 

with the S1 to S0 vibronic peaks at 420 nm, suggests a high fraction of β-phase chain 154 

conformations in the F8/DAE_F binary component film35. Furthermore, we note the 155 

presence of an emission band at longer wavelengths, i.e. a green band, which is 156 

common in F8-based emissive devices due to the formation of inter-chain states and/or 157 

fluorenone defects37-40. Importantly, the emissive bands of the three OSOLETs cover 158 

well both the visible region (400-700 nm) and even stretch into the near infrared (NIR) 159 

up to 800 nm. 160 

 161 

 Although light emission requires bipolar injection, most of the transport of our 162 

OSOLETs can be described as essentially unipolar, as inferred from the dependence of 163 

the drain current on the applied gate voltage, in line with previous literature on non-164 

switchable OLETs41-43. While the holes are evenly distributed within the device channel, 165 

light emission provides indeed evidence for electron injection and diffusion ranging to 166 

several nm inside the channel. Yet electrons remain minority carriers up to the highest 167 

(gate and drain) voltages tested here, as their contribution to the overall current is never 168 

appreciable. For this reason, electron transport and light modulation thereof cannot be 169 

determined by using the chosen materials (lowest unoccupied molecular orbital 170 
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(LUMO) levels listed in Scheme S1). The corresponding light is emitted closely to the 171 

electrode in F8T2 based OLET with a longer channel width (L = 20 µm) (see 172 

supplementary Fig. S6). However, owing to the resolution of our camera and the narrow 173 

channel width of the OSOLETs, the light emission was observed over the entire channel 174 

area in the optical images (Figs. 2a-c). 175 

 176 
 177 

 The transfer characteristics of green, red, and blue OSOLETs using DAEs as photo-178 

switchable units were measured (Figs. 2d-f). When the DAEs are in their open forms, 179 

the hole mobilities extracted from the transfer characteristics in the saturation regime 180 

(see supplementary information for device characterisation) are about 1.5×10-3, 1×10-181 

4, and 5×10-7 cm2 V-1s-1, respectively. For the sake of comparison, the field-effect 182 

mobilities in pristine green, red, and blue polymers based OLETs have been measured 183 

to be ca. 5×10-3, 2.0×10-4, and 8×10-5 cm2 V-1s-1, respectively (see supplementary Fig. 184 

S7). Clearly the hole mobility of F8T2 and MDMO-PPV is slightly reduced due to the 185 

scattering (and/or residual trapping) of DAEs in the polymeric matrix. However, the 186 

mobility in the blue OSOLETs with the open isomer of DAE_F drops by two orders of 187 

magnitude with respect to the one using the neat polymer. It appears that domain 188 

boundaries and disordered interphase regions in the F8/DAE_F bicomponent film result 189 

in a much rougher morphology, thereby hindering charge transport44. 190 

 191 

 The luminance of the OSOLETs was collected simultaneously during measurement 192 

of the transfer characteristics (Figs. 2g-i), and it shows a similar trend as drain current 193 
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vs. gate voltage (Vg). It should be noted that the pristine F8T2 and MDMO-PPV based 194 

OLETs exhibit slightly higher EL intensity as bicomponent ones measured under 195 

identical conditions (see supplementary Fig. S7). Interestingly, in the case of F8/DAE_F, 196 

despite the reduction of the output current with respect to the pristine material, we 197 

observe an increase of luminance, which can be ascribed to the higher 198 

photoluminescence efficiency (ηPL) of F8 in the so-called β-phase as already reported 199 

by Perevedentsev and Hsu et al35,45. Therefore, F8T2 and MDMO-PPV based OLETs 200 

exhibit a minor variation of EQE, between pristine and bicomponent devices (EQE at 201 

Vg = –80 V for: MDMO-PPV 2×10-3 %, MDMO_PPV/DAE_tBu 6×10-3 %, F8T2 202 

0.4×10-2 %, and F8T2/DAE_tBu 1.0×10-2 %). However, the big change in the 203 

morphology leads to a significant increase of the EQE (again at Vg = –80 V) of the 204 

F8/DAE_F bicomponent device (1.2 %) when compared to the neat F8 device (1.2 ×10-205 

2 %). Although the controlled formation of the β-phase of F8 via dipping in solvent/non-206 

solvent mixtures has already been exploited to improve the EQE of F8-based OLEDs46, 207 

no similar investigation has been reported on OLETs yet and we consider this as an 208 

additional benefit of combining F8 with DAE_F. A lowering of the operating voltage 209 

and enhancement of the brightness is the subject of our future studies, which clearly 210 

target technological applications. It can be achieved via the careful selection of (i) the 211 

light-emitting materials, which should possess high charge carrier mobility and 212 

photoluminescence efficiencies, (ii) the dielectric materials, which should exhibit a 213 

high gate capacitance, (iii) the optimal device structures, with a shorter channel length 214 
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and asymmetric electrodes, and (iv) a hole transport layer and/or an electron transport 215 

layer integrated as active component11-15. 216 

 217 

Photoswitching 218 

 The remote control via light irradiation of the electrical and optical OSOLETs 219 

output was investigated. UV (315 nm) irradiation of the OSOLETs yields a significant 220 

decrease of both drain current and luminance, which we attribute to ring-closing of the 221 

DAEs and subsequent efficient trapping of the majority of carriers. In the case of 222 

F8T2/DAE_tBu bicomponent devices, the on/off ratios (the ratio of the 223 

current/luminance in the initial state and after UV irradiation) in both transport current 224 

and EL exceed 500 (see Figs. 2d and 2g). Such a large degree of modulation is 225 

comparable with the reports of photo-programmable OLEDs and non-volatile organic 226 

memories47,48. A high modulation of the drain current and luminance was also observed 227 

for MDMO-PPV/DAE_tBu OSOLET devices (85 % decrease in current and 87 % 228 

decrease in luminance, at Vg = –120 V, see Figs. 2e and 2h) as well as F8/DAE_F 229 

OSOLET devices (65 % decrease in current and 75 % decrease in luminance, at Vg = –230 

100 V, see Figs. 2f and 2i). Deeper investigations into the amount of incorporated 231 

photochromic molecules, energy levels matching, irradiation dose, and the thickness of 232 

active film, will surely enable further improvement of the ON/OFF ratios22,47-48. Further 233 

irradiation with green (528 nm) light converts the DAEs back to their open form, and 234 

leads to full recovery of the initial state in all three-colour OSOLETs. Under the same 235 
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irradiation conditions, neat polymer based OLETs did not show any modulation of 236 

output current and EL (see supplementary Fig. S7).  237 

 238 

 It should be noted that the energy transfer from the light-emitting polymers to 239 

DAEs in their closed form, favoured by the spectral overlap of the emission of the 240 

polymers with the absorption of the DAEs in ring-closed form, can also contribute to 241 

the modulation of the intensity of the emitted light. Indeed, a slight modulation of the 242 

photoluminescence spectra was detected on the light-emitting polymer/DAE films upon 243 

UV and visible irradiation (see supplementary Fig. S9). However, as the switching 244 

phenomenon can be observed both on charge transport and light emission, we conclude 245 

that energy transfer is not the main operating principle of OSOLETs. Nevertheless, the 246 

energy transfer process might help further modulate the intensity of EL, which can be 247 

used to explain the larger modulation degree of the luminance than of the current. 248 

 249 

 The effect of DAE photoswitching on both output current and luminance of the 250 

OSOLETs was monitored over three cycles with alternative UV and visible irradiation 251 

(Fig. 3). The large modulation of both maximum drain current and luminance of the 252 

three-colour OSOLETs, normalized to the initial value for each measurement, is 253 

reversible and the optical switching behaviour of OSOLETs is stable over several cycles. 254 

Reference OLETs prepared with pristine light-emitting polymers did not show any 255 

optically induced modulation, neither on drain current nor on luminance by UV or 256 

visible irradiation (see supplementary Fig. S8). 257 
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 258 

Reversibly write and erase emitting patterns More importantly, since light is used 259 

as an external control of our OSOLETs, it is possible to generate emitting patterns with 260 

high spatial and temporal resolution on a single transistor as demonstrated by optical 261 

images of patterns created and erased in a single OSOLET (Fig. 4). In the initial 262 

configuration, the F8T2/DAE_tBu OSOLET was in an all light-emitting on-state (Fig. 263 

4a). Then, the device was irradiated homogenously using UV light yielding a dark state 264 

(Fig. 4b). More interestingly, a well-focused green laser (532 nm) can be used to form 265 

patterns on the OSOLET with the aid of a microscope. Fig. 4c shows a light-emitting 266 

on-area with a pattern of ‘H’ shape on the same device. Subsequently, the irradiation of 267 

the entire device with green light erased the patterns and the all light-emitting on-state 268 

can be seen again (Fig. 4d). The second pattern can be written in the same pixel with 269 

another step of UV irradiation and followed by one more laser writing step. Fig. 4f 270 

exhibits a pattern image of an array of dots in the same area, demonstrating the 271 

reversible and reproducible patterning of emissive features up to the micron/sub-micron 272 

scale. This demonstration using an optimized combination of photoswitch and emissive 273 

polymer illustrates the great potential of our approach to reversibly encode high-density 274 

visual information in a single display pixel. 275 

 276 

Conclusions 277 

 We have fabricated a novel OLET device in which the transport current and 278 

electroluminescence, emitting in the range of the three primary colours, can be switched 279 

efficiently and reversibly using light as an external stimulus. The active layer in such 280 
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optically switchable organic light-emitting transistor comprises an organic light-281 

emitting semiconductor and a photochromic DAE, in which the photo-tunable energy 282 

levels of DAEs can either transport or trap the charge carriers, toggled by UV and 283 

visible light irradiation. Such a dual external control is achieved through the 284 

engineering of the energy levels of the light-emitting polymers and those of the DAEs 285 

isomers. We are able to write and erase emitting patterns in a single OSOLET through 286 

a non-invasive and mask-free process, with a spatial resolution of a few micrometres, 287 

and a response on the microsecond time scale22. The stimuli-responsive multifunctional 288 

devices proposed in this work are all readily fabricated via solution processing, thus 289 

potentially transferrable to roll-to-roll compatible or ink-jet printing lines to produce 290 

low-cost and flexible stimuli-responsive (nano)electronics on a large scale. Ink-jet 291 

printing appears being a most suitable deposition method to fabricate full-colour 292 

displays by precisely positioning red, green, and blue emissive inks on each sub-pixel. 293 

 In principle, light emission from OLETs in any region of the visible spectrum can 294 

be tuned by choosing appropriate photochromic molecules in combination with suitable 295 

light-emitting polymers. Future efforts will be directed towards optically switchable 296 

OLETs that can be operated at a lower driving power/voltage and yield stronger 297 

brightness and a higher ON/OFF ratio. Our approach opens intriguing perspectives 298 

towards the development of novel optically gated, integrated full-colour displays, 299 

micro-sized light sensors, active optical memories, light controlled inverters, and logic 300 

circuitries. 301 

 302 
 303 
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Figure captions 445 

 446 

Fig. 1 ǀ Molecules, energetics, and device structure of optically switchable organic 447 
light-emitting transistors. a, Chemical structures of photochromic diarylethenes 448 
(DAE_tBu and DAE_F) and light-emitting polymers (green: F8T2; red: MDMO-PPV; 449 
blue: F8). b, Schematic illustration of the switchable charge trapping mechanism of 450 
OSOLETs based on the HOMO energy levels of DAEs. As an illustrative example, for 451 
F8T2, its hole transport is greatly favoured to the closed form of DAE_tBu but not to 452 
the open form of the latter. Thus, there is minimal trapping for the open form, while it 453 
is significant for the closed form of DAE_tBu. c, Structure of the OSOLETs (substrate, 454 
dielectric layer, source and drain electrodes are the same for all the devices, while the 455 
light-emitting polymers and DAEs are varied). 456 
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 457 

Fig. 2 ǀ Electroluminescence spectra, optical micrographs, and optoelectronic 458 
characteristics. a to c, EL spectra and emitting images of F8T2/DAE_tBu, MDMO-459 
PPV/DAE_tBu and F8/DAE_F containing OSOLETs. The scale bar in the inset is 100 460 
μm. d to f, Transfer characteristic curves of F8T2/DAE_tBu OSOLET (Vd = -100 V), 461 
MDMO-PPV/DAE_tBu OSOLET (Vd = -120 V) and F8/DAE_F OSOLET (Vd = -100 462 
V), and light-triggered current switching upon UV and visible light irradiation. g to i, 463 
Luminance and light-triggered switching of the luminance in green, red and blue 464 
OSOLETs upon UV and visible light irradiation. 465 

 466 

Fig. 3 ǀ Reversible modulation of optically switchable organic light-emitting 467 
transistors’ current and luminance during irradiation cycles. a-c Drain current and 468 
d-f luminance of green, red, and blue OSOLETs over three irradiation cycles with UV 469 
light (315 nm, 0.6 mW, 10 min, violet shaded areas) and visible green light (528 nm, 470 
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7 mW, 90 s, green shaded areas). All values are normalized to initial value before any 471 
irradiation and the connecting lines serve as ‘guides to the eye’. 472 

 473 

Fig. 4 ǀ Emitting pattern created and erased within a single optically switchable 474 
organic light-emitting transistor. a, Optical image of a F8T2/DAE_tBu OSOLET 475 
device biased with Vd = Vg = –100 V. b, Optical image of a dark state in the same 476 
device after UV light irradiation. c, Optical image of an ‘H’ shape emitting pattern from 477 
the OSOLET written with a well-focused green laser (532 nm). d, Optical image of the 478 
second all light-emitting on-state upon homogenous green light irradiation to erase the 479 
pattern. e, Optical image of the second dark state after homogenous UV irradiation. f, 480 
Optical image of an array of dots emitting patterns written by the irradiation with a 481 
532 nm laser. The dark area in the pattern is due to the variation of the intensity and/or 482 
focus of the laser.  483 


